Coulomb excitation of ^{66}Ge

Or How I Learned to Stop Worrying and Love Ge

Kenzo Abrahams
University of the Western Cape
Overview

- Shape Conundrum in ^{70}Se (IS569)
- Beam profile favours ^{66}Ge
- Experiments carried out during 13-17 July 2017
- Data analysis
- Conclusions
Angular distribution would tell us precisely static quadrupole moment of the first 2^+

Shape Coexistence in 70Se: **What about the second 2^+?**

Enough statistics (~100-200 counts) @ HIE-ISOLDE to determine the sign of $Q_s(2^+)$ with complementary measurements @ iThemba LABS.

Lifetime and mixing-ratio measurements for $2^{nd} 2^+$ @ iThemba LABS using the GAMKA array

- e.g., 58Ni(14N,pn) reaction at 39 MeV (Heese *et al* 1986) to avoid yrast population
Shape coexistence in the neutron deficient region A ~ 70

66Ge and 70Se present a very similar “anomalous” behaviour

Mixing of 0^+ states leads to anomalous rotational behaviour of first 2^+ state. Tentative 2nd 0^+ state @ 2010.3 keV in 70Se. No 2nd 0^+ state in 66Ge (new proposal by G. O’Neill et al)
The original Physics goal changed by the existing sulfur in the ZrO$_2$ target, which allowed for the production of 66GeS molecules in greater proportion than 70SeCO molecules.

Particle hits on Q2 quadrant in MINIBALL as a function of time (similar pattern in all quadrants)

The primary target is heated by an extra 15 A up to 555 A

The beam current decreased very rapidly over time despite efforts from the accelerator group.

Beam composition from CD upstream: estimated 70Se/66Ge ~0.1

Implantation data under analysis to estimate beam composition.

The good news: first time an unstable Ge isotope is accelerated!
Experiments carried out during 13-17 July 2017

- $d(^{22}\text{Ne},^{23}\text{Ne})p$ @ 4.48 MeV/u to determine MINIBALL crystal angles

- $^{66}\text{Ge}(^{196}\text{Pt},^{196}\text{Pt}^*)^{66}\text{Ge}^*$ Coulomb excitation reaction @ 4.395 MeV/u

- ^{66}Ge beam in the ionization chamber downstream the MINIBALL array to estimate beam energy losses and ^{196}Pt target thickness.

- Implantation and beta decay to study the beam composition and nuclear structure of daughter nuclei (C. Mehl PhD thesis)
$^{66}\text{Ge}(^{196}\text{Pt}, {}^{196}\text{Pt}^*^{66}\text{Ge}^*)$ Coulomb excitation reaction $\@ 4.395 \text{ MeV/u}$

- Eight MINIBALL detectors + double-sided CD detector
- ^{66}Ge beam bombarded onto a ^{196}Pt target (97.25% enriched)
- ^{196}Pt target thickness = 4 mg/cm2 @ Heavy Ion Laboratory, Warsaw
- Starting $^{70}\text{Se}^{12}\text{C}^{16}\text{O}$ yield = 1.1E5/uC (free of isobars?) vs ^{70}Se 9.7E4/uC
- Actually, it was mostly ^{66}GeS!
- Beam energy = 4.395 MeV/u
- Target - CD distance = 27.4 \pm 0.3 mm
- CD angular coverage: [18.2°, 56.2°] in the lab frame
Beam composition from in-beam γ-ray data: $I(^{66}\text{Ge})/I(^{70}\text{Se})$

The composition of ^{66}Ge is stronger than ^{70}Se, as agreed by the accelerator group.

Data are, however, not conclusive as there is a decay/time dependence in the γ-ray peaks. The activation/decay data will confirm the beam composition.
Preliminary Doppler-corrected γ-ray spectrum

355.7 keV

956.9 keV

\sim700 counts

Enough statistics to determine $Q_s(2^+)$ from normalization method
Implantation + beta decay study
beam composition + nuclear structure

A promising data set collected with $10^6 \gamma-\gamma$ coincidences (C. Mehl, PhD Thesis)
E_γ – time matrix + pile up + dead time (ongoing analysis)
CONCLUSIONS

- Efficiencies and Calibration of the clusters and CD detector
- Geometry characterisation
- In-beam composition supports a larger $^{66}\text{Ge}/^{70}\text{Se}$ beam composition
- Static quadrupole moment will be determined using the Normalization technique
- Beam composition under analysis from activation+beta decay data collected at the end of the experiments
- A new proposal to study shape coexistence in ^{66}Ge will be submitted to the next INTC + we expect to run ^{70}Se (IS569).
- Beam development is required to study the $^{66}\text{Ge}/^{70}\text{Se}$ beam profile and enhance production for either of them.
BIG Thanks to COLLABORATORS

Craig Mehl, Nico Orce, Paul Garrett*, George O’Neill, Senamile Masango, Cebo Ngwetsheni, Dineo Mavela, Elijah Akakpo, Elias Martin Montes (UWC, SA)

Dave Jenkins, Bob Wadsworth & Adam Brown (York, UK)

Liam Gaffney, Radostina Zidarova, Stathis Giannopoulos, Karl Johnston, Sebastien Rothe, Jochen Ballof, Jose Rodriguez, Erwin Siesling, Miguel Lozano Benito and the Accelerator/target groups at HIE-ISOLDE (CERN)

Dan Doherty (University of Surrey, UK)

Pietro Spagnoletti (University of West Scotland, UK)

Magda Zielinska (CEA, Saclay, France) Kumar Raju (RCNP, Japan)

Nara Singh (Manchester, UK) Georgi Rainoski (Sofia, Bulgaria)

Anna Stolarz and Joanna Kowalska (Heavy Ion Laboratory, University of Warsaw, Poland)

Sifiso Ntshangase (University of Zululand, SA)

* Also University of Guelph (Canada)