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Heavy Neutrinos Could Solve Key Problems

❖ What is the origin of neutrino mass?
Possible key to embed Standard Model  
in a more fundamental theory of Nature

❖ Why was there more matter than  
antimatter in the early universe?
…so that some matter survived the mutual 
annihilation to form galaxies, stars etc.

❖ What is the Dark Matter made of?
It makes up most of the mass in the universe.
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†L

�1

2
(⌫̄cRMM⌫R + ⌫̄RM

†
M⌫cR)

three light neutrinos mostly ”active” SU(2) doublet
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M FTm⌫ ' ✓MM✓T = v2FM�1
M FTm⌫ ' ✓MM✓T = v2FM�1
M FT

three heavy mostly singlet neutrinos
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with masses MN ' MMMN ' MMMN ' MM

Minkowski 79, Gell-Mann/Ramond/
Slansky 79, Mohapatra/Senjanovic 79, 
Yanagida 80, Schechter/Valle 80



❖ What is the origin of neutrino mass?
Possible key to embed Standard Model  
in a more fundamental theory of Nature

❖ Why was there more matter than  
antimatter in the early universe?
…so that some matter survived the mutual 
annihilation to form galaxies, stars etc.

❖ What is the Dark Matter made of?
It makes up most of the mass in the universe.

• Heavy neutrinos are unstable particles
• Can decay into matter or antimatter
• Quantum effects can make decay into matter more likely
⇒ Nonequilibrium quantum process produces matter excess

Leptogenesis

Heavy Neutrinos Could Solve Key Problems



❖ What is the origin of neutrino mass?
Possible key to embed Standard Model  
in a more fundamental theory of Nature

❖ Why was there more matter than  
antimatter in the early universe?
…so that some matter survived the mutual 
annihilation to form galaxies, stars etc.

Heavy Neutrinos Could Solve Key Problems

❖ What is the Dark Matter made of?
It makes up most of the mass in the universe.

Heavy “Sterile” Neutrino Dark Matter

Dark Matter Particles are
• heavy
• long lived
• neutral
• feebly interacting



❖ What is the origin of neutrino mass?
Possible key to embed Standard Model  
in a more fundamental theory of Nature

❖ Why was there more matter than  
antimatter in the early universe?
…so that some matter survived the mutual 
annihilation to form galaxies, stars etc.

Sterile Neutrino Dark Matter

Dark Matter Particles are
• heavy
• long lived
• neutral
• feebly interacting

Heavy Neutrinos Could Solve Key Problems

} Neutrinos are the only known particles
that fulfil three conditions…

…but they are too light
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❖ What is the origin of neutrino mass?
Possible key to embed Standard Model  
in a more fundamental theory of Nature

❖ Why was there more matter than  
antimatter in the early universe?
…so that some matter survived the mutual 
annihilation to form galaxies, stars etc.

❖ What is the Dark Matter made of?
It makes up most of the mass in the universe.

Heavy Neutrinos Could Solve Key Problems

Heavy “Sterile” Neutrino Dark Matter

Dark Matter Particles are
• heavy
• long lived
• neutral
• feebly interacting

} RH neutrinos can fulfil all conditions!

Not today’s topic.
Recent review: 1602.04816  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colliders rely on branching ratio

neutrino masses mi  are small (sub eV) 
active-sterile mixing angle θ must be small

Problem! Solution

approximate 
B-L 

conservation
e.g. Kersten/Smirnov 07

active-sterile mixing angle θ must be large



Neutrino masses vs collider searches

approximate 
B-L 

conservation

Large branching 
rations consistent 

with small 
neutrino masses

implies 
Heavy Neutrino 
mass degeneracy ! suppresses 

LNV collider 
signatures !

meets 
neutrinoless 

double ß decay 
constraints

e.g. Kersten/Smirnov 07



Neutrino masses vs collider searches

implies 
Heavy Neutrino 
mass degeneracy ! suppresses 

LNV collider 
signatures !

need to use other 
channels (LFV, 
displaced vertices)

hard to distinguish 
signatures 
kinematically

cannot study 
heavy “flavours” 
individually

“golden channels” 
suppressedmay observe CP 

violation in Heavy 
Neutrino decay

Cvetic/Kim/Saa 14

connection to 
leptogenesis?



��� � � �� ��

��-��

��-��

��-�

��-�

� [���]

�
μ�

����

���
-��(�

)
���-��(�)

����

��
���
��

�����/���

���

����

��� (����� �����)

��� (����� �����)
����������� �� ������ �����������

Experimental Perspectives

plot from MaD/Garbrecht/Gueter/Klaric 1609.09069
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Experimental Perspectives

plot from MaD/Garbrecht/Gueter/Klaric 1609.09069

ATLAS/CMS (Izaguirre/Shuve)
Hard to reach leptogenesis region
How about MATHUSLA?

Displaced vertex searches at LHCb
Antusch/Cazzato/Fischer  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tracker in the roof

LHC beam pipe

ATLAS
or CMS

Surface

Air

charged
particles

LLP

DV

displaced vertex from
LLP decay is so 
spectacular…

MATHUSLA MAssive Timing Hodoscope for 
Ultra-Stable NeutraL PArticles

slide by David Curtin
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NA62
”dump mode”

plot from MaD/Garbrecht/Gueter/Klaric 1609.09069

SHiP  see 1504.04855 1504
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Experimental Perspectives

Can also modify prediction for  
neutrinoless double β decay

 MaD/Eijima 16.
Hernandez/Kekic/Lopez-Pavon/Racker/Savaldo 16,

Asaka/Eijima/Ishida 16

plot from MaD/Garbrecht/Gueter/Klaric 1609.09069

NA62
”dump mode”

SHiP  see 1504.04855 1504
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Neutrino Mixing vs Collider Searches
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Shades:

How testable is leptogenesis?

[darker = larger total mixing]
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Neutrino Mixing vs Collider Searches
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Effect on production 
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suppressed compared to
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percent level measurement of flavour structure!
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Leptogenesis and Heavy Neutrino Mass Splitting
direct kinematic 
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events

RHN oscillations 
in detector
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with three RH neutrinos: 
no need for mass degeneracy for leptogenesis MaD/Garbrecht 12



Conclusions
❖ Heavy neutrinos can explain the origin of neutrino 

masses and matter in the universe

❖ Collider data + DUNE or NOvA can fully test the 
minimal seesaw model in the sub-TeV mass range

❖ non-collider data can help to guide collider searches 
(e.g. flavour structure, LNV vs LFV) 

❖ several colliders can probably reach the leptogenesis 
region : ILC, CEPC, FCC-ee  

❖ Fully testable model of neutrino masses and 
baryogengesis
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• RH neutrinos must mix to 
generate light neutrino mass 

•  Mixing leads to production 
in the early universe  

• For masses below 100 MeV, 
RH neutrinos do not decay 
before BBN 

• Their decay either disturbs 
BBN or affects the CMB 
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• Seesaw: Need one RHN for 
each m ≠ 0 

• For m           > 10    eV, three 
RHN reach equilibrium
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• Seesaw: Need one RHN for 
each m ≠ 0 

• For m           < 10    eV, one 
RHN almost decouples
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each m ≠ 0 
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Two do Seesaw, 
and leptogenesis

DM candidate
Asaka/Shaposhnikov 2005
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