KULEUVEN

Laser polarization setup at ISOLDE, CERN: ${ }^{35} \mathrm{Ar}$ results and achievements

Wouter Gins
IKS, KU Leuven
ISOLDE Workshop and Users Meeting 2017

Table of contents

- Motivation
- Setup
- Results
- Conclusion and outlook

Motivation

${ }^{35} \mathrm{Ar}$ is a mirror nucleus \rightarrow measurement of β-asymmetry can be used to calculate V_{ud}

Current $\Delta \mathrm{V}_{\mathrm{ud}}$: 2.2e-4 (all measurements combined)
With 0.5% relative precision on asymmetry: $4 \mathrm{e}-4$ (single measurement!) \rightarrow asymmetry of 20% needed for a reasonable measurement time

Location

Beamline

Helmholtz coils

Laser Polarization: mechanism

Optical pumping with $\sigma^{ \pm}$polarized laser light in a 2 m long interaction region ($\sim \mu \mathrm{s}$ interaction time) :

$\sigma^{ \pm}$: induces $\Delta m_{F}= \pm 1$ transitions, σ^{+}was used for ${ }^{35} \mathrm{Ar}$

Multi-frequency pumping

- Goal: enhance the polarization for ${ }^{35} \mathrm{Ar}$
- Closed cycle found at 811 nm in Ar atom. But high spins result in many HFS levels \rightarrow reduces the amount of polarization per level
- Solution: multi-frequency pumping

Measure laser-induced nuclear polarization: via the asymmetry in β-decay

$$
\begin{gathered}
P(\theta) \sim 1+A P \cos \theta \\
A_{\text {exp }}=\frac{N\left(0^{\circ}\right)-N\left(180^{\circ}\right)}{N\left(0^{\circ}\right)+N\left(180^{\circ}\right)}=A P
\end{gathered}
$$

Implantation setup

- Closed cycle He cold head: cools down to 10 K (~ 1.5 hours)
- Several hosts tested: $\mathrm{Si}, \mathrm{KBr}, \mathrm{KCI}, \mathrm{NaCl}, \mathrm{Pt}$

Typical data

Hyperfine scan

Contains information about the environment of the implanted Ar

Relaxation curve

Polarization succes

- Transition was fully saturated with all beams
- Signal gain of factor 1.7 by pumping 3 hyperfine transitions
- Signal itself: $1.5-2 \%$

Comparison

β-intensity

- Arrhenius-like behavior of implanted radioactivity \rightarrow Activation energy in order of magnitude for diffusion in similar crystals [1]

${ }^{12}$ Arrhenius $\sim \exp \left(-Q /_{R T}\right)$
KULEUVEN
[1] Burton, J. J. and Jura, G. (1967). Self Diffusion in Solid Argon: The Activation Energy. Journal of Physics and Chemistry of Solids, 28(1), 705-710.

Relaxation time trend

Upward trend/phase transition visible: possible freezing of Ar used to vent the beamline

Conclusion

Achieved

- Maximal signal of 2% was seen in KCl at 10 K in one spectrum, average of 1.5% at 10 K
- Polarization optimization with multi-frequency pumping worked as expected from simulations

Outlook

- Observed asymmetry is ~ 5 times less than expected, factor 10 less than needed \rightarrow project on hold until we find an explanation

Thank you

Thank you to the CRIS, COLLAPS and ISOLTRAP groups for lending equipment!
M. Baranowski ${ }^{1}$, C. Beattie ${ }^{2}$, M. L. Bissell ${ }^{3}$, R. D. Harding ${ }^{4,5}$, H. Heylen ${ }^{6}$, M. Jankowski ${ }^{7}$, A. Javaji ${ }^{7}$, A. Kanellakopoulos ${ }^{8}$, M. Kowalska ${ }^{5}$, G. Neyens ${ }^{5,8}$, S. Pallada ${ }^{5,9,10}$, N. Severijns ${ }^{8}$, P. Wagenknecht ${ }^{7}$, M. Walczak ${ }^{11}$, F. Wienholtz ${ }^{5}$, Z. Y. Xu ${ }^{8}$, X. F. Yang ${ }^{8}$, D. Zakoucky ${ }^{12}$
${ }^{1}$ Adam Mickiewicz University, Poland
${ }^{2}$ Georgetown University
${ }^{3}$ University of Manchester, UK
${ }^{4}$ University of York, UK
${ }^{5}$ CERN, Switzerland
${ }^{6}$ Max-Planck-Institut für Kernphysik, Germany
7 University of Oldenburg
${ }^{8}$ KU Leuven, Belgium
9 University of Copenhagen, Denmark
${ }^{10}$ Democritus University of Thrace, Greece
${ }^{11}$ Poznan University of Technology, Poland
${ }^{12}$ Nuclear Physics Institute, Czech Republic

Fresh results

See poster by Rob Harding (\#22)

KULEUVEN

Questions?

Backup slides

Doppler shifting the frequency

$$
f_{\text {beam }}=f_{\text {laser }} \sqrt{\frac{1-\beta}{1+\beta}}, \beta=v / c
$$

Magnetic field

- Polarization is created along the beamaxis, magnet has field perpendicular \rightarrow configure field to rotate polarization

- Blue: perpendicular, green: along, orange: total

Light characteristics

- $\lambda / 4$ after $\lambda / 2$ waveplate creates $\sigma \pm$

- High power is crucial for inducing many optical pumping cycles!

AOM Setup

Factory efficiency: 85\% Measured efficiency: ~80\%

Simulation results

- Classical rate equations adopted for multiple laser frequencies

- Expectation of ~ 2 times larger signal and addition of extra peaks
- Frequency shifts of 378 and 325 MHz needed: Acousto-Optic Modulators (AA Opto-Electronic MT325, MT378 with associated RF amplifier)
- Technical difficulty: overlap needs to happen with beam splitters instead of polarizing beam splitters due to need for the same σ polarization

Simulation results

Saturation curve

$$
\text { Asym }=\operatorname{Amp} \frac{P / P_{0}}{1+P / P_{0}}
$$

Asymmetry Results

NaCl

Asymmetry Results

KCl

Optical detection

Cooled PMTs

Estimated Isotope Shift

