KU LEUVEN

Laser polarization setup at ISOLDE, CERN: ³⁵Ar results and achievements

Wouter Gins IKS, KU Leuven ISOLDE Workshop and Users Meeting 2017

Table of contents

- Motivation
- Setup
- Results
- Conclusion and outlook

Motivation

 ^{35}Ar is a **mirror** nucleus \rightarrow measurement of β -asymmetry can be used to calculate V_{ud}

Determined from B asymmetry

$$Ft_0 = Ft^{mirrot} \left(1 + \frac{f_A}{f_V} \rho^2 \right) = 2Ft^{0^+ \to 0^+} = \frac{K}{G_F^2 V_{ud}^2 (1 + \Delta_R^V)}$$

Current ΔV_{ud} : 2.2e-4 (all measurements combined) With 0.5% relative precision on asymmetry: 4e-4 (single measurement!) \rightarrow asymmetry of 20% needed for a reasonable measurement time

Location

4

Laser Polarization: mechanism

Optical pumping with σ^{\pm} polarized laser light in a 2m long interaction region (~µs interaction time) :

 σ^{\pm} : induces $\Delta m_F = \pm 1$ transitions, σ^{\pm} was used for ³⁵Ar

6

KU LEUVEN

Figure: Keim M, 1996, Messung der Kernquadrupolmomente neutronenreicher Natriumisotope, PhD Thesis

Multi-frequency pumping

- Goal: enhance the polarization for ³⁵Ar
- Closed cycle found at 811nm in Ar atom. But high spins result in many HFS levels → reduces the amount of polarization per level
- Solution: multi-frequency pumping

7/2 state: 60% of the population Add population from 5/2 and 3/2: ≈100%

Measure laser-induced nuclear polarization: via the asymmetry in β -decay

 $P(\theta) \sim 1 + AP \cos \theta$ $A_{exp} = \frac{N(0^\circ) - N(180^\circ)}{N(0^\circ) + N(180^\circ)} = AP$

Implantation setup

 Closed cycle He cold head: cools down to 10 K (~1.5 hours)

KU LEUVEN

• Several hosts tested: Si, KBr, KCI, NaCI, Pt

Typical data

Hyperfine scan

Contains information about the environment of the implanted Ar

Relaxation curve

Polarization succes

- Transition was fully saturated with all beams
- Signal gain of factor 1.7 by pumping 3 hyperfine transitions
- Signal itself: 1.5-2%

β-intensity

 Arrhenius-like behavior of implanted radioactivity → Activation energy in order of magnitude for diffusion in similar crystals [1]

Energy. Journal of Physics and Chemistry of Solids, 28(1), 705–710.

Relaxation time trend

Upward trend/phase transition visible: possible freezing of Ar used to vent the beamline

Conclusion

Achieved

- Maximal signal of 2% was seen in KCI at 10 K in one spectrum, average of 1.5% at 10 K
- Polarization optimization with multi-frequency pumping worked as expected from simulations

Outlook

 Observed asymmetry is ~5 times less than expected, factor 10 less than needed → project on hold until we find an explanation

Thank you

Thank you to the CRIS, COLLAPS and ISOLTRAP groups for lending equipment!

M. Baranowski¹, C. Beattie², M. L. Bissell³, R. D. Harding^{4,5}, H. Heylen⁶, M. Jankowski⁷, A. Javaji⁷, A. Kanellakopoulos⁸, M. Kowalska⁵, G. Neyens^{5,8}, S. Pallada^{5,9,10}, N. Severijns⁸, P. Wagenknecht⁷, M. Walczak¹¹, F. Wienholtz⁵, Z. Y. Xu⁸, X. F. Yang⁸, D. Zakoucky¹²

- ¹ Adam Mickiewicz University, Poland
- ² Georgetown University
- ³ University of Manchester, UK
- ⁴ University of York, UK
- ⁵ CERN, Switzerland
- ⁶ Max-Planck-Institut für Kernphysik, Germany
- ⁷ University of Oldenburg
- ⁸ KU Leuven, Belgium
- ⁹ University of Copenhagen, Denmark
- ¹⁰ Democritus University of Thrace, Greece
- ¹¹ Poznan University of Technology, Poland
- ¹² Nuclear Physics Institute, Czech Republic

Fresh results

Questions?

Backup slides

Doppler shifting the frequency

$$f_{beam} = f_{laser} \sqrt{\frac{1-\beta}{1+\beta}}, \beta = v/c$$

Magnetic field

 Polarization is created along the beamaxis, magnet has field perpendicular → configure field to rotate polarization

• Blue: perpendicular, green: along, orange: total

Light characteristics

• $\lambda/4$ after $\lambda/2$ waveplate creates $\sigma \pm$

 High power is crucial for inducing many optical pumping cycles!

AOM Setup

Factory efficiency: 85% Measured efficiency: ~80%

Simulation results

• Classical rate equations adopted for multiple laser frequencies

- Expectation of ~2 times larger signal and addition of extra peaks
- Frequency shifts of 378 and 325 MHz needed: Acousto-Optic Modulators (AA Opto-Electronic MT325, MT378 with associated RF amplifier)
- Technical difficulty: overlap needs to happen with beam splitters instead of polarizing beam splitters due to need for the same σ polarization

Simulation results

Saturation curve

Asymmetry Results

NaCl

Asymmetry Results

KCI

Estimated Isotope Shift

