Coulomb excitation of ⁶⁶Ge Or How I Learned to Stop Worrying and Love Ge

Kenzo Abrahams University of the Western Cape

UNIVERSITY of the WESTERN CAPE

Overview

- Shape Conundrum in ⁷⁰Se (IS569)
- Beam profile favours ⁶⁶Ge
- Experiments carried out during 13-17 July 2017
- Data analysis
- Conclusions

Angular distribution would tell us precisely static quadrupole moment of the first 2⁺

J. Ljungvall *et al.*, Phys. Rev. Lett. **100**, 102502 (2008) A. Hurst *et al.*, Phys. Rev. Lett. **98**, 072501 (2007)

Shape Coexistence in ⁷⁰Se: What about the second 2+?

Enough statistics (~100-200 counts) @ HIE-ISOLDE to determine the sign of $Q_s(2^+)$ with complementary measurements @ iThemba LABS

GAMKA (the Lion): R35M just funded by the NRF One possible combination: 18 clovers + 8 large LaBr₃

Lifetime and mixing-ratio measurements for 2nd 2⁺ @ iThemba LABS using the GAMKA array e.g., ⁵⁸Ni(¹⁴N,pn) reaction at 39 MeV (Heese *et al* 1986) to avoid yrast population

Beam profile: sulfur in ZrO₂ target # 612

The original Physics goal changed by the existing sulfur in the ZrO2 target, which allowed for the production of ⁶⁶GeS molecules in greater proportion than ⁷⁰SeCO molecules.

The beam current decreased very rapidly over time despite efforts from the accelerator group.

Implantation data under analysis to estimate beam compostion.

The good news: first time an unstable Ge isotope is accelerated!

Experiments carried out during 13-17 July 2017

- d(²²Ne,²³Ne)p @ 4.48 MeV/u to determine MINIBALL crystal angles N. Warr et al., Eur. Phys. J. A 49 (2013) 40
- ⁶⁶Ge(¹⁹⁶Pt, ¹⁹⁶Pt*)⁶⁶Ge* Coulomb excitation reaction @ 4.395 MeV/u
- ⁶⁶Ge beam in the ionization chamber downstream the MINIBALL array to estimate beam energy losses and ¹⁹⁶Pt target thickness.
- Implantation and beta decay to study the beam composition and nuclear structure of daughter nuclei (C. Mehl PhD thesis)

⁶⁶Ge(¹⁹⁶Pt, ¹⁹⁶Pt^{*})⁶⁶Ge^{*} Coulomb excitation reaction @ 4.395 MeV/u

- Eight MINIBALL detectors + double-sided CD detector
- ⁶⁶Ge beam bombarded onto a ¹⁹⁶Pt target (97.25% enriched)
- ¹⁹⁶Pt target thickness = 4 mg/cm² @ Heavy Ion Laboratory, Warsaw
- Starting ⁷⁰Se¹²C¹⁶O yield = 1.1E5/uC (free of isobars?) vs 70Se 9.7E4/uC
- Actually, it was mostly ⁶⁶GeS!
- Beam energy = 4.395 MeV/u
- Target CD distance = 27.4 ± 0.3 mm
- CD angular coverage: [18.2°, 56.2°] in the lab frame

Beam composition from in-beam γ -ray data: I(⁶⁶Ge)/I(⁷⁰Se)

The composition of ⁶⁶Ge is stronger than ⁷⁰Se, as agreed by the accelerator group.

Data are, however, not conclusive as there is a decay/time dependence in the γ -ray peaks. The activation/decay data will confirm the beam composition.

Preliminary Doppler-corrected γ–ray spectrum

Total statistics for gamma rays, background subtracted, Doppler corrected for scattered projectile

Enough statistics to determine $Q_s(2^+)$ from normalization method

Implantation + beta decay study beam composition + nuclear structure

A promising data set collected with 10⁶ γ - γ coincidences (C. Mehl, PhD Thesis) $E\gamma$ - time matrix + pile up + dead time (ongoing analysis)

CONCLUSIONS

- Efficiencies and Calibration of the clusters and CD detector
- Geometry characterisation
- In-beam composition supports a larger ⁶⁶Ge/⁷⁰Se beam composition
- Static quadrupole moment with be determined using the Normalization technique
- Beam composition under analysis from activation+beta decay data collected at the end of the experiments
- A new proposal to study shape coexistence in ⁶⁶Ge will be submitted to the next INTC + we expect to run ⁷⁰Se (IS569).
- Beam development is required to study the ⁶⁶Ge/⁷⁰Se beam profile and enhance production for either of them.

BIG Thanks to COLLABORATORS

Craig Mehl, Nico Orce, Paul Garrett*, George O'Neill, Senamile Masango, Cebo Ngwetsheni, Dineo Mavela, Elijah Akakpo, Elias Martin Montes (UWC, SA)

Dave Jenkins, Bob Wadsworth & Adam Brown (York, UK)

Liam Gaffney, Radostina Zidarova, Stathis Giannopoulos, Karl Johnston, Sebastien Rothe, Jochen Ballof, Jose Rodriguez, Erwin Siesling, Miguel Lozano Benito and the Accelerator/target groups at HIE-ISOLDE (CERN)

Dan Doherty (University of Surrey, UK)

Pietro Spagnoletti (University of West Scotland, UK)

Magda Zielinska (CEA, Saclay, France) Kumar Raju (RCNP, Japan)

Nara Singh (Manchester, UK) Georgi Rainoski (Sofia, Bulgaria)

Anna Stolarz and Joanna Kowalska (Heavy Ion Laboratory, University of Warsaw, Poland)

Sifiso Ntshangase (University of Zululand, SA)

* Also University of Guelph (Canada)