Beam dynamics studies for 10 MHz post-accelerated RIBs in Phase 3 of the HIE-ISOLDE linac upgrade

ISOLDE Workshop and Users meeting 4 – 6 December 2017

M.A. Fraser - TE-ABT-BTP, CERN

Contents

- Intro to the RFQ and concept of pre-bunching
- Beam dynamics studies:
 - Electrostatic modeling of RFQ in CST
 - PARMTEQ vs. TRACK
- Results from the feasibility study
- Integration at HIE-ISOLDE:
 - LEBT (bunching)
 - MEBT (chopper line)
- Summary
- Reference material / extra slides

Introduction

- This is intended to be only a very brief overview:
 - Studies carried out as part of Fellowship in BE-RF (2012 14)
 - Full details of the studies can be found in the documentation collected in the "Reference material" section at the end of the talk (simulation tools available on request).
- No RF hardware design work carried out:
 - Only functional specification from beam dynamics studies
 - Specifications looks reasonable and comparable to systems at other labs, including CERN.
- Comment:
 - Increasing the beam energy spread from the EBIS impacts the 10 MHz bunching efficiency and influences the choice of layout.

RFQ: transverse focusing

Courtesy of T. Sieber, Entwicklung von 4-Rod- und IH- Radio- Frequenz-Quadrupol (RFQ) Beschleunigern für radioaktive Ionenstrahlen bei REX-ISOLDE und MAFF, PhD Thesis, LMU Munchen, May 2001

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

RFQ: longitudinal focusing (bunching)

Courtesy of T. Sieber, Entwicklung von 4-Rod- und IH- Radio- Frequenz-Quadrupol (RFQ) Beschleunigern für radioaktive Ionenstrahlen bei REX-ISOLDE und MAFF, PhD Thesis, LMU Munchen, May 2001

REX-ISOLDE RFQ

Parameter	Value
RFQ type	4-rod $\lambda/2$ (IH type)
f [MHz]	101.28
L [m]	3.0
$W_{in} \rightarrow W_{out} \text{ [keV/u]}$	5 → 300
${\beta_{\mathrm{in}}} o {\beta_{\mathrm{out}}}$ [%]	0.3 → 2.5
No. of cells	232
P [kW]	36.3 @ A/q = 4.5
A/q _{limit}	< 5.5
Duty cycle [%]	< 10

Courtesy of T. Sieber, Entwicklung von 4-Rod- und IH- Radio- Frequenz-Quadrupol (RFQ) Beschleunigern für radioaktive Ionenstrahlen bei REX-ISOLDE und MAFF, PhD Thesis, LMU Munchen, May 2001

REX-ISOLDE RFQ

Parameter	Value
RFQ type	4-rod $\lambda/2$ (IH type)
f [MHz]	101.28
L [m]	3.0
$W_{in} \rightarrow W_{out} \text{ [keV/u]}$	5 → 300
${\beta_{\mathrm{in}}} o {\beta_{\mathrm{out}}}$ [%]	0.3 → 2.5
No. of cells	232
P [kW]	36.3 @ A/q = 4.5
A/q _{limit}	< 5.5
Duty cycle [%]	< 10

Courtesy of T. Sieber, Entwicklung von 4-Rod- und IH- Radio- Frequenz-Quadrupol (RFQ) Beschleunigern für radioaktive Ionenstrahlen bei REX-ISOLDE und MAFF, PhD Thesis, LMU Munchen, May 2001

REX-ISOLDE RFQ: modulation

• Thanks to O. Kester (TRIUMF) for helping me dig out the actual CNC machine files used to mill the electrodes... a critical step in confirming what is actually installed in the REX-ISOLDE RFQ:

Beam dynamics in the REX-RFQ (1)

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

Beam dynamics in the REX-RFQ (2)

- Benchmarked the code PARMTEQ (LANL) [1]:
 - PARMTEQ was used to design the RFQ
 - Tracked particles in the field map using TRACK
 - Electric field map generated using finite element modelling in CST EM studio and data from CNC milling files and drawings

CST EM simulations of RFQ (1)

M.A. Fraser, TE-ABT-BTP

CST EM simulations of RFQ (2)

CST EM simulations of RFQ (2)

Concept of pre-bunching into RFQ

- Concept simple: velocity bunching with RF buncher
- Multiple harmonics added to linearise and approximate a sawtooth, see [2] for optimisation:

$$V_{\rm eff}(\tau) = V_0 \left(\sin \omega_0 \tau - 0.43 \sin 2\omega_0 \tau + 0.21 \sin 3\omega_0 \tau - 0.10 \sin 4\omega_0 \tau \right)$$

Central grey bucket at 10 MHz: adjacent buckets are the standard 101.28 MHz buckets

Pre-bunching at other laboratories

Table 1: Comparison of the key parameters of a selection of relevant worldwide MHB-RFQ systems.									
Facility	ATLAS (ANL)	ISAC (TRIUMF)	PIAVE (LNL)	ISOLDE (CERN)					
RFQ frequency [MHz]	60.625	35.4	80	101.28					
MHB fundamental (beam) frequency [MHz] ($h = \frac{f_{RFQ}}{f_{MHB}}$)	12.125 ($h = 5$)	11.8 (<i>h</i> = 3)	40 ($h = 2$)	10.128 (<i>h</i> = 10)					
No. of MHB harmonics	4	3	3	≥ 3					
RFQ structure type	multisegment split-coaxial	4-rod split-ring	superconducting	4-rod ($\lambda/2$)					
MHB RF structure type	lumped circuit (resonant)	transmission line (non-resonant)	QWR (resonant)	to be defined					
MHB drift-tube type	single-gap	single-gap	$2 \times$ double-gap	single-gap					

- Most labs designed the RFQ with the pre-buncher (shorter structure, reduced longitudinal emittance by design)
- We propose to retrofit the existing RFQ with the pre-buncher

Pre-bunching at other laboratories

Facility	ATLAS (ANL)	ISAC (TRIUMF)	PIAVE (LNL)	ISOLDE (CERN)
RFQ frequency [MHz]	60.625	35.4	80	101.28
MHB fundamental (beam) frequency [MHz] $(h = \frac{f_{RFQ}}{f_{MHB}})$	12.125 ($h = 5$)	11.8 (<i>h</i> = 3)	$40 \ (h=2)$	10.128 (<i>h</i> = 10)
No. of MHB harmonics	4	3	3	≥ 3
RFQ structure type	multisegment split-coaxial	4-rod split-ring	superconducting	4-rod ($\lambda/2$)
MHB RF structure type	lumped circuit (resonant)	transmission line (non-resonant)	QWR (resonant)	to be defined
MHB drift-tube type	single-gap	single-gap	$2 \times$ double-gap	single-gap

- Most labs designed the RFQ with the pre-buncher (shorter structure, reduced longitudinal emittance by design)
- We propose to retrofit the existing RFQ with the pre-buncher

Transmission at 10 MHz and 300 keV/u [4]:

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

Transmission at 10 MHz and 300 keV/u [4]:

Longitudinal emittance (rms) at 300 keV/u [4]:

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

Longitudinal emittance (rms) at 300 keV/u [4]:

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

REX-ISOLDE electrode design

Energy acceptance of REX RFQ

Measured momentum acceptance of RFQ shows very good agreement with the simulations (same with transmission vs. voltage) [5]:

Multi-harmonic buncher (MHB)

- Detailed design studies of MHB electrode geometry found in [3]
 - 2 electrodes operated in push-pull mode (equal but opposite voltages)

Multi-harmonic buncher (MHB)

- Detailed design studies of MHB electrode geometry found in [3]
 - 2 electrodes operated in push-pull mode (equal but opposite voltages)
 - Aperture large compared to accelerating gap: strong radial dependence

• REX accelerator: W = 3 MeV/u

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

• REX accelerator: W = 3 MeV/u

• HIE Stage 1 (2016): W = 5.5 MeV/u

2x cryomodules 10x QWRs 2x solenoids

M.A. Fraser, TE-ABT-BTP

M.A. Fraser, TE-ABT-BTP

- Efficient bunching is still possible without extension provided by installation of Stage 3...
 - Possible layout options and their performance explored in [3]
 - Ideal for testing a prototype MHB structure, or possibly experiments: however, request is <1% in satellite bunches
 - Chopping before RFQ is possible but not efficient and not recommended: small $\beta\gamma$, gridded chopper would cause transmission losses

LEBT Design Challenges

- Non-isochronous effects [3]:
 - bunching path length depends on the transverse position, i.e. optics and emittance:

- Non-linearities: chromatic and non-linear abberations in quadrupoles [3]:
 - solenoids preferred as beam size kept small in both planes

Baseline design with linac extension

TRACK results [3]:

Particle tracking in field maps:

Option B: integrate MHB close to EBIS

TRACK results [3]:

Particle tracking in field maps:

Option C: MHB close to RFQ

TRACK results [3]:

Particle tracking in field maps:

Bunch time structure

- Expect > 80% bunching efficiency with ~15% populated in adjacent 100 MHz satellite bunches [6]:
 - Requires a chopper for experimental request of <1% in satellite bunches

MEBT & chopper

- Classic chopper line design between RFQ and IHS:
 - 1.2 kV of chopping voltage over 0.5 m for 4mrad kick on A/q = 4.5
 - Additional RF buncher will need procurement
 - Doublet magnets can be recovered from REX
- Emittance growth studies indicate a travelling wave structure is suited (not resonant type as used at TRIUMF) [7]:
 - HIE-ISOLDE specification is similar to the specification of the meander strip-line chopper developed at CERN for Linac4

Beam dynamics performance summary

Option	MHB Status	V ₀ [V]	L [m]	$\Delta \phi^{\mathbf{a}}$ [deg]	$\frac{\Delta W}{W}_{\text{source}}$	T _{total} [%]	T _{10 MHz} [%]	T _{sat} [%]	$\epsilon_{x, rms}$ [mm mrad]	$\epsilon_{y, { m rms}}$ [mm mrad]	$\epsilon_{z, rms}$ [ns keV/u]
-	OFF	0	-	-	0.1	93.9	-	-	0.64	1.36	0.28
-	OFF	0	-	-	0.1	93.7	-	-	0.62	0.64	0.27
Α	ON	465	2.32	-30	0.1	98.6	82.4	16.2	0.93	0.72	0.15
	OFF	0	2.32	-	0.1	94.3	-	-	0.95	0.74	0.26
В	ON	175	9.49	-70	0.1	98.5	83.2	15.3	0.70	0.79	0.08
	OFF	0	9.49	-	0.1	93.9	-	-	0.60	0.63	0.27
С	ON OFF	1150	0.87	-30	1.0	76.9 93.4	54.2	22.7	0.74	0.76	0.59 0.27
	- - A B	Status - OFF - OFF A ON OFF B ON OFF	Status [V] - OFF 0 - OFF 0 - OFF 0 A ON 465 OFF 0 0 B ON 175 OFF 0 0 C ON 1150	Status [V] [m] - OFF 0 - - OFF 0 - - OFF 0 - A ON 465 2.32 OFF 0 2.32 B ON 175 9.49 OFF 0 9.49	Status [V] [m] [deg] - OFF 0 - - - OFF 0 - - - OFF 0 - - A ON 465 2.32 -30 OFF 0 2.32 - - B ON 175 9.49 -70 OFF 0 9.49 - - C ON 1150 0.87 -30	Status [V] [m] [deg] [%] - OFF 0 - - 0.1 A ON 465 2.32 -30 0.1 OFF 0 2.32 - 0.1 B ON 175 9.49 -70 0.1 OFF 0 9.49 - 0.1 0.1 C ON 1150 0.87 -30 1.0	Status [V] [m] [deg] [%] [%] - OFF 0 - - 0.1 93.9 - OFF 0 - - 0.1 93.9 - OFF 0 - - 0.1 93.9 - OFF 0 - - 0.1 93.7 A ON 465 2.32 -30 0.1 98.6 OFF 0 2.32 - 0.1 94.3 B ON 175 9.49 -70 0.1 98.5 OFF 0 9.49 - 0.1 93.9 C ON 1150 0.87 -30 1.0 76.9	Status [V] [m] [deg] [%] [%] [%] - OFF 0 - - 0.1 93.9 - - OFF 0 - - 0.1 93.9 - - OFF 0 - - 0.1 93.7 - A ON 465 2.32 -30 0.1 98.6 82.4 OFF 0 2.32 - 0.1 94.3 - B ON 175 9.49 -70 0.1 98.5 83.2 OFF 0 9.49 - 0.1 93.9 - C ON 1150 0.87 -30 1.0 76.9 54.2	Status [V] [m] [deg] [%	Status [V] [m] [deg] [%] [%] [%] [%] [%] [mm mrad] - OFF 0 - - 0.1 93.9 - - 0.64 - OFF 0 - - 0.1 93.9 - - 0.64 - OFF 0 - - 0.1 93.7 - - 0.62 A ON 465 2.32 -30 0.1 98.6 82.4 16.2 0.93 OFF 0 2.32 - 0.1 94.3 - - 0.95 B ON 175 9.49 -70 0.1 98.5 83.2 15.3 0.70 OFF 0 9.49 - 0.1 93.9 - - 0.60 C ON 1150 0.87 -30 1.0 76.9 54.2 22.7 0.74	Status [V] [m] [deg] [%] [%] [%] [%] [mm mrad] [mm mrad] - OFF 0 - - 0.1 93.9 - - 0.64 1.36 - OFF 0 - - 0.1 93.9 - - 0.64 1.36 - OFF 0 - - 0.1 93.7 - - 0.62 0.64 A ON 465 2.32 -30 0.1 98.6 82.4 16.2 0.93 0.72 OFF 0 2.32 - 0.1 94.3 - - 0.95 0.74 B ON 175 9.49 -70 0.1 98.5 83.2 15.3 0.70 0.79 OFF 0 9.49 - 0.1 93.9 - - 0.60 0.63 C ON 1150 0.87 -30

^a Phase shift of synchronous particle (shift of RFQ phase relative to MHB) to compensate for the phase lagging of non-isochronous particles.

Summary

- A pre-buncher operating at a sub-harmonic frequency of 10.128 MHz can deliver transmissions > 80% at HIE-ISOLDE:
 - A chopper will be required to remove ~15% beam trapped in satellite bunches
 - Pre-bunching offers a significant reduction in the longitudinal beam emittance delivered by the RFQ:
 - Factor 3 reduction in longitudinal emittance is feasible in certain scenarios
- Similar performance in bunching could be possible without Stage 3 and linac extension:
 - Experiments must accept satellite bunches

Reference material

[1] M.A. Fraser & R. Calaga, REX-ISOLDE RFQ Beam Dynamics Studies using CST EM Studio, **CERN-ACC-NOTE-2014-0015**, CERN, Geneva, Switzerland, June 2013

[2] I.B. Magdau & M.A. Fraser, Beam Dynamics Feasibility Study for an RFQ Sub-harmonic Prebuncher at REX-ISOLDE, **CERN-HIE-ISOLDE-PROJECT-Note-0015**, CERN, Geneva, Switzerland October 2012

[3] M.A. Fraser, Beam Dynamics Studies of a Multi-harmonic Buncher for 10 MHz Postaccelerated RIBs at HIE-ISOLDE, **CERN-ACC-NOTE-2014-0098**, CERN, Geneva, Switzerland, October 2014

[4] M.A. Fraser et al., Design Study For 10 MHz Beam Frequency of Post-accelerated RIBs at HIE-ISOLDE, Proceedings of IPAC2013, Shanghai, China, May 2013, paper THPWO076.

[5] M.A. Fraser & F. Wenander, Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE, CERN-HIE-ISOLDE-PROJECT-Note-0018, CERN, Geneva Switzerland, May 2013

[6] M.A. Fraser et al., Status of the Design Study for 10 MHz Post-accelerated Radioactive Ion Beams at HIE-ISOLDE, Proceedings of LINAC2014, Geneva, Switzerland, September 2014, paper THPP030.

[7] A. Mukhopadhyay & M.A. Fraser, Investigating the Feasibility of a Travelling-wave Chopper for the Clean Separation of 10 MHz Bunches at HIE-ISOLDE, **CERN-ACC-NOTE-2014-0016**, CERN, Geneva, Switzerland, July 2013

Extra slides

M.A. Fraser, TE-ABT-BTP 10 MHz RIBs at HIE-ISOLDE, ISOLDE WS and Users Meeting 2017

Options without Linac Extension

Options with Linac Extension

(c) C: MHB close to RFQ, triplet and solenoid installed

Summary of beam dynamics performance

Upgrade Stage	Option	MHB Status	V ₀ [V]	L [m]	$\Delta \phi^{\mathbf{a}}$ [deg]	$\frac{\Delta W}{W}_{\text{source}}$	T _{total} [%]	T _{10 MHz} [%]	T _{sat} [%]	$\epsilon_{x, rms}$ [mm mrad]	$\epsilon_{y, rms}$ [mm mrad]	$\epsilon_{z, rms}$ [ns keV/u]
REX (today)	-	OFF	0	-	-	0.1	93.9	-	-	0.64	1.36	0.28
REX (modified)	-	OFF	0	-	-	0.1	93.7	-	-	0.62	0.64	0.27
1 and 2	Α	ON	740	1.40	-120	0.1	77.4	64.5	12.9	1.82	3.85	0.35
		OFF	0	1.40	-	0.1	79.7	-	-	1.52	3.07	0.30
1 and 2	В	ON	720	1.45	-80	0.1	98.2	83.4	14.8	0.95	0.90	0.34
		OFF	0	1.45	-	0.1	93.9	-	-	0.90	0.76	0.28
1 and 2	С	ON	205	8.19	-120	0.1	97.4	82.1	15.3	1.04	1.35	0.09
		OFF	0	8.19	-	0.1	94.0	-	-	0.62	1.34	0.26
1 and 2	D	ON	205	8.19	-120	0.1	98.4	82.8	15.6	0.72	0.81	0.08
		OFF	0	8.19	-	0.1	93.9	-	-	0.62	0.64	0.27
3	Α	ON	465	2.32	-30	0.1	98.6	82.4	16.2	0.93	0.72	0.15
		OFF	0	2.32	-	0.1	94.3	-	-	0.95	0.74	0.26
3	В	ON	175	9.49	-70	0.1	98.5	83.2	15.3	0.70	0.79	0.08
		OFF	0	9.49	-	0.1	93.9	-	-	0.60	0.63	0.27
3	С	ON	1150	0.87	-30	1.0	76.9	54.2	22.7	0.74	0.76	0.59
		OFF	0	0.87	-	1.0	93.4	-	-	0.72	0.78	0.27

^a Phase shift of synchronous particle (shift of RFQ phase relative to MHB) to compensate for the phase lagging of non-isochronous particles.