MOTIVATION: IS577 experiment @

Nucleus: 31Ar: Drip-line nucleus
- Half-life: 15.1(3) ms
- T_z, J^*: $-5/2^-, 5/2^+$
- Q_{EC}: 18.38(10) MeV

Decay modes: $\beta y, \beta p, \beta p y, \beta 2p, \beta 2py, \beta 3p$ and perhaps also $\beta 3py$

- Study of $\beta 2p$ and $\beta 3p$ channels (proton emission from levels near the threshold in 30S)
- IAS decay from 31Cl

SET-UP: MAGISOL Si plug-in chamber @

- Array of **Double Sided Si Strip Detectors** (DSSSD) and **PADs** in ΔE-E/telescope configuration located inside the new **MAGISOL Si-Plugin Chamber**
- Different thickness of DSSSDs for different proton energies

- **high efficiency** for multi-particle emission detection → **Solid angle**: 5x 9% of 4π
- **low cut-off energy** (150 keV).
- **Energy and Angular resolution**: 25 KeV, 3º

http://isolde-ids.web.cern.ch/isolde-ids/

- Courtesy of A. Perea

Irene Marroquín Alonso-ISOLDE WORKSHOP 2017 - CERN, Geneva
RESULTS: ^{33}Ar p-spectra...beyond calibration....

- Low energy thresholds for protons
- Very good energy resolution in all energy range

NEW low energy proton peaks

*762 keV peak is known

<table>
<thead>
<tr>
<th>DETECTOR</th>
<th>THICKNESS (um)</th>
<th>SOLID ANGLE (%)</th>
<th>ENERGY THRESHOLDS for protons (keV)</th>
<th>ANALYSIS CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>300</td>
<td>7.4</td>
<td>350</td>
<td>$</td>
</tr>
<tr>
<td>U2</td>
<td>524</td>
<td>11.72</td>
<td>350</td>
<td>$\cdot E_f,E_b>80\text{keV}$</td>
</tr>
<tr>
<td>U4</td>
<td>67</td>
<td>10.43</td>
<td>200</td>
<td>$\cdot \text{mul > 6 excluded}$</td>
</tr>
<tr>
<td>U5</td>
<td>1000</td>
<td>9.6</td>
<td>-</td>
<td>$\cdot \text{TPROTON: 519 ms}$</td>
</tr>
<tr>
<td>U6</td>
<td>65</td>
<td>8.28</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS: 33Ar p-spectra...beyond calibration....

THIN TELESCOPES

NEW low energy proton peaks

THICK TELESCOPES

NEW intermediate energy proton peaks

Irene Marroquín Alonso-ISOLDE WORKSHOP 2017 - CERN, Geneva

RESULTS: ^{33}Ar half-life

^{33}Ar half-life value in good agreement with the literature value.

$y = A \cdot e^{-\lambda t} + C \rightarrow \tau = \frac{\ln 2}{\lambda}$

<table>
<thead>
<tr>
<th>Beam gate</th>
<th>U1: 295 um</th>
<th>U2: 524 um</th>
<th>U5: 1000 um</th>
<th>Weighted Average</th>
<th>Reference value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 ms</td>
<td>173.4±1.8</td>
<td>171.8±1.4</td>
<td>175.9±1.4</td>
<td>174.0±0.8</td>
<td>173.9±0.9</td>
</tr>
</tbody>
</table>

$^{31}\text{Ar}-Q_{1p}$ value

Do we see states in ^{31}Cl at high energy??

Present work has higher statistics and higher resolution than previous ones.

$$Q_{1p} = \frac{m_{30s}}{m_{30s} + m_p} (E_{31\text{Cl}} - S_p)$$
RESULTS: 31Ar: Q_{2p} value

Do we see low energy protons from states of 30S near the threshold??

Excited levels in 30S near the particle threshold determine the 29P(pig)$^+$ reaction rate which influences the solar Si abundances.

$Q_{2p} = E_1 + E_2 + \frac{m_p}{m_{29p}}(E_1 + E_2 + 2\sqrt{E_1E_2\cos\theta_{2p}})$

29P$^+(pig)$

30S$^+(p)$

31Cl

Gate: $Q_{2p}=7.6$ MeV

Irene Marroquín Alonso-ISOLDE WORKSHOP 2017 - CERN, Geneva
RESULTS: 31Ar: Q_{2p} value

Do we see low energy protons from states of 30S near the threshold?!

$Q_{2p} = E_1 + E_2 + \frac{m_p}{m_{29p}}(E_1 + E_2 + 2\sqrt{E_1E_2cos\theta_{2p}})$

6.98 MeV-300 keV proton pair from 4.81 MeV-level is seen when angle between p-p pairs is calculated
RESULTS: 31Ar p-p coincidences

Do we see low energy protons from states of 30S near the threshold??

In p-p coincidence we also see the 300 keV proton from 4.81 MeV-level

6.98 MeV-p-gated p-spectrum

- Only energy gate on 6.98 MeV
- Energy gate
- Anticoincidence with PADs
- Edge strips excluded

OUI!!
RESULTS: \(^{31}\)Ar: Q\(_{3p}\) spectrum

When lowering the particle thresholds in the detectors, spectrum above is obtained.
-Work in progress-
Expected to be able to clean the spectrum by applying the time condition

<table>
<thead>
<tr>
<th>DETECTOR</th>
<th>THICKNESS (um)</th>
<th>SOLID ANGLE (%)</th>
<th>ENERGY THRESHOLDS (keV) (1)</th>
<th>ENERGY THRESHOLDS (keV) (2)</th>
<th>ANALYSIS CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>300</td>
<td>7.4</td>
<td>350</td>
<td>1000</td>
<td>(</td>
</tr>
<tr>
<td>U2</td>
<td>524</td>
<td>11.72</td>
<td>400</td>
<td>1000</td>
<td>(E_f - E_b > 80 \text{keV})</td>
</tr>
<tr>
<td>U4</td>
<td>67</td>
<td>10.43</td>
<td>200</td>
<td>400</td>
<td>\text{Energy per telescope}</td>
</tr>
<tr>
<td>U5</td>
<td>1000</td>
<td>9.6</td>
<td>800</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>U6</td>
<td>65</td>
<td>8.28</td>
<td>200</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS - $^{31}\text{Ar}, \; ^{33}\text{Ar}$

SUMMARY

- ^{33}Ar used for calibration due to the **high resolution and low energy thresholds** of the detectors.

- **New proton transitions have been identified**, its placement in the level scheme is ongoing.

- Half-life of ^{33}Ar is determined **in agreement** with previous results.

- Study of $\beta 2p$ and $\beta 3p$ channels of ^{31}Ar:
 - Proton emission from level near the proton threshold in ^{30}S is identified (4.81 MeV-level), relevant for nuclear astrophysics.
 - ^{31}Ar-Q3p high energy contributions to the 3p branch identified, contributions from low energy protons is on progress.

FUTURE WORK

- Calculate $\frac{\Gamma_p}{\Gamma_\gamma}$ in particular for levels near the threshold in ^{30}S: 4.69, 4.81 and 5.22 MeV levels.
- Spin assignment to the states in ^{30}S.
THANKS FOR YOUR ATTENTION

• O. Tengblad, E. Nácher, A. Perea, A. Garzón, I. Marroquín
 IEM-CSIC, Madrid, Spain
• L.M. Fraile, M.V. Vedia
 GFN-UCM, Madrid, Spain

 Department of Physics and Astronomy, Aarhus University, Denmark

• H. Johansson, B. Jonson, T. Nilsson
 Fundamental Physics, Chalmers University of Technology, Gothenburg, Sweden

• M.J.G. Borge, E. Rappisarda, M. Madurga, R. Lica
 ISOLDE, CERN, Geneva, Switzerland

• C. Sotty
 KU Leuven, Lovaina, Belgium

• C. Mazzocchi, A. A. Ciemny
 Institute of Experimental Physics, University of Physics, Warsaw

• C. Mihai, A. Negret, M. Stanoiu, S.A. Nae, A. E. Turturica
 IFIN-HH Bucharest - Magurele, ROMANIA
RESULTS: 33Ar p-spectra...beyond calibration.

<table>
<thead>
<tr>
<th>DETECTOR</th>
<th>THICKNESS (um)</th>
<th>SOLID ANGLE (%)</th>
<th>ENERGY THRESHOLDS for protons (keV)</th>
<th>ANALYSIS CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>300</td>
<td>7.4</td>
<td>350</td>
<td>$</td>
</tr>
<tr>
<td>U2</td>
<td>524</td>
<td>11.72</td>
<td>350</td>
<td>$\text{mul} > 6$ excluded·</td>
</tr>
<tr>
<td>U4</td>
<td>67</td>
<td>10.43</td>
<td>200</td>
<td>$E_f, E_b > 80\text{keV}$·</td>
</tr>
<tr>
<td>U5</td>
<td>1000</td>
<td>9.6</td>
<td>-</td>
<td>TPROTON: 519 ms·</td>
</tr>
<tr>
<td>U6</td>
<td>65</td>
<td>8.28</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Present work reproduces the previous intensities of proton peaks

Low energy thresholds for protons. IMPORTANT FOR LOW PROTON ENERGIES.
RESULTS: 33Ar p-spectra...beyond calibration....

THIN TELESCOPES

67 µm

NEW low energy proton peaks

Level identification: p-γ coincidences

33Ar γ-spectrum

$\varepsilon_{\gamma}(2\text{ MeV})=0.325\%$

$\varepsilon_{\gamma}(3\text{ MeV})=0.225\%$

$\varepsilon_{\gamma}(1332\text{ keV})=2.9\%$ (N. Adimi et al.)

$\varepsilon_{\gamma}(1332\text{ keV})=1.16\%$ (Gunvor et al.)

$\varepsilon_{\gamma}(1332\text{ keV})=0.40\%$ (Present work)
RESULTS: proton peak identification

Irene Marroquín Alonso- ISOLDE WORKSHOP 2017 - CERN, Geneva
RESULTS: proton peak identification

Intense peaks at high energies come from IAS: IAS decay to all levels in 30S

Good resolution at high energies: better demonstration than in previous measurements (IS476, IS339)
IS577 experiment @ ISOLDE Decay Station

- New permanent station devoted to β-decay measurements:
 - 4 HPGe clover-detectors surrounding the experimental chamber for high gamma ray detection efficiency
 - Modular experimental chamber (fast timing, neutron time-of-flight, beta and charge particle emission...)

MAGISOL Si plug-in chamber

31Ar $1^+ @ 50$ keV
Yield: 1-2 31Ar/μC

31Ar

$4x$ HPGe clover-detectors

1 Clover \rightarrow 4 crystals \rightarrow 16 crystals in total

http://isolde-ids.web.cern.ch/isolde-ids/