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Introduction:
• Limited	modelling of	optics in	PyHEADTAIL.	

• Amplitude	detuning provided from detuning coefficients	in	order to	recreate similar tune	
footprints to	MAD-X.

•May	not	be accurate when including other optics effects (i.e.	linear coupling).

• Objective	is to	move	towards a	mini	LHC	lattice in	PyHEADTAIL consisting of	thin octupole kicks	
(for	amplitude	detuning),	skew quadrupoles (for	coupling)	and	dispersion	(for	Q’’).	

•Will	compare	tune	footprints as	a	function of	coupling for	three cases
• Detuning model	in	PyHEADTAIL	vs	full	lattice in	MAD-X
• Single	octupole	kick	in	PyHEADTAIL	vs	single	octupole	kick	in	MAD-X
• Double	octupole	kick	in	PyHEADTAIL	vs	full	lattice in	MAD-X
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Theory	reminder
• Detuning coefficients in	PyHEADTAIL	are	calculated from action	variables.	

•Measuring these coefficients	is done by	setting	few	particles to	a	specific action,	and	compare	
their tune	shift	to	a	reference particle.	

• Linear coupling is introduced with a	skew quadrupole.	
§ Powering calibration	is done with MAD-X	to	make sure	the	same coupling is introduced in	both
simulations.	

§ Tune	shift	from linear coupling is compensated with the	help	of	a	2D	minimisation	function.	

• For	details,	see backup	slides.
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Detuning model	vs	Full	MAD-X	Lattice
•Setup

• MAD-X:	LHC	beam 1	optics,	powering all	
octupoles.

• PyHT:	detuning model,	provided with different
LOF	and	LOD	currents (100A	– 500A).

• Any additionnal perturbing effect is kept out	of	
the	setup:
§ No	dispersion
§ No	wakefield
§ No	damper
§ No	chromaticity

[𝛽"𝛽#] = [92.7, 93.2]
𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡

𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒	𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔
&

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙	𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔
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•Comparing Footprints

• Good	overlappingà good	agreement.

• Crossing of	the	outlineà different 𝑎"# ?

Detuning model	vs	Full	MAD-X	Lattice

PyHT detuning
model

MAD	
sequence* Relative	error

𝑎" 269153 308202 0.126699372
𝑎# 280971 316423 0.112039896

𝑎"# -191488 -223434 0.142977345

*	Needs verification.
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Detuning model	vs	Full	MAD-X	Lattice

• Overall good	agreement	between the	codes.	

• A	discrepancy is seen in	at	high	coupling strengths.
Ø Detuning model	starts collapsing against MAD.
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Detuning model	vs	Full	MAD-X	Lattice

• Overall good	agreement	between the	codes.	

• A	discrepancy is seen in	at	high	coupling strengths.
Ø Detuning model	starts collapsing against MAD.
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Detuning model	vs	Full	MAD-X	Lattice
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Direct	terms don’t appear to	vary that much.	Main	discrepancy comes from cross-terms.		Plan	to	test	in	PTC.	
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• Setup

• MAD-X:	LHC	beam 1	optics.
• Octupole	element inserted at	IP3	(in	MAD-X).	
• PyHT:	octupole	kick	element inserted.
• IP3	position	reproduced by	giving the	same beta	
values	in	PyHT’s map.

• Footprints generated for	different powering
values.
§ 𝑂𝑐𝑡CDEFGHDI = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑CDEFGHDI ⋅ 𝑂𝑐𝑡MFGHDI [𝛽"𝛽#] = [92.7, 93.2]

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡

[𝛽"𝛽#] = [121.56,218.58]
𝑂𝑐𝑡𝑢𝑝𝑜𝑙𝑒	𝑘𝑖𝑐𝑘

𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒	𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒	𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔
&

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙	𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔
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Single	Octupole Kick:	PyHEADTAIL vs	MAD-X
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• Good	agreement	in	the	behavior (especially
angle).
§ The	MAD	element seems to	provide a	stronger
spread.

Single	Octupole Kick:	PyHEADTAIL vs	MAD-X

PyHT octupole MAD	octupole* Relative	error
𝑎" 451070 313558 0.438553633
𝑎# 455970 333868 0.365719368

𝑎"# -918317 -242863 2.7812141

𝑎#" -897609 -241699 2.71374726
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Single	Octupole	Kick:	PyHEADTAIL	vs	
MAD-X	– linear coupling
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• Introducting coupling:

• Coupling ~	rotate reference frame.
• In	the	beam frame	~	rotate elements.	

• Possibly due	to	the	following:	increase coupling,	
beams sees:
ØMore	of	opposite	polarity octupole	(reverting)
Ø Less oct.	and	more	skew oct,	then oct.	again (spread	

decreases then increases again).
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Single	Octupole	Kick:	PyHEADTAIL	vs	
MAD-X	– linear coupling
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• An	LHC	lattice ?

• Can	we do	an	LHC	simplified map?

• Octupole	has	the	advantage of	allowing to	
include more	effects (from dispertion…).
§ Ultimately,	goal	is to	move	to	a	short	series of	
kicks	and	have	it reproduce relevant	properties.	

§ Need to	keep a	simple	model.
Ø Start	with a	double	kick	map.

• Compare	results to	MAD-X	with LHC	lattice,	
all	octupoles	powered.
Ø Not	comparing element models,	but	the	
overall effect.

[𝛽"𝛽#] = [92.7, 93.2]
𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡

[𝛽"𝛽#] = [174.65, 33.76]
𝑂𝑐𝑡𝑢𝑝𝑜𝑙𝑒	𝑘𝑖𝑐𝑘

𝑇. 𝑇 𝑇. 𝑇	&	𝐿. 𝑇

𝑇. 𝑇
𝑂𝑐𝑡𝑢𝑝𝑜𝑙𝑒	𝑘𝑖𝑐𝑘

[𝛽"𝛽#] = [30.20,178.00]

Double	Octupole Kick	vs	Full	MAD-X	Lattice
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Double	Octupole	Kick	vs	Full	MAD-X	
Lattice
• Two octupole	families:	LOF	&	LOD.
Ø One	kick	to	represent each family.

• Octupole	betas	are	set	to	be representative of	
these families:	
§ One	octupole	is at	high	𝛽" and	low 𝛽#.	
§ The	other is at	low 𝛽" and	high	𝛽#.
§ Powering scaled to	the	number of	octs in	LHC.
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Double	Octupole	Kick	vs	Full	MAD-X	
Lattice
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• Two octupole	families:	LOF	&	LOD.
Ø One	kick	to	represent each family.

• Octupole	betas	are	set	to	be representative of	
these families:
§ One	octupole	is at	high	𝛽" and	low 𝛽#.	
§ The	other is at	low 𝛽" and	high	𝛽#.
§ Powering scaled to	the	number of	octs in	LHC.

• Phase	advance is set	between the	two
octupoles	according to	an	average value:

Ø T
𝜇",VWDX = 𝜇",VWDY + 𝑎𝑣𝑔(𝑝ℎ𝑎𝑠𝑒_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑥)	
𝜇#,VWDX = 𝜇#,VWDY + 𝑎𝑣𝑔(𝑝ℎ𝑎𝑠𝑒_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑦)	
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Double	Octupole	Kick	vs	Full	MAD-X	
Lattice

• Overall good	agreement	between the	codes.	

• The	two kicks	model	gives a	reasonable tune	
spread.

• Detuning coefficients	still need to	be computed.	
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Double	Octupole	Kick	vs	Full	MAD-X	
Lattice – linear coupling

• Double	kick	model	seems to	give a	good	
spread.	

• Discrepancy region is still present at	high	
coupling.	To	be figured out.
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Double	Octupole	Kick	vs	Full	MAD-X	
Lattice – linear coupling
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Possible	future	work
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Next Steps
•Measuring chromaticity
• Q’	and	Q’’.	Some difficulties in	PyHT.

•Including dispersion	for	Q’’
• Calibrate dispersion	against Q’’	at	octupoles in	PyHT with MADX.

• Increase number of	octupoles	to	see if	it improves agreement.	How	many are	needed?	What if	
84	kicks	were used,	exactly replicating LHC	lattice?
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• Octupole	kick	element does doesn’t provide as	much spread	as	its MAD	counterpart.

• Two octupole	kicks	compensate each other’s defaults.
Ø Possibility to	use	(and	create a	complex)	LHC	representative map ?

• Linear coupling can be correctly implemented with all	setups	that have	been	simulated.
Ø Allows for	study on	an	important	mechanism.
Ø BUT:	discrepancy from the	detuning model	is found with the	two octupole	kicks.	To	be figured out.

• For	now:	double	kick	map ~	same as	detuning model,	but:
Ø Brings possibility for	optics considerationsJ
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Conclusion
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Backup
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PyHEADTAIL’s detuning model
• Detuning is applied at	the	end	of	each turn.

• Transverse	amplitude	of	a	particle dictates
the	detuning:

•	J", 𝐽# are	the	action	variables.

• 𝑎", 𝑎# and	𝑎"# are	the	detuning coefficients:
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T
Δ𝑄" = 𝑎"J" + 𝑎"#𝐽#	
Δ𝑄# = 𝑎"#J" + 𝑎#𝐽#	
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Measuring detuning coefficients
Simulation	setup	:

•What about	quantification	of	the	agreement	?

• From the	equations shown previously,	

• For	an	action	variable	of	1	and	only in	one	
plane,	one	gets:			𝑎e =	Δ𝑄e,		𝑢 = (𝑥, 𝑦).

• Set	3	particles:
§ Particle 0:	no	offsets.
§ Particle 1:		𝐽" =	10fg,	𝐽# =	0.
§ Particle 2:		𝐽" =	0,	𝐽# =	10fg.

•Many possible	phase	space locations	possible,	
easier to	make it for	𝑥h = 𝑦h = 0.
§ Actions	set	to	10fg to	get a	reasonable offset.		
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ΔQe,j = 𝑄e,j 	− 𝑄e,l

T
Δ𝑄" = 𝑎"J" + 𝑎"#𝐽#	
Δ𝑄# = 𝑎"#J" + 𝑎#𝐽#	

𝐽" = 	
1
2 (

1 + 𝛼"𝑥X

𝛽"𝑥X
+ 2𝛼"𝑥𝑥h + 𝛽"𝑥′X)	

𝐽# = 	
1
2 (

1 + 𝛼#𝑦X

𝛽#𝑦X
+ 2𝛼#𝑦𝑦h + 𝛽#𝑦′X)	
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Linear coupling in	PyHEADTAIL
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• Introducting coupling:

• Linear	coupling	is	introduced	with	a	skew	
quadrupole	and	calibrated	against	MAD-X.	

• Equivalent	values	are	found	that	provide	the	
same	|𝐶f| (coupling	strength)	in	each	case.

• A	2D	minimization	function	is	needed	to	find	
correct	initial	tunes.
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Coupling
optimizer
Effect on	footprints without optimizer
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Linear coupling with PyHEADTAIL’s
detuning model
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Linear coupling with PyHEADTAIL’s
detuning model
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Linear coupling with a	double	kick
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Linear coupling with a	double	kick
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Very good	agreement	is back	for	|C-|	=	0,009,	strange
beharior for	|C-|	=	0,01.

|C-|	=	0,009
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Very good	agreement	is back	for	|C-|	=	0,009,	strange
behavior for	|C-|	=	0,01.

|C-|	=	0,009
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