Collectivity of the 4^+_1 states in heavy Zn isotopes and the first HIE-ISOLDE experiment

Andres Illana Sison1,4, Magda Zielińska2, Elisa Rapisarda3, Piet Van Duppen1

1 KU Leuven, Belgium; 2IRFU/DPhN, CEA Saclay, France; 3 PSI Villigen, Switzerland; 4 INFN Legnaro, Italy

and the IS557 – MINIBALL collaboration

- Motivation
- Lifetime measurements in heavy Zn isotopes
- Coulomb excitation measurements
 - First HIE-ISOLDE experiment
- What have we learnt so far?
Vicinity of 68Ni

- High excitation energy of the 2^+ state and low B(E2) in 68Ni
- Weakness of the N=40 shell gap: rapid onset of collectivity when moving away from 68Ni
Vicinity of ^{68}Ni

- polarisation of the $Z=28$ proton core in ^{70}Ni
 O. Perru et al., PRL 96 (2006)

- high excitation energy of the 2^+ state and low $B(E2)$ in ^{68}Ni

- weakness of the $N=40$ shell gap: rapid onset of collectivity when moving away from ^{68}Ni
Vicinity of ^{68}Ni

- polarisation of the Z=28 proton core in ^{70}Ni
 O. Perru et al., PRL 96 (2006)

- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)

High excitation energy of the 2^+ state and low $B(E2)$ in ^{68}Ni

Weakness of the N=40 shell gap: rapid onset of collectivity when moving away from ^{68}Ni
Vicinity of 68Ni

- polarisation of the $Z=28$ proton core in 70Ni
 O. Perru et al., PRL 96 (2006)
- core-coupled states (Fe-like and Ni-like)
in Co isotopes
 D. Pauwels et al., PRC 79 (2009)
 A. Dijon et al, PRC 83 (2011)
- onset of deformation in Fe isotopes
 J. Ljungvall et al., PRC 81 (2010)
 W. Rother et al., PRL 106 (2011)

High excitation energy of the 2^+ state
and low $B(E2)$ in 68Ni

Weakness of the N=40 shell gap:
rapid onset of collectivity
when moving away from 68Ni
Vicinity of ^{68}Ni

- polarisation of the Z=28 proton core in ^{70}Ni
 O. Perru et al., PRL 96 (2006)

- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D.Pauwels et al., PRC 79 (2009)
 A.Dijon et al, PRC 83 (2011)

- onset of deformation in Fe isotopes
 J.Ljungvall et al., PRC 81 (2010)
 W.Rother et al., PRL 106 (2011)

- single particle, collective and core-coupled states in Cu isotopes
 I.Stefanescu et al., PRL 100 (2008)

High excitation energy of the 2^+ state and low $B(E2)$ in ^{68}Ni

Weakness of the N=40 shell gap: rapid onset of collectivity when moving away from ^{68}Ni
Vicinity of 68Ni

- polarisation of the Z=28 proton core in 70Ni
 O. Perru et al., PRL 96 (2006)

- core-coupled states (Fe-like and Ni-like) in Co isotopes
 D. Pauwels et al., PRC 79 (2009)
 A. Dijon et al, PRC 83 (2011)

- onset of deformation in Fe isotopes
 J. Ljungvall et al., PRC 81 (2010)
 W. Rother et al., PRL 106 (2011)

- single particle, collective and core-coupled states in Cu isotopes
 I. Stefanescu et al., PRL 100 (2008)

High excitation energy of the 2^+ state and low $B(E2)$ in 68Ni

Weakness of the N=40 shell gap: rapid onset of collectivity when moving away from 68Ni
Experimental methods to measure transition probabilities around 68Ni

- Lifetime measurements after deep-inelastic reactions
 - yrast states
 - problem of unknown feeding

- Coulomb excitation
 - collective states
 - Coulex cross-sections depend on quadrupole moments

Combination of both methods should in principle give information on quadrupole moments, provided that the measurements are precise and accurate
Transition probabilities in Zn isotopes: status five years ago

- $B(E2)$'s for stable Zn isotopes: Coulex, RDDS, DSAM: some important discrepancies (64,66Zn)
- neutron-rich Zn isotopes: low-energy Coulex, relativistic Coulex for 2^+

- $B(E2; 4^+ \rightarrow 2^+)$ better test for theories than $B(E2; 2^+ \rightarrow 0^+)$
- collectivity overestimated by beyond-mean-field calculations
Lifetime measurements in $^{70-74}\text{Zn}$

- RDDS measurement with AGATA (Legnaro)
- new lifetimes for the 2^+ states in agreement with previous $B(E2; 2^+ \rightarrow 0^+)$ values
- good agreement with model calculations for the 2^+

- discrepancy of the new lifetimes for 4^+ states with low-energy Coulex results (especially for ^{74}Zn)
Lifetime measurements in $^{70,72}\text{Zn}$

- plunger measurement at GANIL: EXOGAM+VAMOS
- ^{238}U beam (6.8 MeV/u) on ^{70}Zn
- confirmation of the RDDS results from Legnaro
Coulomb excitation of exotic Zn nuclei at ISOLDE

gamma-ray detection array:
MINIBALL
8 triple clusters, 8% efficiency

particle detection setup:
annular DSSD detector at forward angles
(+ sometimes C-REX Barrel Si)
detection of scattered Zn
and recoiling target nuclei

deexcitation γ rays measured in coincidence with particles (Zn and target recoils)
laser ionisation to suppress strong Ga contamination
beam intensities: 3×10^7 pps (72Zn), 1×10^6 pps (74Zn), 5×10^5 pps (76Zn), 3×10^4 pps (78Zn)
Coulomb excitation of 72Zn

PhD S. Hellgartner, TU Munich (2015)

- low-energy Coulex at ISOLDE
- C-REX setup
 - broad range of CM angles
- large statistics
 - differential cross sections
 - high-precision measurement
 - consistency check

![Graph showing B(E2; 4$^+$ → 2$^+$) vs. energy for 72Zn](image)

![Graph showing angular distribution for 72Zn](image)

![Graph showing energy spectrum for 72Zn](image)
Coulomb excitation of 74,76Zn: the first HIE-ISOLDE experiment

October 2015, 74Zn on 196Pt: analysis by A. Illana Sison

- increased probability of multi-step excitation
- higher sensitivity to quadrupole moments
- max 6 hours of 4MeV/A beam per day, only on weekdays
- bad beam time structure (150 μs bursts) – high particle multiplicity
Coulomb excitation of 74,76,78Zn: preliminary results

- **October 2016:**
 - 5 days of 78Zn (4.3 MeV/u) on 196Pt/208Pb
- Analysis in the final stage (A. Illana Sison)
What have we learnt so far?

- systematic disagreement between RDDS and Coulex results for 4^+ states
- DSAM result (states populated in non-safe Coulex) seems consistent with Coulex
- ...but the RDDS result from GANIL, also with states populated in non safe Coulex, is not!
- better control of possible sources of systematic errors needed
 - feeding in lifetime measurements
 - second-order effects in Coulex \[\rightarrow \text{higher statistics necessary} \]
- too early to make comparisons with theory
Collectivity of 4^+ states

Z<40 nuclei

40<Z<80 nuclei

- Small $B(E2;4^+ \rightarrow 2^+)/B(E2;2^+ \rightarrow 0^+)$ ratio for all Zn isotopes → indication of a non-collective character of the 4^+ states
Description of the region south of 68Ni

- Interaction between neutron $g_{9/2}$ and proton fp shell causes lowering of the $f_{5/2}$ and raising of the $f_{7/2}$
- collectivity increases with filling of the $g_{9/2}$
- transition probabilities important to test validity of model descriptions
Lifetime measurements in $^{70-74}$Zn

Deep inelastic reaction: 76Ge (7.6 MeV/u) + 238U
PRISMA spectrometer at grazing angle (55°)

Cologne plunger

Target: 1.4 mg/cm2
Degrader: Nb – 4.2 mg/cm2
5 plunger distances: 100, 200, 500, 1000, 1900 µm
(20 hours each)
Lifetime measurements in $^{70-74}\text{Zn}$

C. Louchart, PRC 87 (2013) 054302
Transition probabilities in ^{70}Zn

D. Mücher et al PRC 79 (2009)

- DSAM measurement, excited states in ^{70}Zn populated by non-safe Coullex on ^{12}C

- $4^+ \rightarrow 2^+ (901 \text{ keV})$ and $2^+ \rightarrow 0^+ (885 \text{ keV})$ close in energy

- Coulomb excitation seems a more appropriate method to measure B(E2)'s in ^{70}Zn (no double peaks/tails)
Coulomb excitation of 70Zn

M. Zielińska et al, HIL Warsaw

48 PIN diodes (120° – 155°)

EAGLE: 15 ACS Ge detectors

32S beam (68 MeV), 70Zn target (0.7 mg/cm2)
5 days of data-taking