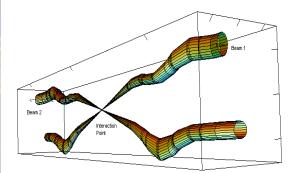

The LHC Control System CERN Accelerators Control System

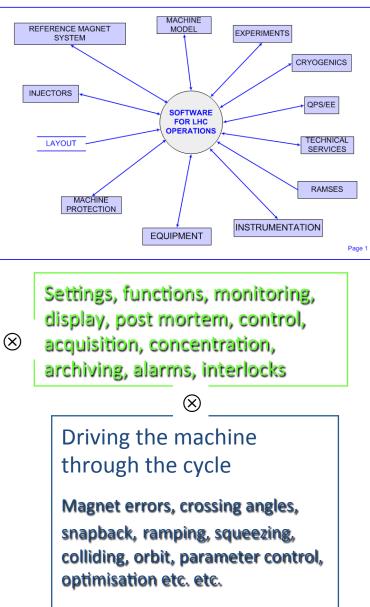

Eugenia Hatziangeli Beams Department Controls Group (input from J. Wozniak, R. Steerenberg, M. Lamont, W. Sliwinski, R. Gorbonosov, T. Wlostowski) CERN – Geneva - Switzerland


Accelerators and Technology Sector

The Challenge

- Accelerate 2 beams of 2.2x10e14 high energy protons in opposite directions around a 27km ring moving at 99.9999% of the speed of light
 - Through two very narrow, very cold tubes
 - Squeeze them down to 16 microns
- Get them to and keep them colliding for 10-15
 hours
 - Keeping beam-losses down to a very low level

Relative beam sizes around IP1 (Atlas) in collision



LHC Software - context diagram

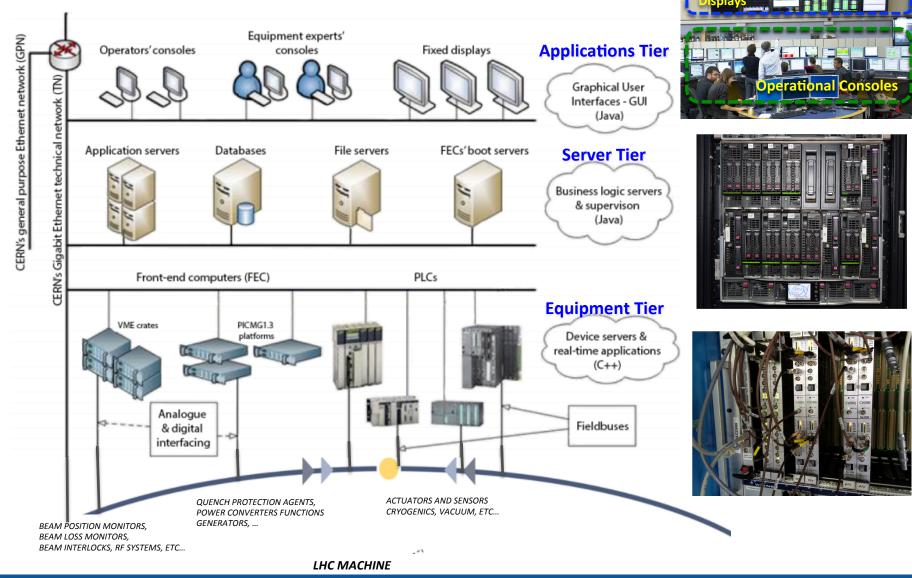
The Controls' Challenge

EQUIPMENT

- Collimators/TDI/TCDQ etc.
- Beam Dump
- Power converters,
- Kickers
- RF, TFB, LFB
- Spectrometers & compensation
- INSTRUMENTATION
 - Distributed systems:
 - BLMs, BPMs,
 - Standalone:
 - BCT, BTV, AGM, BIPM, BWS, Schottky..
 - Tune, Chromaticity, Coupling
 - Luminosity monitors
 - Radiation Monitors
- MAGNETS RMS, errors
- MACHINE PROTECTION
- VACUUM, CRYOGENICS, QPS, EE
- EXPERIMENTS

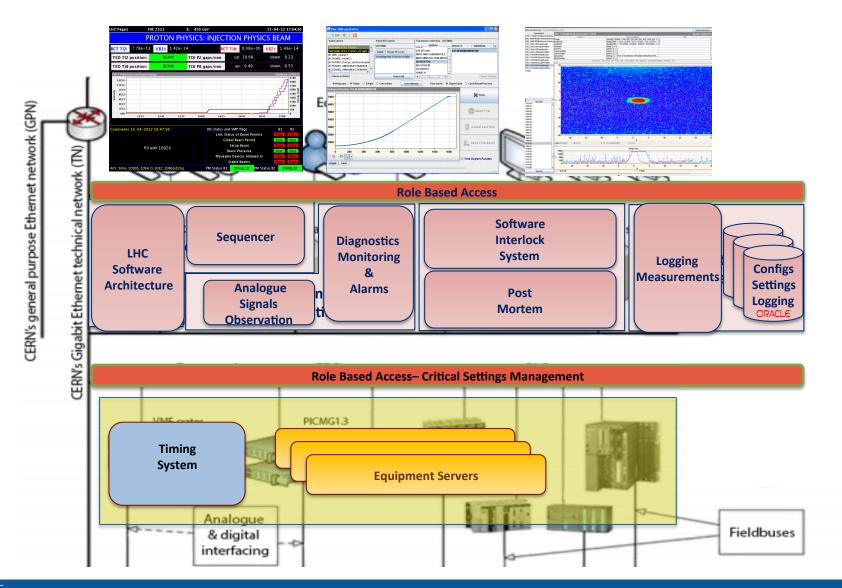
High Level Control System Requirements

- Provide controls to operators to act and affect changes to the accelerator (settings management, measurements, acquisitions, ..)
- Automatic process control, feedback and sequence control

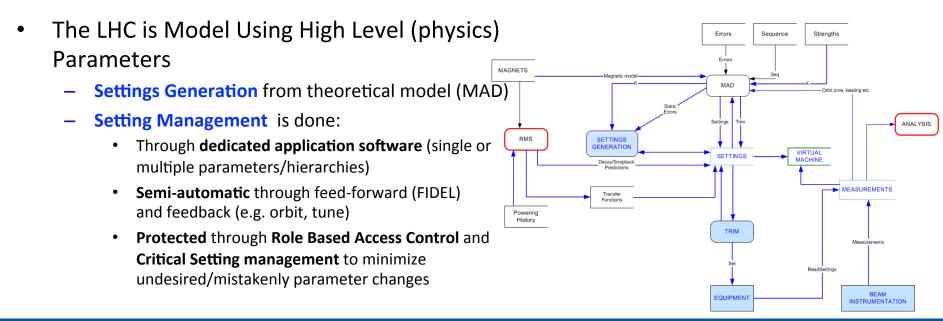

- Display of operator information regarding the accelerator status and beam parameters
- Monitoring, recording and logging of accelerator status and process parameters

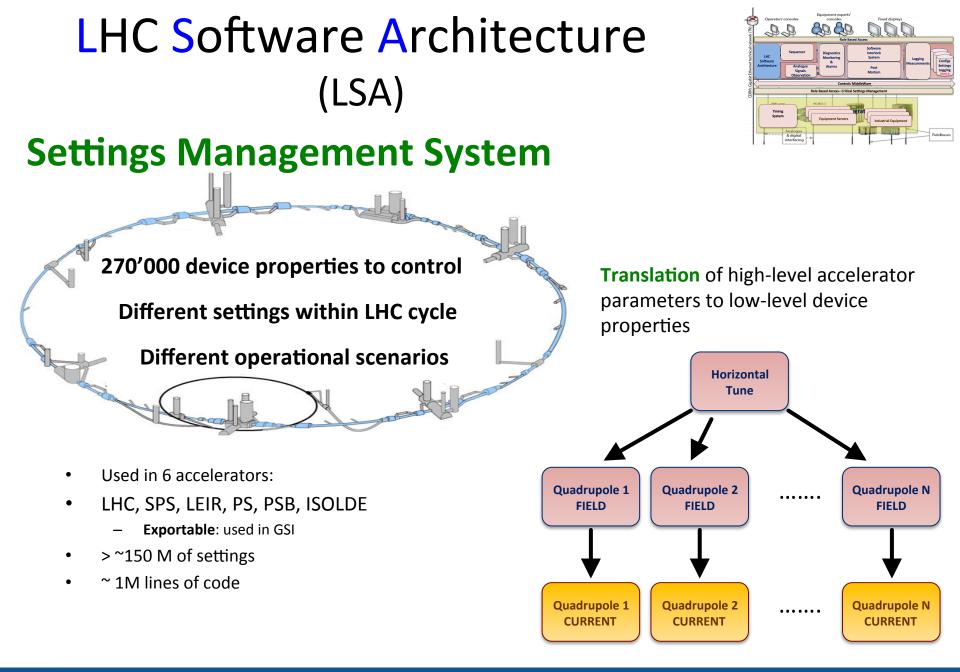
- Prevention of automatic or manual control actions which might initiate a hazard
- Fault diagnostics and recovery
- Must cover all operational scenarios
 - Commissioning (preparation, testing)
 - Physics (proton-proton, proton-ion, ion-ion)
 - Machine Development (experimenting, tuning)

 Machine protection - Detection of onset of hazard and automatic hazard termination (i.e. dump the beam), or mitigation (i.e. control within safe operating limits)



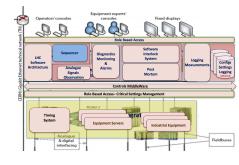
Control System Architecture

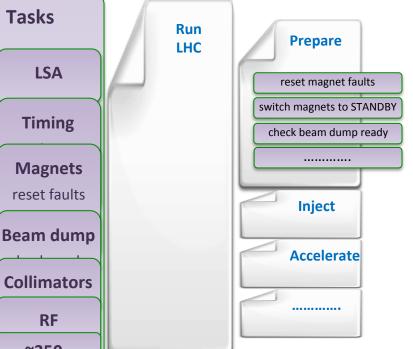

Control Software Architecture



LHC Settings and Cycles

- The LHC is **Event Driven** and not Timing Driven
 - The Injector Complex is timing driven (repetition of cycle with pre-defined length)
 - The LHC cycle contains Beam Processes (pre-cycle, injection, ramp, squeeze, etc.) that are in principle not time limited
 - Each Beam Process contains settings for all devices and all beam processes are linked
 - The Sequencer walks efficiently and securely through all steps in the beam processes and execute the pre-defined commands and checks

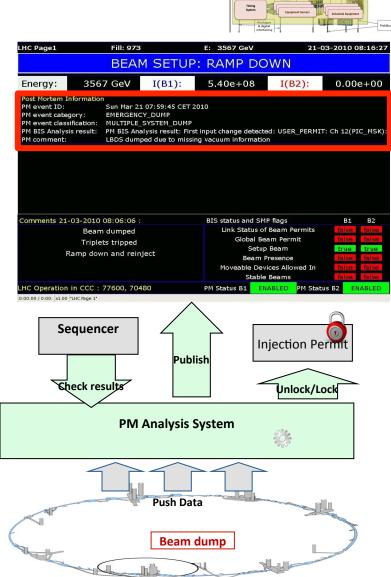




CERN

Sequencer

- Automates execution of sequences of tasks
 - Check the values of devices
 - Ask the control system to load the settings
 - Wait for the equipment to be ready Tasks
- Operators memory
- Reliable execution and error reporting
- Safe mode
 - run-through automatically
 - run until task
 - step task-by-task
- Expert mode
 - skip task
 - jump to task
- ~ 1250 sequences for LHC Beam Ope ...~350.....
- ~ 350 tasks types
- LHC main sequence: ~1100 tasks in total

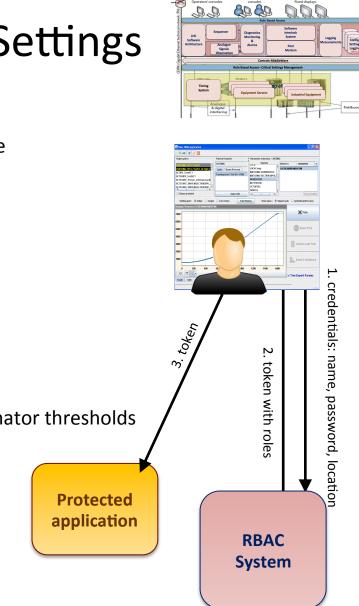

LHC Machine Protection

- LHC relies on an Important and Complex Machine Protection System (MPS)
 - Protect machine against damage from power of the beams
 - In case MPS is triggered, efficient diagnostics through post-mortem data analysis is of prime importance

Post-Mortem Analysis

- Part of overall Machine Protection
- Detects the cause of the beam dump
- Checks if all the protection equipment behaved as expected
- Decides if it safe to continue the operations
- Blocks the next injection otherwise
- 4 mission critical LHC applications
 - LHC Beam Dump Analysis
 - External Post-Operational Check
 - Injection Quality Check
 - Powering Event Analysis
- 2 GB per LHC Beam Dump

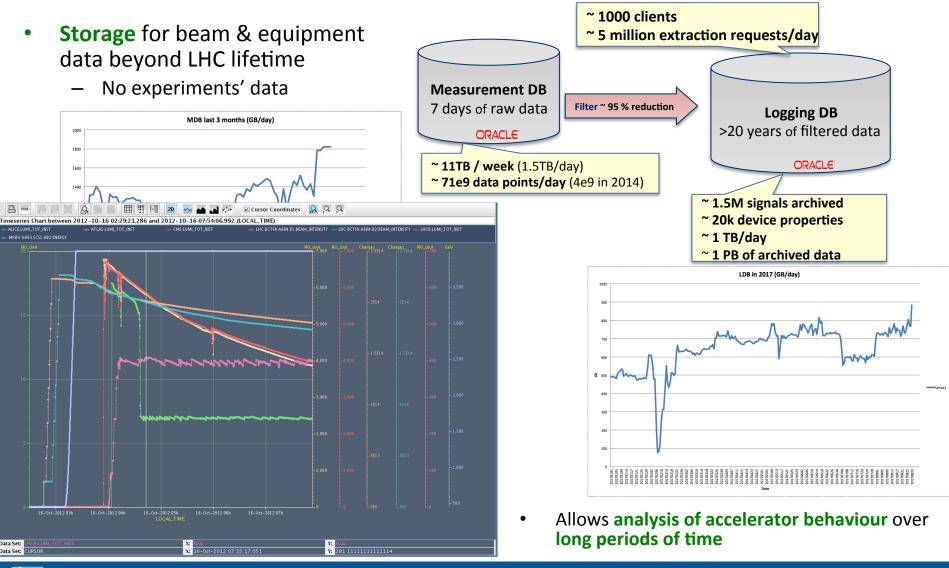
20 20


22

000

Role Based Access & Critical Settings

- Role Based Access
 - Protects the action (unauthorized access), not the value
 - Authentication & Authorization
 - Permission definitions
 - Who, what, when, from where
 - RBAC protects all the LHC equipment
 - ~500'000 permission definitions
 - ~500 users
- Critical Setting Management
 - **Protects the value**, not the action, ex. BLM, BPM, collimator thresholds
 - Only experts can modify the value
 - Digitally signed values
 - 100 critical value types => 1500 properties



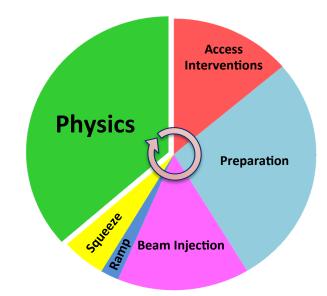
Understanding the LHC

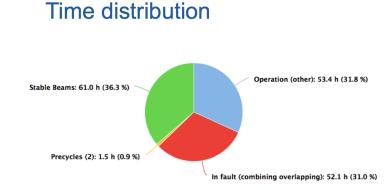
- LHC operation relies heavily on Logging and Post-Mortem data
 - For trouble shooting
 - For machine performance analysis
 - To enhance machine performance and to understand beam dynamics issues, high volume data observation systems (ADT/ObsBox data) provide valuable input
 - For data analysis, long-term storage and efficient retrieval of data are key

Measurement & Logging System

20 20

22


000


Towards LHC Performance Improvement

"Integrated Luminosity is important, hence machine/beam availability is key"

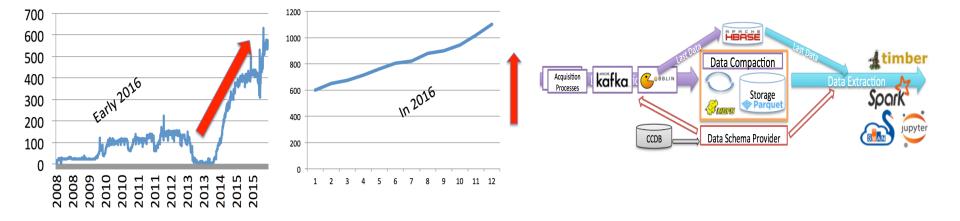
Physics time maximization

- LHC procedures optimization through better tools
 - Recent automation of Hardware Commissioning steps and validation have made this process much more efficient (~ 1 months → 2 weeks)
- Control System fault minimization

Accelerator Fault Tracking

"Why are we not doing Physics when we should be?" "What can we do to increase machine availability?"

- Coherent data capture: 830 faults recorded for LHC helping areas for improvements
- Detailed fault classification and analysis for equipment groups
- Covers CERN's entire injector complex



25 26 27 28 29 40 41 42 42 44

Towards BIG Data

- Current data throughput rates in the existing Logging system approach 1 TB / day and are expected to continue to increase in the coming years
- The next generation Logging System is being developed
- Based on modern "Big Data" technologies (Hadoop, Kafka, Spark)
- Built on open source components and libraries
- Aims to answer the needs to store more data, & to be able to efficiently analyse it using the languages of choice by data experts

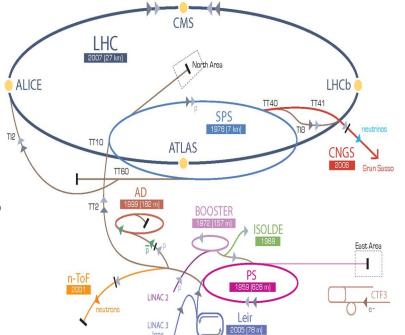
The LHC has a very Modular Distributed Control System

- Performs mission-critical tasks
 - 70'000 equipment processes on ~2000 front ends machines
 - ~2000 programs running on 550 servers
 - 500 different GUIs and ~300 server programs
 - Developed by ~100 people from 16 different groups
 - 1100 Java executable
 - ~10M lines of code
 - 1PB of archived data
- Big (>1000) user community
- It evolves constantly

BACK UP SLIDES

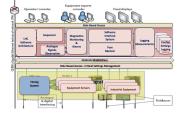
Upcoming Topics

- Levelling / Anti-levelling
 - With the performance increase and also in view of the HL-LHC luminosity levelling becomes important
 - Depending on the type of levelling the control process can be complex
 - Beam separation \rightarrow "easy", routinely used
 - Crossing angle → "demanding", being exploited today
 - $\beta^* \rightarrow$ "challenging", under development to be used in the coming years
- New developments of more complex controls system components required/ongoing to link seamlessly existing systems in the machine together (e.g. orbit, collimators, optics, machine protection,)
- All these upcoming work can be achieved with efficient collaborations of experts, operators and developers across the accelerator sector



Additional challenge

The same controls infrastructure is deployed on all CERN accelerators


Important Technical Challenges

- Highly exposed, critical operational services
- Serves dissimilar set of users, commonality vs. customisation
- Complex dependencies
- Challenging integration, difficult maintenance
- Technical errors ⇔ high impact
- Stability vs. fast turn around
- High reliability and availability



LHC Timing System

- Event-based timing system
- Dedicated network
- Active and hot spare nodes
- o Manually calibrated
- Have many systems acting in sync
 - synchronously ramp up LHC magnets
 - ~1000 receivers serving ~8000 clients
- Provides common notion of time in distributed systems - to make sense of acquired data
 - $\circ~$ LHC: data timestamps have 1 μs precision

Distribution of critical parameters over the Timing network

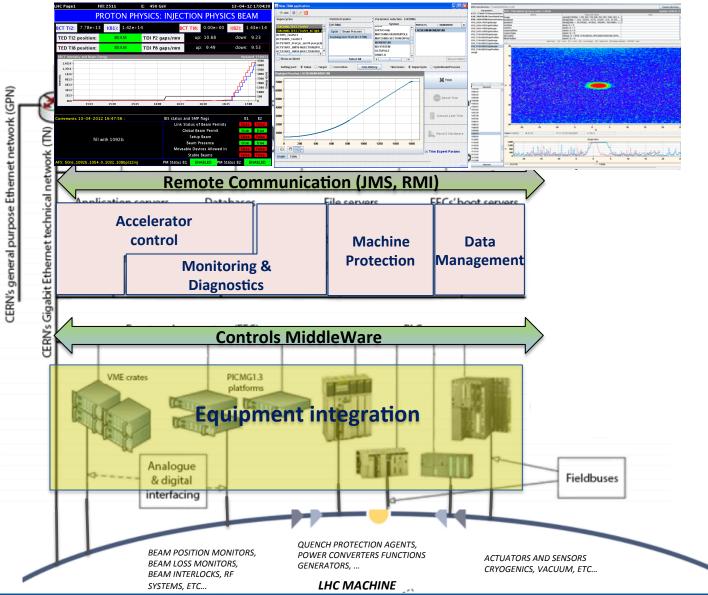
- Beam Energy,

- ...

- Safe Beam Flags,

Interfaces with

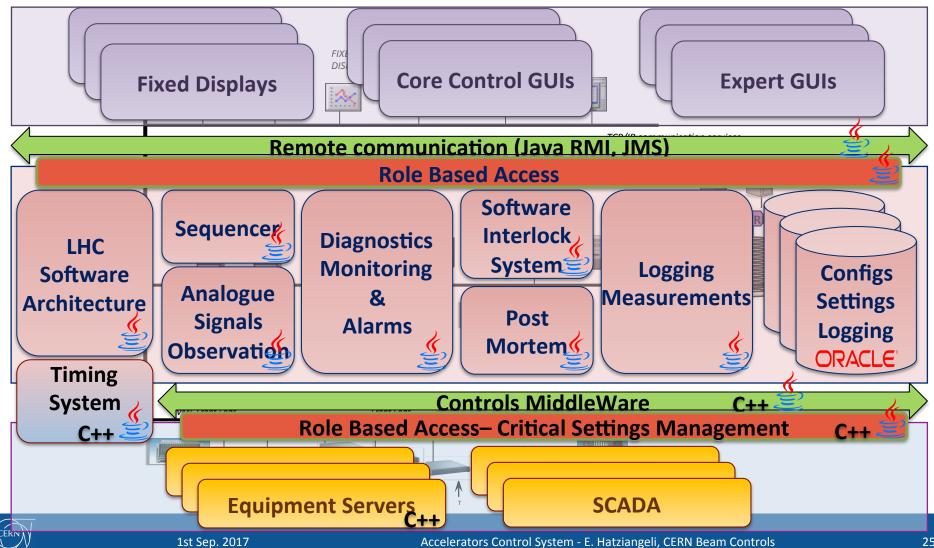
- Kicker systems (BEM)
- BCT system
- BLM system
- Experiments
- Beam Interlock Syst.



Philosophy of development

- Provide **extensible Frameworks** and **Tools**
- **Domain experts** fill in the domain-specific knowledge
- Develop and deploy **Generic** services
- Applicability to all accelerators
- Thorough Quality Assurance
- Successful and efficient collaboration
 - with equipment groups and operators
 - with other laboratories (FermiLab, GSI, ESRF, ITER, MedAustron, Dubna)

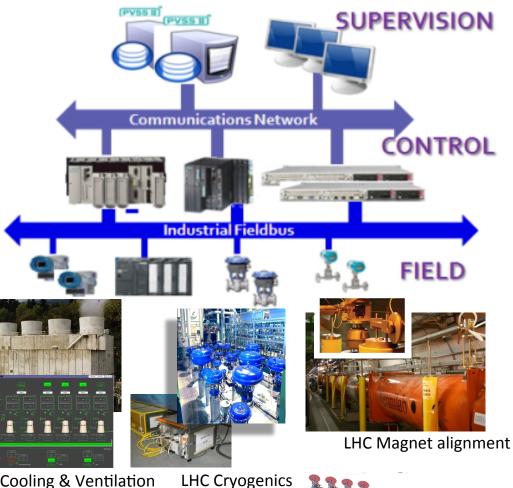
Control Software Architecture



1st Sep. 2017

Accelerators Control System - E. Hatziangeli, CERN Beam Controls

Controls SW Infrastructure

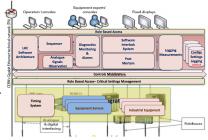


Industrial Process Control System

- Process Control application framework **UNICOS**
 - PLC or PAC-based applications ٠
 - UNICOS proposes a method to ٠ design and develop the control application which will run in commercial off-the-shelf products

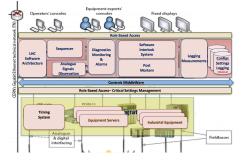
JCOP FRAMEWORK

- Common Framework of tools and core components
- Device modelling, configuration, monitoring, alarms, etc
- Main users are software developers and LHC experiments
- Large software system
- Users >750 History: 14 years ٠
- Many external contributions: e.g. experiments



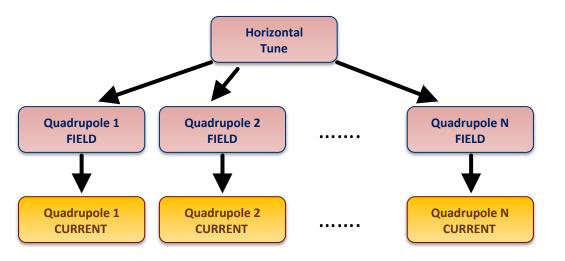
Cooling & Ventilation

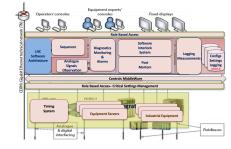
HTS Winding machine


Front End Software Framework

- Standard software framework to develop real-time Front-End Software to control all accelerators equipment
- Hides the complexity of the controls infrastructure, simplifies the development, allows equipment experts to focus on their HW-specific logic
- **~100 developers** from 16 equipment groups
- **~700 hardware device types** (~200 in LHC)
- ~70000 devices (~25000 in LHC)
- ~1000 Front-Ends machines (~500 in LHC)
- **Exportable**: used in GSI (Darmstadt)

Controls MiddleWare




- Reliable decentralised core **communication** layer based on ZeroMQ
- Collection of software components & services
- Operations: GET, SET, SUBSCRIPTION
- Widely deployed for all CERN accelerators
- Provides comprehensive diagnostics
- 4'200 Front-End servers processes
- 85'000 (incl. SCADA) devices
 - 85'000 devices
 - 2'000'000 equipment controllable properties
- 2 Directory Servers for device information how to connect
- Exportable: used in GSI (Darmstadt)

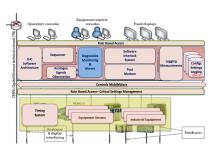
LHC Setting Management

- Generation of initial settings based on optics
- Storage/modification of settings for all devices
- Coherent modifications of settings
- Settings versioning
- History of changes and rollback
- Communication with the hardware
- Translation of high-level accelerator parameters to low-level device properties

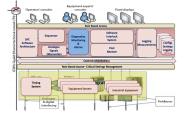
- 6 accelerators:
 - LHC, SPS, LEIR, PS, PSB, ISOLDE
 - Exportable: used in GSI
- > 200 HW types
- > 150 M of settings
- ~ 200 client applications
- ~ 1M lines of code

LSA Parameter Hierarchy

SA Applications Suite - version 0.7.4						-	_ 🗆	×
File Applications Search Options							He	lelp
📀 🛞 LHC 💌 🧌 OP 💌 🕞 BP 💌	🛷 🅸 🐻 💽 🕶	RBA: no token						
Trim Editor (Beta Version) ×								
Beam Process		System		Туре	Group	Parameter		
BI-START-SQUEEZE-2011-ACTUAL	^	SKEW SEXTUPOLES		KNOB		LHCBEAM1/QH_TRIM		
Collin 📓 Parameter Hierarchy DISCF								
DISCF Parameter: LHCBEAM1/QH_TRIM						Hierarchy: D	DEFAULT 💌	
RAMP RQTF.A56	<mark>іВ1/К1 → В</mark>	RQTF.A56B1/K_SMOOTH	→ <mark>_</mark>	RQTF.A56B1/	→ R	PMBB.UA63.RQTF.A56B1/IREI	<u>-</u>	
ADT-T ROTD.A67	781/K1 <mark>- R</mark>	QTD.A67B1/K_SMOOTH	→ <mark>_</mark>	RQTD.A67B1/	<mark>───≻</mark> RI	PMBB.UA67.RQTD.A67B1/IRE	F	
Collin Collin	<mark>IB1/К1 </mark>	RQTF.A81B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A81B1/	<mark>───></mark> R	PMBB.UA87.RQTF.A81B1/IREI	F	
Bett.A67	7 <u>81/K1</u>	RQTF.A67B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A67B1/	→ R	PMBB.UA67.RQTF.A67B1/IREI	<u>F</u> 1	1/4)
ROTD.A22	3B1/K1 R	QTD.A23B1/K_SMOOTH	→ <mark>_</mark> [RQTD.A23B1/	<mark>───≻</mark> _ RI	PMBB.UA27.RQTD.A23B1/IRE		×
ROTD.A4	5B1/K1 <mark>- R</mark>	QTD.A45B1/K_SMOOTH	→ <mark></mark>	RQTD.A45B1/I	<mark></mark> RI	PMBB.UA47.RQTD.A45B1/IRE	F I	
ROTF.A12	2B1/K1 F	RQTF.A12B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A12B1/	→ R	PMBB.UA23.RQTF.A12B1/IREI	E I	
RQTD.A34	<mark>4B1/K1 </mark> → R	QTD.A34B1/K_SMOOTH	→ <mark>_</mark> [RQTD.A34B1/	<mark>───></mark> _ RI	PMBB.UA43.RQTD.A34B1/IRE	F F	
	1B1/K1 R	QTD.A81B1/K_SMOOTH	→ <mark>_</mark> [RQTD.A81B1/	→ RI	PMBB.UA87.RQTD.A81B1/IRE	F I	
RQTF.A78	3B1/K1 <mark>→ F</mark>	RQTF.A78B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A78B1/	→ R	PMBB.UA83.RQTF.A78B1/IREI	F	
RQTF.A45	581/K1 F	RQTF.A45B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A45B1/	→ R	PMBB.UA47.RQTF.A45B1/IREI	F F	
ROTD.A7	BB1/K1 <mark>− ≻</mark> R	QTD.A78B1/K_SMOOTH	→ <mark>_</mark>	RQTD.A78B1/	<mark>→ R</mark> I	PMBB.UA83.RQTD.A78B1/IRE	F	
ROTD.A12	2B1/K1 R	QTD.A12B1/K_SMOOTH	→ <mark>_</mark>	RQTD.A12B1/	<mark>───></mark> RI	PMBB.UA23.RQTD.A12B1/IRE	F F	
ROTF.A23	<mark>3B1/K1 → F</mark>	RQTF.A23B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A23B1/	<mark>→ R</mark>	PMBB.UA27.RQTF.A23B1/IREI	F I	
ROTD.ASC	6 <mark>81/K1 </mark> → R	QTD.A56B1/K_SMOOTH	→ <mark>_</mark> [RQTD.A56B1/	<mark>───></mark> RI	PMBB.UA63.RQTD.A56B1/IRE	F	
RQTF.A34	<mark>IB1/K1 → P</mark>	RQTF.A34B1/K_SMOOTH	→ <mark>_</mark> _	RQTF.A34B1/	<mark>→ R</mark>	PMBB.UA43.RQTF.A34B1/IREI	F F	
Children Parents							ŀ	
							Close	IS
12:42:40 - Loading hierarchy of LHCBEAM1/QH_TRIM								/


Diagnostic Monitoring

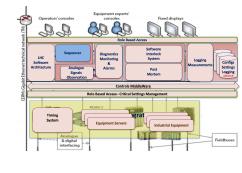
- Monitors controls infrastructure
 - Computers (front-ends, servers, consoles)
 - Network
 - Software applications
- Provides **overview** of infrastructure state
- Helps finding the **root cause** of the problem
- Provides evolution history
- Allows certain actions
 - restart system
 - restart process

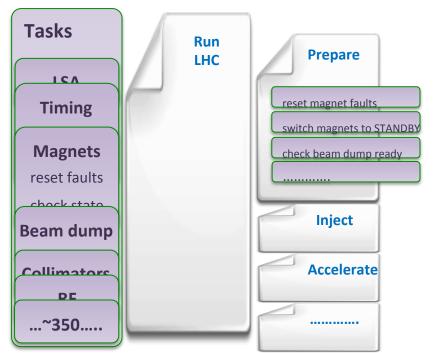

- Metrics from >2000 computers
- ~10 M updates / day

DMN2 console [PI	ROD] - new configuration 1.0.13 - JURCSO as GUEST - db:all 1.0.13 - JURCSO as GUEST - db:lhc	_ O X
<u>F</u> ile <u>E</u> dit <u>V</u> iew		<u>H</u> elp
▼ RBA: no token Search:	▼ Name [A] Status [N] → 14:21 🤎 🗐 📠	
soot	cfc-ccr-bimconc cfv-sr1-bimc cfv-sr1-bimi cfv-sr1-bimr cfv-sr2-bimc	
- SCT	cfv-sr2-bimi cfv-sr2-bimr cfv-sr3-bimc cfv-sr3-bimi cfv-sr3-bimr	
	<u>cfv-sr5-blmc</u> <u>cfv-sr5-blml</u> <u>cfv-sr5-blmr</u> <u>cfv-sr6-blmc</u> <u>cfv-sr6-blml</u>	
► 🥎 BIC front-ends	cfv-sr6-bimr cfv-sr7-bimc cfv-sr7-bime cfv-sr7-bimi cfv-sr7-bimr	
🕈 🌒 BLM	cfv-sr8-blmc cfv-sr8-blml cfv-sr8-blmr cfv-sx4-blmc cfv-sx4-blml	
– 🗐 cfc-ccr-blmconc	=	
– 🗐 cfv-sr1-blmc		
– 🚄 cfv-sr1-blml		
– 🚄 cfv-sr1-bimr		
– 🗐 cfv-sr2-blmc		
– 🗐 cfv-sr2-bimi		
– 🗐 cfv-sr2-blmr		
— 🗐 cfv-sr3-blmc	💭 cfv-sr2-blmc (Bl Beam Loss Monitor VME FEC in SR2)	
– 📁 cfv-sr3-blml	General Metric Services Processes Config MOTD CLIC State	
– 🗐 cfv-sr3-blmr	Reboot SSH Restart CLIC 14:19:43 24	09/13
– 🚄 cfv-sr5-blmc	Responsible: JENSEN LARS Location: 2275 R-001 (BY02=5	R2) 📤
— 💭 cfv-sr5-bimi	Extra info: None	=
– 🗐 cfv-sr5-blmr	Problem	
— 🗐 cfv-sr6-blmc	Missing processes from transfer.ref : fesa2Logging, BOBR_M.	
– 🗐 cfv-sr6-bimi		
– 🗐 cfv-sr6-blmr		-
		1

Alarms

Software alarms system


- Problem => notification
- Does not deal with human/equipment safety
- Notifies about problems requiring human intervention
- Maps alarms to people and possible actions
- Relevant alarms only
 - Depends on accelerators
- Alarms history
- Alarms priority
- ~200 K alarm definitions
 - 80'000 for LHC
- ~150 alarm events/min

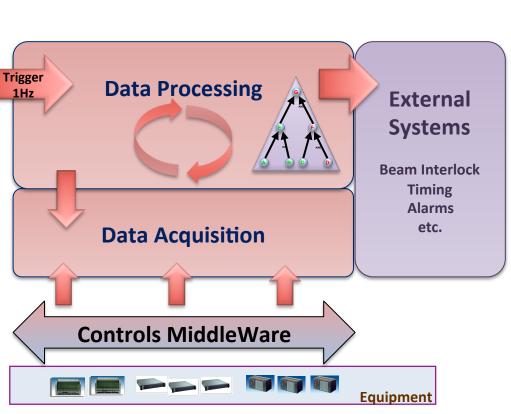

	st 🗸							
#	Date	Time	Building	Mnemonic	System Name	Identifier	Problem Description	
	N	13:41:36	3126	UX15	EAU_DEMI_LHC	FCUL-00013_LAR_CALOR	DEFAUT GENERAL INSTALLATION	
	03/09	21:18:38	3182	SUX1	THER_VENT_LHC	UAVX181	DEFAILT VENTIL ATION Alarm Details: THER VENT LHC:UAPT-204_UBRRG03:12936	
	10/09	14:29:01	3585	SX5	THER_VENT_LHC	UAVL-527		
	23/09	13:42:50	3524	USC55	EAU_GLACEE_LHC	FREA-00020	System Name: THER_VENT_LHC Identifier: UAPT-204_UBRRG03	
	24/09	10:15:02	2395	SZU33	EAU_BRUTE_LHC	FTND-352	Problem Description: ALARME SEUIL POINT DE ROSEE PULSION HAUT	
	24/09	10:21:09	2229	UW25	EAU_DEMI_LHC	FDED-00080_C211X	Alarm properties	
	24/09	13:09:36	2280	SU2	THER_VENT_LHC	UAPT-203_UBRRG03	STATIC PROPERTIES	
							Fault Family THER_VENT_LHC	
	24/09	13:59:35	2280	SU2	THER_VENT_LHC	UAPT-204_UBRRG03	Fault Member UAPT-204_UBRRG03 Fault Code 12936	
	N	14:16:37	3585	SX5	THER_VENT_LHC	F\$FSVE-00018	Fault Code 12936 Priority 1	
	N	14:16:41					Reason Temperature Point de rosee en dehors du seuil defini	
	27/05	08:28:40	2285	SX2	THER_VENT_LHC	UAUX-00001	Consequence Mauvais fonctionnement regulation Help URL http://oraweb.cem.ch/pis/timw3/HELPALARM.AlarmForm?p_alarmid=1484608p_header-	N
	05/06	11:49:08	2439	UA47	EAU_DEMI_LHC	FDED-00098	Site L2	
	04/07	17:00:04	2280	SU2	EAU_BRUTE_LHC	UIAO-00201_ARMOIRE_CTRL	Building Number 2280 Building Mnemonic SU2	
	27/07	08:42:40	2741	R771	EAU_DEMI_LHC	FDED-00099	Position L2	
	02/08	13:20:01	3125	USA15	THER_VENT_LHC	UIAO-00117	Nap Safety Zone -1 Responsible Name ROBIN MARTINI	
	02/09	10:34:09	2285	SX2	THER_VENT_LHC	UACW2-00518	Responsible Name ROBIN MARTINI Responsible GSM 4609	
	03/09	06:11:14	2613	UJ63	THER_VENT_LHC	UAUQ-01635	Responsible Phone 73130	
	03/09	06:11:52	2748	RE78	THER_VENT_LHC	UICC-00708	Responsible Email Robin Martini@cern.ch Source Name TIMOPALARM	
	03/09	07:31:10	2882	SUX8	THER_VENT_LHC	U\$FARPREPZ-SUX8_UOWC-816	Source Description Source TIMOPALARM connection failure	
	03/09	15:50:40	2380	SU3	EAU_GLACEE_LHC	FTNB-301	Source Responsible MARTIN	
	03/09	21:18:38	3182	SUX1	THER VENT LHC	USFRAEXTSUX-SUX1_UOWC-114	CATEGORIES	
1	10/09	15:39:32	2618	UA63	EAU_DEMI_LHC	FDED-00100	CERN SRVS, LHC THER Alarms for LHC THERMIQUE	
	10/09	15:42:28	2175	SR1	THER_CLIM_LHC	UACV1-00126	early restrict Home of the ongoe	
	17/09	08:00:44	2885	SX8	SERV EXPERIENCE LHC	DSS_LHCB	DYNAMIC PROPERTIES	
	17/09	14:44:20	2639	UA67	EAU DEMI LHC	FDED-00101	Active Yes	
	21/09	05:36:54	2618	UA63	THER_VENT_LHC	UAUT-01630	Source Hostname CS-CCR-TIM12 ASI_PREFIX	
	23/09	09:26:29	3185	SX1	THER VENT LHC	UAVL-158		
	24/09	08:17:17	2480	SU4	EAU_GLACEE_LHC	UHAA402	EMPTY PROPERTIES	
	24/09	10:29:19	2884	SH8	THER VENT LHC	UAP0881	Action To TakePiquet GSMPiquet email, Building Floor, Building Room, Map Reference,	
	24/09	10:50:22	2880	SU8	THER VENT LHC	UAPS-807 UUDCM15		-
	24/09	10:51:31	2880	SU8	THER VENT LHC	UAVD-806 UUDCM12	Close	
	24/09	10:51:31	2880	SU8	THER_VENT_LHC	U\$FARHVCSB-SU8_UOWC-804	DEFAUT GENERAL - FONCTION DEGRADE	
	24/09	13:40:19	3126	UX15	EAU_FLUOROCARB_LHC	FCUM-00004_TRT	IAI ALARME INSTALLATION	
	N	13:46:24	2280	SU2	THER_VENT_LHC	UAPE-201 P2.SU2	DEFAUT GENERAL UNITE	
	N	14:07:42	3118	UPX14	ACCE GENERALE LHC	YCPV02=UPX14	PORTE OUVERTE	
	N	14:16:18	5110	UX15	EAU DEMI LHC	FCUL-00013 LAR CALOR	[A] ALARME INSTALLATION	
	N	14:16:47		SX1	THER_VENT_LHC	UAVL-158	ALARME MANOUE TENSION UNITE VENTILATION	
		21.20.47				01112 200		

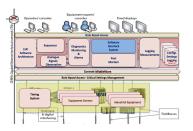
Sequencer

- Automates execution of sequences of tasks
 - Check the values of devices
 - Ask the control system to load the settings
 - Wait for the equipment to be ready
- Operators memory
- **Reliable** execution and error reporting
- Safe mode
 - run-through automatically
 - run until task
 - step task-by-task
- Expert mode
 - skip task
 - jump to task
- Parallel task execution
- Sequence editing
- ~ 1250 sequences for LHC Beam Operation
- ~ 350 tasks types
- LHC main sequence: ~1100 tasks in total

Sequencer Implementation

PREPARE RAMP PREPARE RAMP ∇ PREPARE OFB SETTINGS WHILE FILLING D PREPARE FEEDBACKS FOR INJECTION ENABLE POST MORTEM EVENTS FORCE SBF TO FALSE PREPARE FEEDBACKS FOR INJECTION SET FEEDBACK OFSU PRO SWITCH OFF ABORT GAP CLEANING 012 CHECK FEEDBACK STATE ORBIT OFF RF CHECKS: WATCHDOG&FREQ B1/B2 LINKED DISARM FEEDBACKS DISABLING INJECTION AND INJ COLL OUT RESET TIME CONSTANT FOR FBS DISABLE INJECTION CLEANING FETCH ALL OPTICS TO OFSU HANDSHAKE END OF INJ - SM&BM = PREPARE RAMP SET OPTICS OPERATION MODE MANUAL ▽ □ DRIVE INJECTION SETTINGS FOR OF STOP FIDEL TRIMMING MAKE LHC.USER.INJECTION RESIDEN CALCULATE FIDEL RAMP CORRECTIONS LOAD INJECTION REF ORBIT FOR OF SWITCH ON AND ARM OFB SET ACTIVE ORBIT INDEX SWITCH ON ORBIT AND ENERGY FEEDBACKS CALC ACTIVE BEAM PROCESS OPTIC ARM ORBIT FEEDBACKS SET ACTIVE BEAM PROCESS OPTICS ¬ □ DRIVE TUNE FB SETTINGS FOR INJE LOAD RAMP OPTICS ORBIT CHANGE TABLE SWITCH FEEDBACK STATE TUNE B1 0 ARM OFB REF ORBIT CHANGE SWITCH FEEDBACK STATE TUNE_B2 0 INCORPORATE INJECTION TRIMS INTO THE RAMP MAKE LHC.USER.INJECTION RESIDEN TRIM ADT NORMALIZED GAINS TO RAMP VALUES LOAD FEEDBACK INJECTION SETTING LOAD ADTDSPU BUNCH MASK FOR RAMP LOAD TUNE FITTER SETTINGS B1 LOAD TUNE FITTER SETTINGS B2 SWITCH ON BBQ BUNCH GATING LOAD TUNE FITTER SETTINGS B2 (FFT CHECK TUNE FEEDBACK CONFIGURATION LOAD TUNE FITTER SETTINGS B1 (FF SWITCH TUNE FB ON LOAD TUNE FITTER SETTINGS B2 (FFT MAKE LHC USER FIDEL RESIDENT LOAD TUNE FITTER SETTINGS B1 (FF SELECT QFB DEVICE FOR PILOT MAKE LHC.USER.RAMP RESIDENT LOAD RAMP SETTINGS IN PC&RF FGC ARM LONGITUDINAL BLOW-UP ICAD CLEANING & DUMP PROTEC COLL RAMP SETTINGS CHECK INJ-PROT OUT COLL INTERLOCKED OUT 1st Sep. 201 END SUBSEQUENCE BREAK

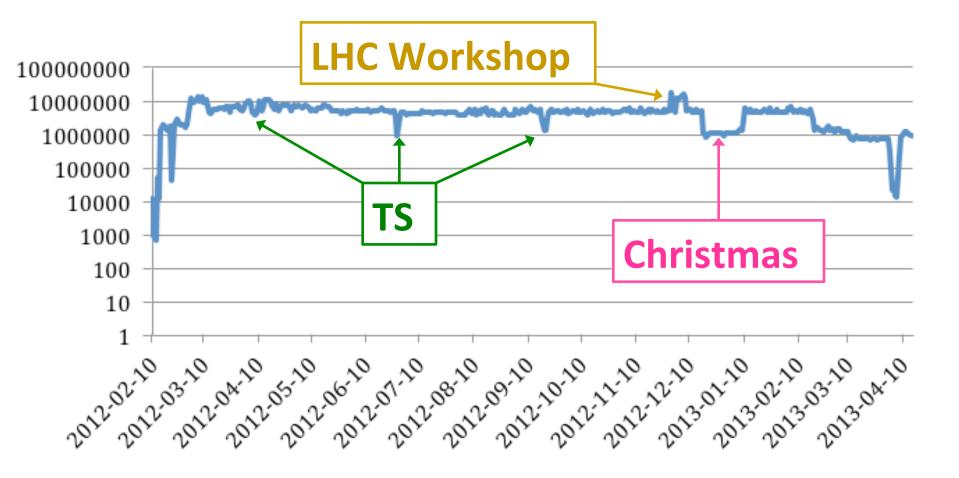

0.6M 2012 FF TUNE FB FF BBQ BUNCH GATING WIDEBAND SETTINGS ATION INTO SQUEEZE BP AND LOAD TABLE EEZE FUNCTIONS FOR TCT COLL IN IP1/5/8 EEZE FUNC FOR ADT GAINS AND PHASE_SHIFT DSPU BUNCH MASK FOR SQUEEZE JEEZE IN 1 STEP WITH QFB ON EEZE SEGMENT 0-> 925S R FOR BP REGENERATION AT 925 S E OFB FOR SQUEEZE CH ORBIT AND ENERGY FB OFF REF ORBITS FOR THE SQUEEZE CTIVE ORBIT INDEX 0 K ref orbit for squeeze CHECK REFERENCE ORBIT CORRECTLY LOADED ORBIT AND OPTICS TABLE CHANGE FOR SQUEEZE OFB REF ORBIT CHANGE 5S CH ON ORBIT AND ENERGY FEEDBACKS E TUNE FB FOR SQUEEZE QUEEZE 2011 PC TABLES SEGMENT FEEDBACKS ARMED CHIRP AND QFB OFF TATE/BEAM_MODE = SQUEEZE ART TBL (33) EVT Beam Controls


Software Interlock System

- Part of overall Machine Protection
- Surveys the state of key LHC components using complex condition logic
- Provides the operations with condition calculation **diagnostics**
- Extendable add/modify/remove condition, 1Hz reactions
- Deterministic and highly reliable system
- Acts if necessary
 - abnormal situation \Rightarrow beam dump
- Deployed practically for all accelerators
- LHC has

t Sep. 20<u>1</u>7

- ~2700 subscriptions
- ~5200 elementary values
- ~800 logical channels
- 8 permits


Management of Critical Settings

- Protects the value, not the action, ex.
 - BLM, BPM thresholds
 - Collimator thresholds

- Only experts can modify the value
- All the operators can use this value
- Digitally signed values
- 100 critical value types => 1500 properties

Logging: daily extraction requests

LHC's Figure of MERIT

• Peak luminosity is important

$$LUMINOSITY = \frac{N_{event/sec}}{\sigma_r} = \frac{N_1 N_2 f_{rev} n_b}{4\pi \sigma_x \sigma_y} F$$

 Integrated Luminosity, hence machine/beam availability is key

LHC Future Timing System

- Move to WhiteRabbit technology
 - Time-based timing system
 - Automatically synchronized "common time"
 - Ethernet-based deterministic solution for ~0.5 ns accuracy and < 10 ps precision reliable data delivery among a few thousand nodes over large distances (tens of kilometers)
 - Reliable: redundant both for topology and data
 - Initiated and developed in the Controls group
 - Open Source Hardware and Software

White Rabbit CERN Users

• ATLAS

- Synchronisation of seismic measurements (M.Guinchard, Nov-Dec. 2015)
- General Machine Timing system upgrade in the Antiproton Decelerator and the ELENA ring
- Beam Instrumentation
 - Time-stamp events based on a reference clock that will be received by WR
- Btrain over White Rabbit on CERN CO wikis (CERN access only)
 - Magnetic field measurement and distribution of the data in real-time
- LHC Instabilities Trigger Distribution
 - Instability diagnostics
- ProtoDUNE CERN Prototype of DUNE
 - SM-18: Magnetic field measurement and distribution of the data in real-time
- SPS RF distribution over White Rabbit
- CNGS Timing for neutrino measurements (2012-2014)

White Rabbit Non CERN Committed Users

- Arkus, Japan
- Cherenkov Telescope Array
- China Spallation Neutron Source Institute of High Energy Physics Chinese Academy of Sciences - CSNS, Beijing, China
- CHIRON-IT, The Netherlands
- Culham Centre for Fusion Energy
- **DESY**, Germany
- **DLR** (German Aerospace Center, Institute for Technical Physics)
- EISCAT, Sweden
- EPFL, ESPLAB Switzerland
- **GSI,** FAIR facility
- ESS Bilbao, Spain
- JINR (Russia)
- Fermilab, USA
- Paris Observatory
- MIKES (Centre for metrology and accreditation, Finland)
- LHAASO (Tsinghua University, China)

•

