Study of shell evolution around the doubly magic ^{208}Pb, via a multinucleon transfer reaction at MINIBALL

A. Illana Sison
On behalf of the IS572 collaboration
OUTLINE

• Physics motivation
• Multinucleon Transfer (MNT) technique
• Experimental Setup
• Preliminary results
• Outlook and future perspectives
PHYSICS MOTIVATION

The region around ^{208}Pb has been very difficult to populate experimentally due to its large A and Z. We would like to study the nuclear structure evolution beyond $N = 126$.
Why the neutron-rich Pb region?

Where is above the 8+ isomer? and the negative states?

PHYSICS MOTIVATION

And why the neutron-rich Po region?

Where is above the 8+ isomer? and the negative states?

PHYSICS MOTIVATION

The region around ^{208}Pb has been very difficult to populate experimentally due to its large A and Z. We would like to study the nuclear structure evolution beyond $N = 126$.

How can we study this region? Fragmentation, Transfer reaction, Multinucleon transfer with stable beams or ISOL beams.
OUTLINE

• Physics motivation
• Multinucleon Transfer (MNT) technique
• Experimental Setup
• Preliminary results
• Outlook and future perspectives
MULTINUCLEON TRANSFER

• It is possible to transfer several nucleons and large angular momentum between the projectile and the target.

• It has been proved as a fantastic mechanism with stable beams.

MULTINUCLEON TRANSFER

With stable beams:

^82Se onto ^{198}Pt

BLF measured in P

Yield (beads)

In-beam gamma coincidence with recoils \rightarrow Gamma spectrometer (AGATA) + magnetic spectrometer (PRISMA/VAMOS)

Up to ~20 nucleons transfer

Courtesy of J.J. Valiente-Dobon
proton pick-up and neutron stripping channels lead to neutron rich heavy mass nuclei

proton stripping and neutron pick-up channels lead to neutron rich medium mass nuclei

MULTINUCLEON TRANSFER

GRAZING calculations

With this technique is possible to do:

- In-beam spectroscopy of several nuclei at the same time.
- We can investigate isomers between 25 ns and 5 μs.

Courtesy of S. Szilner
OUTLINE

• Physics motivation
• Multinucleon Transfer (MNT) technique
• Experimental Setup
• Preliminary results
• Outlook and future perspectives
EXPERIMENTAL SETUP

To be consider:
- High beam intensity into a thick target: High γ-rate and contamination.
- High instantaneous beam intensity.

First MNT experiment with RIB.
- Beam Intensity required 1.5×10^7 pps.
- First Exp. @ HIEISOLDE with:
 - All cavities used (6.2 MeV/u)
 - The RF pulse length of 1.6 ms.
EXPERIMENTAL SETUP

Solutions:
- Very slow extraction.
- CD + Absorbers for particle detection.
- New trigger for MINIBALL.
- Target size must be optimized.

<table>
<thead>
<tr>
<th>Target</th>
<th>Thickness [mg/cm²]</th>
<th>Intensity [pps]</th>
<th>Total hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>²⁰⁸Pb</td>
<td>1.0</td>
<td>~ 1.0 x 10⁶</td>
<td>~ 15</td>
</tr>
<tr>
<td>²⁰⁸Pb</td>
<td>13.0</td>
<td>~ 1.0 x 10⁶</td>
<td>~ 120</td>
</tr>
</tbody>
</table>

Different trigger modes (γ-γ, γ-p, γ-γ-γ, γ-γ-p, ...) have been implemented in the DAQ.
Problems during the run:

- Radiation problems in ISOHALL. Test at 2.0 μA → the highest value registered was 146 μSv/h!!!!
- We couldn’t run with high proton beam intensity. Some actions were carried out without any success.
- Proton Beam intensity limited.
- Therefore we had a very Low beam intensity (> factor 10).

What will we be able to extract from this run?
OUTLINE

• Physics motivation
• Multinucleon Transfer (MNT) technique
• Experimental Setup
• Preliminary results
• Outlook and future perspectives
PRELIMINARY RESULTS

PRELIMINARY RESULTS

Gate in 799 keV \((^{210}\text{Pb} : 2^+ \rightarrow 0^+) \)

298 keV \((^{210}\text{Pb} : 4^+ \rightarrow 2^+) \)

\[\text{Pb lines} \]

\[\text{Rb + Rb-like} \]

\[\text{Pb?} \]
OUTLINE

• Physics motivation
• Multinucleon Transfer (MNT) technique
• Experimental Setup
• Preliminary results
• Outlook and future perspectives
OUTLOOK AND FUTURE PERSP.

- The experiment was successful despises of the Radiation problem inside ISOLDE-HALL.
- Cross-sections for MNT using the thin target will be extracted. Theory Vs Experiment.
- In-beam γ spectroscopy will be performed with the thick target:
 - To identify all the nuclei produced, like 210Pb, …
 - Isomer spectroscopy (with lifetimes between 25 ns to 5 μs).

Multinucleon transfer technique with Radioactive Ions Beams has been proved. New opportunities!
COLLABORATION

A. Illana, J.J. Valiente-Dobón, G. de Angelis, L. Corradi, E. Fioretto, F. Galtarossa, D.R. Napoli
INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

S. Szilner, P. Colovic
Ruder Boskovic Institute, Zagreb, Croatia

A. Boso, R. Menegazzo, D. Mengoni, F. Recchia
Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy

M. Jurado-Gomez
IFIC, CSIC, Valencia, Spain

Th. Kröll
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

S. Ceruti, T. Marchi
Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven, Belgium

L.P. Gaffney
ISOLDE, CERN, Switzerland

G. Benzoni
Dipartimento di Fisica and INFN, Sezione di Milano, Milano, Italy

M.J.G. Borge
Instituto de Estructura de la Materia CSIC, Madrid, Spain

Zs. Podolyack
Department of Physics, University of Surrey, Guildford, United Kingdom

J.G. Cubiss
Department of Physics, University of York, York, United Kingdom

Thanks to the ISOLDE and HIE-ISOLDE collaboration
THANKS FOR YOUR ATTENTION
MNT WITH STABLE BEAMS

Direct kinematics, binary reaction:
BLF lighter (enough energy for identification)
TLF heavier (physics goal but not enough energy)