Marco Drewes, Université catholique de Louvain

LEPTOGENESIS AND COLLIDERS

11.10.2017

Collider Physics and the Cosmos

GGI Florence

The Standard Model of Particle Physics

The "periodic table" of elementary particles

The Standard Model of Particle Physics

The "periodic table" of elementary particles

The Standard Model of Particle Physics

The "periodic table" of elementary particles

How Heavy are the Missing Neutrinos?

Traditionally: assume large mass for theoretical reasons ("naturalness", grand unification)

How Heavy are the Missing Neutrinos?

Traditionally:

assume large mass for theoretical reasons ("naturalness", grand unification)

• experimentally inaccessible

How Heavy are the Missing Neutrinos?

Understand the implications across the entire experimentally accessible mass range

* What is the origin of neutrino mass?

Why was there more matter than antimatter in the early universe?

What is the Dark Matter made of?

* What is the origin of neutrino mass?

Possible key to embed Standard Model in a more fundamental theory of Nature

Why was there more matter than antimatter in the early universe?

What is the Dark Matter made of?

* What is the origin of neutrino mass?

Possible key to embed Standard Model in a more fundamental theory of Nature

* Why was there more matter than antimatter in the early universe?

...so that some matter survived the mutual annihilation to form galaxies, stars etc.

* What is the Dark Matter made of?

* What is the origin of neutrino mass?

Possible key to embed Standard Model in a more fundamental theory of Nature

* Why was there more matter than antimatter in the early universe?

...so that some matter survived the mutual annihilation to form galaxies, stars etc.

* What is the Dark Matter made of?

It makes up most of the mass in the universe.

* What is the origin of neutrino mass?

Possible key to embed Standard Model in a more fundamental theor of Nature

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial\!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \tilde{H}^\dagger \bar{\nu}_R F^\dagger L$$
$$-\frac{1}{2} (\bar{\nu}^c{}_R M_M \nu_R + \bar{\nu}_R M_M^\dagger \nu_R^c)$$

three light neutrinos mostly "active" SU(2) doublet $\nu \simeq U_{\nu}(\nu_L + \theta \nu_R^c)$ with masses $m_{\nu} \simeq \theta M_M \theta^T = v^2 F M_M^{-1} F^T$

three heavy mostly singlet neutrinos $N \simeq \nu_R + \theta^T \nu_L^c$ Winkowski 79, G Slansky 79, Moha With masses $M_N \simeq M_M$ Yanagida 80, Scher

Minkowski 79, Gell-Mann/Ramond/ Slansky 79, Mohapatra/Senjanovic 79, Yanagida 80, Schechter/Valle 80

* What is the origin of neutrino mass?

Possible key to embed Standard Model in a more fundamental theory of Nature

Why was there more matter than antimatter in the early universe?

...so that some matter survived the mutua

Leptogenesis

- Heavy neutrinos are unstable particles
- Can decay into matter or antimatter
- Quantum effects can make decay into matter more likely
 - ⇒ Nonequilibrium quantum process produces matter excess

Heavy "Sterile" Neutrino Dark Matter

Dark Matter Particles are

- heavy
- long lived
- neutral
- feebly interacting

What is the Dark Matter made of?

It makes up most of the mass in the universe.

Heavy "Sterile" Neutrino Dark Matter

Dark Matter Particles are

- heavy
- long lived
- neutral
- feebly interacting

Neutrinos are the only known particles that fulfil three conditions...

...but they are too light

What is the Dark Matter made of?

It makes up most of the mass in the universe.

Heavy "Sterile" Neutrino Dark Matter

Dark Matter Particles are

- heavy
- long lived
- neutral
- feebly interacting

RH neutrinos can fulfil all conditions!

What is the Dark Matter made of?

It makes up most of the mass in the universe.

Heavy "Sterile" Neutrino Dark Matter

Dark Matter Particles are

- heavy
- long lived
- neutral
- feebly interacting

Not today's topic.

Recent review: 1602.04816

RH neutrinos can fulfil all conditions!

What is the Dark Matter made of?

It makes up most of the mass in the universe.

known particles 18 %

Heavy Neutrinos as the Origin of Matter

eV	keV	MeV	GeV	TeV	$10^{14} { m GeV}$
Neutrino Physics					
Cosmology				Origin of Matter ("Leptogenesis")	
High Energy Physics					

Heavy Neutrinos as the Origin of Matter

Heavy Neutrinos as the Origin of Matter

Heavy Neutrinos and the Light Neutrino Masses

Heavy Neutrinos and the Light Neutrino Masses

neutrino masses *mi* are small (sub eV)

active-sterile mixing angle θ must be small

colliders rely on branching ratio

Problem!

active-sterile mixing angle θ must be large

neutrino masses mi are small (sub eV)

active-sterile mixing angle θ must be small

colliders rely on branching ratio

active-sterile mixing angle θ must be large

Large branching rations consistent with small neutrino masses

meets neutrinoless double ß decay constraints

approximate B-L conservation

e.g. Kersten/Smirnov 07

suppresses LNV collider signatures

hard to distinguish signatures kinematically

cannot study heavy "flavours" individually may observe CP violation in Heavy Neutrino decay

Cvetic/Kim/Saa 14

connection to leptogenesis? "golden channels" suppressed

need to use other channels (LFV, displaced vertices)

implies Heavy Neutrino mass degeneracy

suppresses LNV collider signatures

Experimental Perspectives

Experimental Perspectives

plot from MaD/Garbrecht/Gueter/Klaric 1609.09069

Area within black line:

allowed by neutrino oscillation data

coupling to electron maximal 12%! [for normal neutrino mass ordering]

Displaced Vertices at FCC-ee

Displaced Vertices at CEPC

Displaced Vertices at ILC

Number of Events

inverted ordering normal ordering 200 000 50000 10^{-4} disfavoured by DELPHI 10⁻⁴ disfavoured by DELPHI 10^{-5} 10⁻⁵ 50000 10000 10⁻⁶ 10⁻⁶ BAU (upper bound) 10000 2000 10⁻⁷ 10⁻⁷ BAU (upper bound) 2000 10⁻⁸ 10⁻⁸ 500 10^{-9} 10⁻⁹ 500 100 **10**⁻¹⁰ **10**⁻¹⁰ 100 **10**⁻¹¹ 10⁻¹¹ 20 constrained by neutrino oscillation data constrained by neutrino oscillation data 20 10⁻¹² 10⁻¹² 5 5 **10⁻¹³** 10⁻¹³ 10 20 30 40 50 5 10 20 30 40 50 5 \overline{M} [GeV] \overline{M} [GeV]

Number of Events

inverted ordering normal ordering 200 000 50000 10^{-4} disfavoured by DELPHI 10⁻⁴ disfavoured by DELPHI 10^{-5} 10⁻⁵ 50000 10000 10⁻⁶ 10⁻⁶ BAU (upper bound) 10000 2000 10⁻⁷ 10⁻⁷ BAU (upper bound) 2000 10⁻⁸ 10⁻⁸ 500 10^{-9} 10⁻⁹ 500 100 **10**⁻¹⁰ **10⁻¹⁰** 100 **10**⁻¹¹ 10⁻¹¹ 20 constrained by neutrino oscillation data constrained by neutrino oscillation data 20 **10**⁻¹² 10⁻¹² 5 5 10⁻¹³ 10⁻¹³ 10 20 30 40 50 5 10 20 30 40 50 5 \overline{M} [GeV] M[GeV]

percent level measurement of flavour structure!

Leptogenesis and Heavy Neutrino Mass Splitting

Antusch/Cazzato/MaD/Fischer/Garbrecht/Gueter/Klaric 1710.03744

Antusch/Cazzato/MaD/Fischer/Garbrecht/Gueter/Klaric 1710.03744

Leptogenesis and Heavy Neutrino Mass Splitting

Conclusions

- Heavy neutrinos can explain the origin of neutrino masses and matter in the universe
- * Collider data + DUNE or NOvA can fully test the minimal seesaw model in the sub-TeV mass range
- * non-collider data can help to guide collider searches (e.g. flavour structure, LNV vs LFV)
- * several colliders can probably reach the leptogenesis region : ILC, CEPC, FCC-ee
- * Fully testable model of neutrino masses and baryogengesis

• RH neutrinos **must mix** to generate light neutrino mass

TeV

 $10^{14} {
m GeV}$

- Mixing leads to production in the early universe
- For masses below 100 MeV, RH neutrinos do not decay before BBN
- Their decay either **disturbs BBN** or **affects the CMB**

Hernandez/Kekic/Lopez-Pavon 1406.2961

Hernandez/Kekic/Lopez-Pavon 1406.2961