Higgs boson and cosmology – can we learn anything about fundamental physics?

Fedor Bezrukov

The University of Manchester

Collider Physics and the Cosmos GGI - Firenze / Italy October 9–13, 2017

The University of Manchester

Outline

Standard Model and the reality of the Universe

- Standard Model is in great shape!
- Top-quark and Higgs-boson masses and vacuum stability

Higgs as an inflaton?

- Tree level story
- Adding RG corrections
- Role of RG corrections in various regimes
- Surviving the false vacuum in the Hot Universe

Lesson from LHC so far – Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - Mass measured \sim 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_P \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Lesson from LHC so far – Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - Mass measured \sim 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_P \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Many things in cosmology are not explained by SM

Experimental observations

- Dark Matter
- Baryon asymmetry of the Universe
- Inflation (nearly scale invariant spectrum of initial density perturbations)

Laboratory also asks for SM extensions

Neutrino oscillations

Possible: New physics only at low scales -vMSM

Role of sterile neutrinos

 $N_1 M_1 \sim 1 - 50$ keV: (Warm) Dark Matter

 $N_{2,3}$ $M_{2,3} \sim$ several GeV:

Gives masses for active neutrinos, Baryogenesys

Forgetting about three problems!

What to do with the problems?

- Inflationary mechanism required
- Higgs is weakly coupled

but not completely trouble free

Standard Model self-consistency and Radiative Corrections

 Higgs self coupling constant λ changes with energy due to radiative corrections.

$$egin{aligned} (4\pi)^2eta_\lambda &= 24\lambda^2 - 6y_t^4 \ &+ rac{3}{8}(2g_2^4 + (g_2^2 + g_1^2)^2) \ &+ (-9g_2^2 - 3g_1^2 + 12y_t^2)\lambda \end{aligned}$$

- Behaviour is determined by the masses of the Higgs boson $m_H = \sqrt{2\lambda} v$ and other heavy particles (top quark $m_t = y_t v / \sqrt{2}$)
- If Higgs is heavy M_H > 170 GeV the model enters strong coupling at some low energy scale – new physics emerges.

Lower Higgs masses: RG corrections push Higgs coupling to negative values

- For Higgs masses
 M_H < M_{critical} coupling
 constant is negative above
 some scale μ₀.
- The Higgs potential may become negative!
 - Our world is not in the lowest energy state!
 - Problems at some scale $\mu_0 > 10^{10} \text{ GeV}$?

Higgs potential $V(\phi) \simeq \lambda(\phi) \frac{\phi^4}{4}$

LHC result: SM is definitely perturbative up to Planck scale, and probably has metastable SM vacuum

Experimental values for y_t Scale μ_0 for $\lambda(\mu_0) = 0$ 1e+18 Mt=172.44±0.48 GeV, Mh=125.09±0.24 GeV ¹²⁶ 1e+16 lute 1e+14 125.5 stable µ₀, GeV M_h, GeV 1e+12 125 1e+10 124.5 1e+08 Metastable 124 1e+06 0.91 0.92 0.93 0 94 0.95 0.01 0.02 0.03 0.04 0.05 y_t(µ=173.2 GeV) v+-v+crit(u=173.2 GeV)

We live close to the metastability boundary – but on which side?!

Future measurements of top Yukawa and Higgs mass are essential!

Vacuum stability – what it means?

- Stable Electroweak vacuum looks safe
- Metastable is it ok?

Inflation versus vacuum stability

Stable SM vacuum	inflaton & Higgs independent	inflaton & Higgs interacting	inflaton = Higgs
Large r	Yes	Yes	Yes (threshold corr.)
Small <i>r</i>	Yes	Yes	Yes
Planck scale corections	Any	Any	Scale inv.

Metastable SM vacuum	inflaton & Higgs independent	inflaton & Higgs interacting	inflaton = Higgs
Large r	No	Yes Model dep.	Hard
Small r	Yes <i>r</i> < 10 ^{−9}	Yes Model dep.	Yes (threshold corr.)
Planck scale corections	Restricted	Model dep.	Scale inv.

Inflation versus vacuum stability

inflaton & Higgs independent	inflaton & Higgs interacting	inflaton = Higgs	
Yes	Yes	Yes (threshold corr.)	
Yes	Yes	Yes	
Any	Any	Scale inv.	
inflaton & Higgs independent	inflaton & Higgs interacting	inflaton = Higgs	
No	Yes Model dep.	Hard	
Yes r < 10 ⁻⁹	Yes Model dep.	Yes (threshold corr.)	
Restricted	Model dep.	Scale inv.	
	inflaton & Higgs independent Yes Yes Any inflaton & Higgs independent No Yes $r < 10^{-9}$ Restricted	inflaton & Higgs independentinflaton & Higgs interactingYesYesYesYesYesYesAnyAnyInflaton & Higgs independentinflaton & Higgs interactingNoYes Yes Model dep.YesYes Yes Model dep.RestrictedModel dep.	

Higgs inflation at tree level

Conformal transformation:
$$\hat{g}_{\mu\nu} = \sqrt{1 + \frac{\xi \phi^2}{M_P^2}} g_{\mu\nu}$$
,

Requirement from UV physics – No corrections $\frac{h^n}{M_P^{4-n}}$ allowed

CMB parameters are predicted

Exactly like preferred by CMB

What happens if we try to take into account loop corrections?

RG improved potential for Higgs inflation

The standard rule would be to write potential and replace constant with constant at the relevant mass scale: $U_{\text{RG improved}}(\chi) = \frac{\lambda(\mu)}{4} \frac{M_P^4}{\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2$

with

$$\mu^{2} = \alpha^{2} m_{t}^{2}(\chi) = \alpha^{2} \frac{y_{t}^{2}(\mu)}{2} \frac{M_{P}^{2}}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)$$

Problem: How to gete $\lambda(\mu)$ at high energy scales?

Theory has background dependent tree level unitarity violation

Relation between cut-offs in different frames:

$$\Lambda_{Jordan} = \Lambda_{Einstein} \Omega$$

Einstein frame

Relevant scales Hubble scale $H \sim \lambda^{1/2} \frac{M_P}{\xi}$ Energy density at inflation $V^{1/4} \sim \lambda^{1/4} \frac{M_P}{\sqrt{\xi}}$

Approximate symmetry at inflation

$$\mathscr{L} = \frac{(\partial_{\mu}\chi)^{2}}{2} - U(\chi)$$
$$U(\chi) = U_{0}\left(1 + \sum_{n=1}^{\infty} u_{n}e^{-\frac{n\chi}{M}}\right) = U_{0}\left(1 + \sum_{k=0}^{\infty} \frac{1}{k!}\left[\frac{\delta\chi}{M}\right]^{k}\sum_{n=1}^{\infty} n^{k}u_{n}e^{-\frac{n\bar{\chi}}{M}}\right)$$

Effective action has the form $(M = \sqrt{6}M_P/2)$ $\mathscr{L} = f^{(1)}(\chi)\frac{(\partial_\mu \chi)^2}{2} - U(\chi) + f^{(2)}(\chi)\frac{(\partial^2 \chi)^2}{M^2} + f^{(3)}(\chi)\frac{(\partial \chi)^4}{M^4} + \cdots$

All the divergences are absorbed in u_n and in $f^{(n)} \sim \sum f_l e^{-n\chi/M}$

UV complete theory requirement Shift symmetry is respected $\chi \mapsto \chi + \text{const}$

(or equivalently scale symmetry in the Jordan frame)

Adding required counterterms to the action

- In principle HI is not renormalizable, all counterterms appear at some loop order
- Let us try to add only the required counterterms at each order in loop expansion

$$\mathscr{L} = \frac{(\partial \chi)^2}{2} - \frac{\lambda}{4} F^4(\chi) + i \bar{\psi}_t \bar{\vartheta} \psi_t + \frac{y_t}{\sqrt{2}} F(\chi) \bar{\psi}_t \psi_t$$
$$F(\chi) \equiv \frac{h(\chi)}{\Omega(\chi)} \approx \left\{ \begin{array}{c} \chi & , \chi < \frac{M_P}{\xi} \\ \frac{M_P}{\sqrt{\xi}} \left(1 - e^{-\sqrt{2/3}\chi/M_P} \right)^{1/2}, \chi > \frac{M_P}{\xi} \end{array} \right\}$$

Doing quantum calculations we should add

 $\mathscr{L} + \mathscr{L}_{1\text{-loop}} + \delta \mathscr{L}_{1\text{-loop c.t.}} + \cdots$

Counterterms: λ modification

Counterterms: λ modification

Calculating vacuum energy

$$\begin{cases}
\left\langle \begin{array}{c} \end{array}\right\rangle^{2} &= \frac{1}{2} \operatorname{Tr} \ln \left[\Box - \left(\frac{\lambda}{4} (F^{4})^{\prime \prime} \right)^{2} \right] \\
\delta \mathscr{L}_{ct} &= \frac{9\lambda^{2}}{64\pi^{2}} \left(\frac{2}{\overline{\epsilon}} + \delta \lambda_{1a} \right) \left(F^{\prime 2} + \frac{1}{3} F^{\prime \prime} F \right)^{2} F^{4}, \\
\left\langle \begin{array}{c} \end{array}\right\rangle^{2} &= -\operatorname{Tr} \ln \left[i \overline{\partial} + y_{t} F \right] \\
\delta \mathscr{L}_{ct} &= -\frac{y_{t}^{4}}{64\pi^{2}} \left(\frac{2}{\overline{\epsilon}} + \delta \lambda_{1b} \right) F^{4}
\end{cases}$$

Small $\chi : F'^4 F^4 \sim \chi \sim F^4$ Large $\chi : F'^4 F^4 \sim e^{-4\chi/\sqrt{6}M_P}$, and $F^4 \sim M_P^4/\xi^2$ $\delta\lambda_{1b}$ – just λ redefinition, while $\delta\lambda_{1a}$ is not!

Modified "evolution" of $\lambda(\mu)$

For RG we should in principle write infinite series $\frac{d\lambda}{d \ln \mu} = \beta_{\lambda}(\lambda, \lambda_1, a...)$ $\frac{d\lambda_1}{d \ln \mu} = \beta_{\lambda_1}(\lambda, \lambda_1, ...)$

. . .

- Assuming δ_i are small and have the same hierarchy, as the loop expansion, we truncate this to just first equation.
- Neglect change of $\delta\lambda_1$ between $\mu\sim M_P/\xi$ and $M_P/\sqrt{\xi}$

$$\lambda(\mu) \rightarrow \lambda(\mu) + \frac{\delta \lambda}{\delta \lambda} \left[\left(F'^2 + \frac{1}{3} F'' F \right)^2 - 1 \right],$$

Counterterms: Top Yukawa coupling

Calculating propagation of the top quark in the background χ

$$y_t(\mu) \rightarrow y_t(\mu) + \frac{\delta y_t}{\delta y_t} \left[F'^2 - 1 \right]$$

Threshold effects at M_P/ξ summarized by two new arbitrary constants $\delta\lambda$, δy_t

$$\lambda(\mu) \rightarrow \lambda(\mu) + \frac{\delta \lambda}{\delta \lambda} \left[\left(F'^2 + \frac{1}{3} F'' F \right)^2 - 1 \right]$$

$$y_t(\mu) \rightarrow y_t(\mu) + \frac{\delta y_t}{\delta y_t} [F'^2 - 1]$$

Conservatively – can think of these as parametrization of our lack of knowledge of physics at M_P/ξ threshold.

Modified λ evolution modifies the potential

$$\lambda(\mu) \rightarrow \lambda(\mu) + \delta \lambda \left[\left(F'^2 + \frac{1}{3} F'' F \right)^2 - 1 \right]$$

$$y_t(\mu) \rightarrow y_t(\mu) + \delta y_t \left[F'^2 - 1 \right]$$
(Red curve: $\xi = 1500$, $\delta y_t = 0.025$, $\delta \lambda = -0.015$)

. .

Consequences of these "threshold effects"

- Inflation with large ξ
- Inflation with small ξ
- What if the vacuum is metastable with μ_0 below M_P/ξ ?

Large ξ – return to tree level predictions

$$U_{\text{RG improved}}(\chi) = \frac{\lambda(\mu)}{4} \frac{M_P^4}{\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2$$

• If $\xi \sim 5 imes 10^4 \sqrt{\lambda} \gg 1$

- logarithmic RG running of λ is neglidgible
- threshold "jumps" at $\mu \sim M_P/\xi$ are below inflationary scale – irrelevant for inflationary observables.
- All this story is not needed we are in general attractor class of inflationary models

Small ξ – critical HI

$$U_{\mathrm{RG \ improved}}(\chi) = rac{\lambda(\mu)}{4} rac{M_P^4}{\xi^2} \left(1 - \mathrm{e}^{-rac{2\chi}{\sqrt{6}M_P}}
ight)^2$$

- Small ξ ≤ 10 − λ vs. δλ significant, may give interesting "features" in the potential ("critical inflation", large r)
- However tend to get both inflation and δλ "jumps" in the same scale around M_P/ξ
- Loop corrections change result – harder to control

Interestingly – allows to "cure" metastable vacuum

- Let us we have just metastable SM, with small metastability scale $\mu_0 < M_P/\xi$
- Naively either no inflation at all, or we end up in the wrong vacuum

Higgs inflation and radiative corrections

(Not really to scale)

In the hot enough Universe only one vacuum remains

Thermal potential
$$\Delta V_T = -\frac{1}{6\pi^2} \sum_{\text{particles}} \int_0^\infty \frac{k^4 dk}{\varepsilon_k(m)} \frac{1}{e^{\varepsilon_k(m)/T} \mp 1}$$

• Universe has to be reheated to $T_R \gtrsim 10^{14} \, {\rm GeV}$

How to get control of what is happening at M_P/ξ ?

Usual logic – Perturbative UV-completions

- Tree level unitarity is violated at M_P/ξ
- Leads to additional degrees of freedom at around M_P/ξ
 - Can construct models with additional scalar field perturbative up to *M*_P
- Is it a "no-go" statement?

Are there possibilities without new particles at M_p/ξ ?

Loop corrections vs. frame choice

- μ is the scale appearing in (dimensional) regularization
- No questions asked in the "usual" case of renormalizable theories only space/field independent choice gives regularization that is not-breaking renormalizability.
- HI is not renormalizable multiple choices possible

In Jordan frame:
$$\mu^2 \propto M_P^2 + \xi h^2$$

In Einstein frame: $\mu^2 \propto \text{const}$

Roughly means that effective potential $U(\phi) \sim \phi^4 \log\left(\frac{\phi^2}{\mu^2}\right)$ or $U(\phi) \sim \phi^4 \log\left(\frac{\phi^2/\Omega^2(\phi)}{\mu^2}\right)$

 How to quantize (with loops) theories with complicated kinetic terms and do this beyond S-matrix calculations?

What is the field theory for gravity?

- How do we understand the gravity action:
 - Metric $-g_{\mu\nu}(x)$ is an independent field, Connection $-\Gamma^{\lambda}_{\mu\nu} \equiv \frac{g^{\lambda\rho}}{2}(g_{\rho\mu,\nu} + g_{\rho\nu,\mu} g_{\mu\nu,\rho})$
 - Palatiny $g_{\mu\nu}(x)$, $\Gamma^{\lambda}_{\mu\nu}(x)$ are independent fields
- Different *classical* dynamics if $\xi \neq 0$ Can be seen as different transformation under $g_{\mu\nu} \rightarrow \Omega(x)g_{\mu\nu}$

Rather differen	nt inflationary	predictions!
-----------------	-----------------	--------------

Metric	Palatini
$R ightarrow \Omega^2 R + 6 g^{\mu u} \partial_\mu \ln \Omega \partial_ u \ln \Omega$	$R \rightarrow \Omega^2 R$
$\xi\sim5 imes10^4\sqrt{\lambda}$	$\xi \sim$ 1.5 $ imes$ 10 $^{10}\lambda$
$r\sim$ 3.2 $ imes$ 10 $^{-3}$	$r\sim 3.5 imes 10^{-14}\lambda^{-1}$

Conclusions: Higgs and inflation

what is good and what is bad?

Bad

Predictions depend on high scale physics

Conclusions: Higgs and inflation

what is good and what is bad?

Bad

Predictions depend on high scale physics

Good

Predictions depend on high scale physics