

HIGGS BOSON DECAY AND PRODUCTION AT HADRON COLLIDERS

Michael Spira (PSI)

- I Introduction
- II Higgs Boson Decays
- III Higgs Boson Production
- IV Conclusions

I $\underline{INTRODUCTION}$

- SM very successful ← precision data [LEP, Tevatron, LHC]
- open problems: mechanism of electroweak symmetry breaking
 - unification of forces
 - space-time structure @ short distances
- <u>LHC:</u> fundamental discoveries: Higgs boson(s?)
 Supersymmetry ?
 Extra space dimensions ?
- electroweak symmetry breaking: two classes of realization:
- standard Higgs mechanism [SM, SUSY,...]
- strong elw. symmetry breaking [TC, LH, Higgsless, ED,...]

- we have found the Higgs: $M_H \sim 125~{
 m GeV}$
- $gg \rightarrow H$ dominant

• Higgs Boson Production

• Discovery: LHC [Tevatron]

(ii) <u>MSSM</u>

modified

- 2 Higgs doubletts $\xrightarrow{\text{ESB}}$ 5 Higgs bosons: h, H, A, H^{\pm}
- LO: 2 input parameters: M_A , $tg\beta = \frac{v_2}{v_1}$ • radiative corrections $\propto m_t^4 \log \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \rightarrow M_h \lesssim 135 \text{ GeV}$ Haber Carena,... Heinemeyer,... Slavich,...

$$\begin{array}{c} \varphi & g_{u}^{\phi} & g_{d}^{\phi} & g_{V}^{\phi} \\ \hline h & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & s_{\beta-\alpha} \\ \hline H & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & c_{\beta-\alpha} \\ \hline A & \mathsf{ctg}\beta & \mathsf{tg}\beta & \mathsf{0} \end{array}$$

- Yukawa couplings: $tg\beta\uparrow \Rightarrow g_u^{\phi}\downarrow g_d^{\phi}\uparrow g_V^{\phi}\downarrow$
- LHC: $gg \rightarrow \phi$ dominant for $tg\beta \lesssim 10$ $gg \rightarrow \phi b\overline{b}$ dominant for $tg\beta \gtrsim 10$

II <u>HIGGS BOSON DECAYS</u>

Partial Width	QCD	Electroweak	Total	on-shell Higgs
$H ightarrow b\overline{b}/c\overline{c}$	$\sim 0.2\%$	\sim 0.5% for $M_H \lesssim$ 500GeV	$\sim 0.5\%$	NNNNLO / NLO
		$\sim 0.1 (rac{M_H}{1{ m TeV}})^4$ for $M_H > 500{ m GeV}$	\sim 0.5–10%	
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		\sim 0.5% for $M_H \lesssim$ 500GeV	$\sim 0.5\%$	NLO
		$\sim 0.1 (rac{M_H}{1{ m TeV}})^4$ for $M_H > 500{ m GeV}$	\sim 0.5–10%	
$H \to t \overline{t}$	\lesssim 5%	\lesssim 0.5% for $M_H <$ 500GeV	$\sim 5\%$	(NNN)NLO / LO
		$\sim 0.1 (rac{M_H}{1{ m TeV}})^4$ for $M_H > 500{ m GeV}$	\sim 5–10%	
$H \rightarrow gg$	\sim 3%	$\sim 1\%$	\sim 3%	NNNLO approx. / NLO
$H ightarrow \gamma \gamma$	< 1%	< 1%	$\sim 1\%$	NLO / NLO
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$	(N)LO / LO
$H \to WW/ZZ \to 4f$	< 0.5%	\sim 0.5% for $M_H <$ 500GeV	$\sim 0.5\%$	(N)NLO
		$\sim 0.17 (rac{M_H}{1{ m TeV}})^4$ for $M_H > 500{ m GeV}$	$\sim 0.5 extsf{}15\%$	

- QCD: variation of Higgs widths for scale by factor 2 and 1/2 elw: missing HO estimated from known structure at NLO $M_H \gtrsim 500$ GeV: Higgs self-interactions dominate error different uncertainties added linearly for each channel
- parametric uncertainties:

 $m_t = 172.5 \pm 1 \text{ GeV}$ $\alpha_s(M_Z) = 0.118 \pm 0.0015$ $m_b(m_b) = 4.18 \pm 0.03 \text{ GeV}$ $m_c(3\text{GeV}) = 0.986 \pm 0.025 \text{ GeV}$ different uncertainties added quadratically for each channel

• total uncertainties: parametric & theor. uncertainties added linearly

HDECAY & Prophecy4f

Denner, Heinemeyer, Puljak, Rebuzzi, S.

• MSSM: large SUSY–QCD corrections to $\phi^0 \to b \overline{b}$

SUSY-QCD Corrections to $b\bar{b}\phi^0$

$$[\Delta \lesssim 1\%]$$

$$\mathcal{L}_{eff} = -\lambda_b \overline{b_R} \left[\phi_1^0 + \frac{\Delta_b}{\mathrm{tg}\beta} \phi_2^{0*} \right] b_L + h.c. \quad \text{valid to all orders in } \Delta_b$$
$$= -m_b \overline{b} \left[1 + i\gamma_5 \frac{G^0}{v} \right] b - \frac{m_b/v}{1 + \Delta_b} \overline{b} \left[g_b^h \left(1 - \frac{\Delta_b}{\mathrm{tg}\alpha} \mathrm{tg}\beta} \right) h \right]$$
$$+ g_b^H \left(1 + \Delta_b \frac{\mathrm{tg}\alpha}{\mathrm{tg}\beta} \right) H - g_b^A \left(1 - \frac{\Delta_b}{\mathrm{tg}^2\beta} \right) i\gamma_5 A \right] b$$

$$\Delta_{b} = \Delta_{b}^{QCD(1)} + \Delta_{b}^{elw(1)}$$

$$\Delta_{b}^{QCD(1)} = \frac{2}{3} \frac{\alpha_{s}(\mu_{R})}{\pi} M_{\tilde{g}} \mu \, \mathrm{tg}\beta \, I(m_{\tilde{b}_{1}}^{2}, m_{\tilde{b}_{2}}^{2}, M_{\tilde{g}}^{2})$$

$$\Delta_{b}^{elw(1)} = \frac{\lambda_{t}^{2}(\mu_{R})}{(4\pi)^{2}} \mu \, A_{t} \, \mathrm{tg}\beta \, I(m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2})$$

$$I(a, b, c) = -\frac{ab \log \frac{a}{b} + bc \log \frac{b}{c} + ca \log \frac{c}{a}}{(a - b)(b - c)(c - a)}$$

 \Rightarrow resummed Yukawa couplings \tilde{g}_b^{Φ}

Carena, Garcia, Nierste, Wagner Guasch, Häfliger, S.

small α_{eff} scenario [modified]

$${
m tg}eta \ = \ 30$$

 $M_{{\widetilde Q}} \ = \ 800 \ {
m GeV}$
 $M_{{\widetilde g}} \ = \ 1000 \ {
m GeV}$ \longleftarrow
 $M_2 \ = \ 500 \ {
m GeV}$
 $A_b = A_t \ = \ -1.133 \ {
m TeV}$
 $\mu \ = \ 2 \ {
m TeV}$

$$\begin{array}{rcl} m_{\tilde{t}_1} &=& 679 \,\, {\rm GeV} & m_{\tilde{t}_2} = 935 \,\, {\rm GeV} \\ m_{\tilde{b}_1} &=& 601 \,\, {\rm GeV} & m_{\tilde{b}_2} = 961 \,\, {\rm GeV} \end{array}$$

Noth, S. (Mihaila, Reisser)

Guasch, Häfliger, S.

+ charged Higgs decays

SUSY Decays

HDECAY

 \bullet if kinematically possible \rightarrow important

III HIGGS BOSON PRODUCTION

(i) $gg \rightarrow h/H$

Georgi,...

Gamberini,...

S., Djouadi, Graudenz, Zerwas Dawson, Kauffman

- NLO QCD corrections: $\sim 10 \dots 100\%$
- NNLO calculated for $m_t \gg M_{\phi} \Rightarrow$ further increase by 20–30% [mass effects small] Anastasiou, Melnikov Ravindran, Smith, van Neerven

Marzani, Ball, Del Duca, Forte, Vicini Harlander, Ozeren Pak, Rogal, Steinhauser

• N³LO for $m_t \gg M_{\phi} \Rightarrow$ scale stabilization scale dependence: $\Delta \lesssim 5\%$ de Elorian, Mazzitelli, Moch, Vogt

de Florian, Mazzitelli, Moch, Vogt Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger Ball, Bonvini, Forte, Marzani, Ridolfi • N³LL soft gluon resummation: $\lesssim 2\%$

Catani, de Florian, Grazzini, Nason Ravindran Ahrens, Becher, Neubert, Yang Ball, Bonvini, Forte, Marzani, Ridolfi Bonvini, Marzani Schmidt, S.

 \bullet elw. corrections: $\sim 5\%$

Aglietti,... Degrassi, Maltoni Actis, Passarino, Sturm, Uccirati

• QCD corrections to squark loops: 10–100%

Mühlleitner, S. Bonciani, Degrassi, Vicini

• genuine SUSY-QCD corrections: 10–100% Harlander, : $[\leftarrow \Delta_b \text{ @ large tg}\beta]$ And

Harlander, Steinhauser, Hofmann Degrassi, Slavich Anastasiou, Beerli, Daleo Mühlleitner, Rzehak, S.

- SUSY-elw. corrections unknown
- impl. of $gg \rightarrow \phi$ in POWHEG including mass effects @ NLO

Bagnaschi, Degrassi, Slavich, Vicini

• QCD corrections to squark loops:

Mühlleitner, S.

$$\sigma(gg \to \Phi) = \sigma_{LO}(g_t^{\Phi}, \tilde{g}_b^{\Phi}) \left[1 + \delta_{QCD} + \delta_{SQCD}\right]$$

PRELIMINARY

Mühlleitner, Rzehak, S.

(ii) W/Z fusion: $pp \rightarrow W^*W^*/Z^*Z^* \rightarrow h/H$

• QCD corrections \leftarrow DIS: $\sim 10\%$

2-loop: \lesssim 1% [approx] 3-loop: \lesssim 0.3% [approx] Cahn, Dawson Hikasa Atarelli, Mele, Pitolli

Han, Valencia, Willenbrock Figy, Oleari, Zeppenfeld Berger, Campbell

Bolzano, Maltoni, Moch, Zaro

Ciccolini, Denner, Dittmaier

Hollik, Rzehak, Plehn, Rauch

Figy, Palmer, Weiglein

Dreyer, Karlberg

- elw. corrections: $\sim 10\%$
- genuine SUSY-elw. corrections: $\lesssim 5\%$ [implemented in VBFNLO]

(iii) Higgs-strahlung: $pp \rightarrow W^*/Z^* \rightarrow W/Z + h/H$

Glashow,... Kunszt,...

- QCD corrections \leftarrow DY: $\sim 30\%$ 2–loop: $\lesssim 5\%$
- SUSY-QCD corrections small
- \bullet electroweak corrections: $\sim -10\%$
- W/Z + H: fully exclusive @ NNLO QCD

Han, Willenbrock

Brein, Djouadi, Harlander

Djouadi, S.

Ciccolini, Dittmaier, Krämer

Ferrera, Grazzini, Tramantano

dominant

• $t\bar{t}h \rightarrow t\bar{t}b\bar{b}$ important @ LHC \rightarrow top Yukawa cplg.

- QCD corrections [SM]: ~ 20% [threshold suppressed: $\sigma_{LO} \sim \beta^4$] Beenakker,... Dawson, ...
- SUSY-QCD corrections: moderate Dittmaier, Häfliger, Krämer, S., Walser
- link to parton showers: aMC@NLO, PowHel Kardos, Papadopoulos, Trócsányi
- important work on backgrounds $t\overline{t}b\overline{b}, t\overline{t}jj$, etc. Bredenstein, Denner, Dittmaier, Pozzorini Bevilacqua, Czakon, Papadopoulos, Pittau, Worek Cascioli, Maierhofer, Pozzorini

Dittmaier, Häfliger, Krämer, S., Walser

(v) $b\bar{b}$ +Higgs production

NLO

exact $g \to b \overline{b}$ splitting & mass/off-shell effects no resummation of $\log M_H^2/m_b^2$ terms

NNLO

massless/on-shell *b*'s, no p_{Tb} resummation of log M_H^2/m_b^2 terms

Bonvini, Papanastasiou, Tackmann

Forte, Napoletano, Ubiali

matching

	M_A	M_H [GeV]	δ^A_{QCD}	δ^A_{SUSY}	$\delta^A_{SUSYrem}$	δ^{H}_{QCD}	δ^{H}_{SUSY}	$\delta^{H}_{SUSYrem}$
	100	113.9	0.23	-0.30	$0.4 imes10^{-4}$	0.27	-0.38	$0.3 imes10^{-4}$
	200	200	0.38	-0.30	$2.9 imes10^{-4}$	0.39	-0.30	$5.8 imes10^{-4}$
7 TeV	300	300	0.46	-0.30	$6.7 imes10^{-4}$	0.47	-0.30	$9.3 imes10^{-4}$
	400	400	0.53	-0.30	$1.3 imes10^{-3}$	0.53	-0.30	$1.5 imes10^{-3}$
	500	500	0.57	-0.30	$2.0 imes10^{-3}$	0.59	-0.30	$2.2 imes10^{-3}$
	100	113.9	0.14	-0.30	$0.4 imes10^{-4}$	0.17	-0.38	$0.5 imes10^{-4}$
	200	200	0.28	-0.30	$2.7 imes10^{-4}$	0.29	-0.30	$5.7 imes10^{-4}$
14 TeV	300	300	0.37	-0.30	$6.5 imes10^{-4}$	0.39	-0.30	$9.3 imes10^{-4}$
	400	400	0.45	-0.30	$1.2 imes10^{-3}$	0.45	-0.30	$1.5 imes10^{-3}$
	500	500	0.50	-0.30	$2.1 imes10^{-3}$	0.49	-0.30	$2.3 imes10^{-3}$

	$tg\beta$	M_A	M_H [GeV]	δ^A_{SUSY}	$\delta^A_{SUSYrem}$	δ^{H}_{SUSY}	$\delta^{H}_{SUSYrem}$
	3	200	209.7	-0.04	$2.1 imes 10^{-4}$	-0.04	$5.7 imes10^{-4}$
	5	200	204.0	-0.06	$2.4 imes10^{-4}$	-0.06	$5.3 imes10^{-4}$
	7	200	202.1	-0.08	$2.5 imes10^{-4}$	-0.09	$3.9 imes10^{-4}$
7 TeV	10	200	200.9	-0.12	$2.5 imes10^{-4}$	-0.12	$3.8 imes10^{-4}$
	20	200	200.1	-0.21	$2.6 imes10^{-4}$	-0.21	$4.4 imes10^{-4}$
	30	200	200.0	-0.30	$2.9 imes10^{-4}$	-0.30	$5.8 imes10^{-4}$
	3	200	209.7	-0.04	$2.0 imes 10^{-4}$	-0.04	$7.2 imes 10^{-4}$
	5	200	204.0	-0.06	$2.2 imes10^{-4}$	-0.06	$5.0 imes10^{-4}$
	7	200	202.1	-0.08	$2.4 imes10^{-4}$	-0.09	$4.4 imes10^{-4}$
14 TeV	10	200	200.9	-0.12	$2.5 imes10^{-4}$	-0.12	$4.1 imes10^{-4}$
	20	200	200.1	-0.21	$2.7 imes10^{-4}$	-0.21	$4.4 imes10^{-4}$
	30	200	200.0	-0.30	$2.7 imes 10^{-4}$	-0.30	$5.7 imes 10^{-4}$

(vi) $pp \to t\bar{b}H^- + X$

•
$$M_{H^{\pm}} < m_t - m_b$$
: $\sigma_{t\bar{b}H^-} = \sigma_{t\bar{t}} \times BR(\bar{t} \to \bar{b}H^-)$

• $M_{H^{\pm}} \sim m_t - m_b$: new NLO calculation

Degrande, Frederix, Wiesemann, Zaro

•
$$M_{H^{\pm}} > m_t - m_b$$
:

exact $g \rightarrow b\bar{b}$ splitting & mass/off-shell effects no resummation of log $M_{H^{\pm}}^2/m_b^2$ terms

NLO

massless/on-shell *b*'s, no p_{Tb} resummation of log $M_{H^\pm}^2/m_b^2$ terms • Santander matching

minimum: tg
$$eta \sim \sqrt{rac{m_t}{\overline{m}_b}} \sim 8$$

Dittmaier, Krämer, S., Walser Plehn Flechl, Klees, Krämer, Spira, Ubiali

• analogous for charged Higgs: $\tilde{g}_b^{H^{\pm}} = \frac{\mathrm{tg}\beta}{1 + \Delta_b} \left(1 - \frac{\Delta_b}{\mathrm{tg}^2 \beta} \right)$

$$\sigma_{NLO} = \sigma_{LO}|_{g_b^{H^{\pm}} \to \tilde{g}_b^{H^{\pm}}} \times \left\{ 1 + \delta_{QCD} + \delta_{SQCD}^{rem} \right\}$$

${\sf tg}eta$	δ^{rem}_{SUSY} [%]
3	-5.7%
5	-7.9%
10	-4.8%
30	-0.13%

Dittmaier, Krämer, S., Walser

 $gg \to HH$

• threshold region: sensitive to λ large M_{HH} : sensitive to $c_{tt/bb}$ [e.g. boosted Higgs pairs]

$$gg \rightarrow HH$$
 : $\frac{\Delta\sigma}{\sigma} \sim -\frac{\Delta\lambda}{\lambda}$
[decreasing with M_{HH}^2]

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, S.

 \bullet third generation dominant $\rightarrow t, b$

• 2-loop QCD corrections:

$$\sigma = \sigma_0 + \frac{\sigma_1}{m_t^2} + \dots + \frac{\sigma_4}{m_t^8}$$

Grigo, Hoff, Melnikov, Steinhauser

- NLO mass effects @ NLO in real corrections: $\sim -10\%$ Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro
 - \rightarrow sizeable virtual mass effects
- NNLO QCD corrections: $\sim 20\%$ $[M_{H}^{2} \ll 4m_{t}^{2}] \qquad \qquad {\rm de\ Florian,\ Mazzitelli}$

3

• soft gluon resummation: $\sim 10\%$ $[M_H^2 \ll 4m_t^2]$

Shao, Li, Li, Wang de Florian, Mazzitelli Full NLO calculation: top only

Numerical integration, sector decomposition, contour deformation

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke Baglio, Campanario, Glaus, Mühlleitner, S., Streicher (in preparation)

• 13 TeV:

$$\sigma_{NLO} = 27.80(8)^{+13.8\%}_{-12.8\%} fb$$

$$\sigma_{NLO}^{HEFT} = 32.22^{+18\%}_{-15\%} fb$$

 \Rightarrow -13.7% mass effects

$\mathsf{IV} \ \underline{CONCLUSIONS}$

- Higgs boson searches/studies at LHC belong to major endeavours
- most (SUSY–)QCD and –elw. corrections known $\rightarrow \Delta \lesssim$ 10 15% @ LHC
- several dedicated HO-tools available for SM, MSSM [NMSSM,...]
- important to develop NLO event generators [← backgrounds]

[scale = 1 TeV]

$$\begin{array}{rcl} m_t &=& 173.2 \; {\rm GeV} \\ {\rm tg}\beta &=& 30 \\ M_{\tilde{Q}} &=& 1.5 \; {\rm TeV} \\ M_{\tilde{g}} &=& 1.5 \; {\rm TeV} \\ M_2 &=& 200 \; {\rm GeV} \\ M_2 &=& 200 \; {\rm GeV} \\ A_b \!=\! A_t &=& 4.417 \; {\rm TeV} \qquad [X_t \!=\! 2.9 \; M_{\tilde{Q}}] \\ \mu &=& 2 \; {\rm TeV} \\ M_{\tilde{\ell}_3} &=& 500 \; {\rm GeV} \end{array}$$

$$\begin{array}{rcl} m_{\tilde{t}_1} &=& 1.318 \ {\rm TeV} & m_{\tilde{t}_2} = 1.726 \ {\rm TeV} \\ m_{\tilde{b}_1} &=& 1.501 \ {\rm TeV} & m_{\tilde{b}_2} = 1.565 \ {\rm TeV} \end{array}$$

$$\begin{array}{rcl} {\rm tg}\beta \ = \ 5 \\ \mu \ = \ 639.8 \ {\rm GeV} \\ A_t \ = \ -1671.4 \ {\rm GeV} \\ A_b \ = \ -905.6 \ {\rm GeV} \\ m_{\tilde{g}} \ = \ 710.3 \ {\rm GeV} \\ m_{\tilde{q}_L} \ = \ 535.2 \ {\rm GeV} \\ m_{\tilde{b}_R} \ = \ 620.5 \ {\rm GeV} \\ m_{\tilde{t}_R} \ = \ 360.5 \ {\rm GeV} \end{array}$$

 $\longrightarrow m_{\tilde{t}_1} = \text{204.1 GeV}, m_{\tilde{t}_2} = \text{656.1 GeV}, m_{\tilde{b}_1} = \text{533.3 GeV}, m_{\tilde{b}_2} = \text{625.2 GeV}$