WIMP Dark Matter interpretation of SUSY and Exotics results

Collider Physics and the Cosmos

Galileo Galilei Institute October 2017

Jeroen Schouwenberg (ATLAS) IMAPP Radboud University Nijmegen / Nikhef On behalf of the ATLAS and CMS collaboration

WIMP searches at the LHC

Direct pair production -- mono-X

- Back-to-back pair production invisible in detector
- Visible particles needed to 'tag' event (from e.g. initial state radiation)
- Recoil of DM particles visible as momentum imbalance

Mediator searches -- resonant searches

- Search for mediator decaying into SM particles
- Visible as resonant peak in mass spectrum

Cascade decays

- Heavier particles are produced
- Decay into pairs of WIMPs and SM particles

Simplified Models

- Oftentimes used in Run 1
- Contact interactions, small number of degrees of freedom
- Model independent direct detection comparisons
- Valid if mediator is very heavy, invalid at large momentum transfer (Run 2)

- Includes mediator
- Relevant parameters only (masses/couplings)
- More signatures, mediator can decay back into SM particles
- Comparison direct detection model-dependent
- > Used in Run 2
- Caveat: perturbative unitary (arXiv:1510.02110)

- More complete models
- E.g.: MSSM, UED, Little
 Higgs

Examples Simplified Models

Mono+X searches

Mono+X searches: mono-jet

- $E_{T}^{miss} > 250 \text{ GeV}$
- At least 1 jet (|n| < 2.4) with $p_T > 250 \text{ GeV}$
- No leptons (e/µ)
- No more than 4 jets (|n| < 2.8) with $p_T > 30$ GeV
- $\Delta \phi$ (jet, E_T^{miss}) > 0.4

ATLAS-CONF-2017-060

- $E_{\pi}^{\text{miss}} > 250 \text{ GeV}$
- Mono-jet: at least 1 R=0.4 jet (|n|<2.5) with pT > 100 GeV
- Mono-V: at least 1 V-tagged R=0.8 jet (|n|<2.4) with pT
 > 250 GeV
- No leptons ($e/\mu/\gamma$)
- $\Delta \phi$ (jet, E_T^{miss}) > 0.5

Mono+X searches: mono-jet

Estimation of dominant SM backgrounds

1.	Z ($\rightarrow \nu\nu$) + jets	(56-72%
2.	W (\rightarrow lv) + jets	(38-23%
3.	Top pair / single top	(3-0.6%)

- Top pair / single top 3.
- 4. Diboson

[Events/GeV]

dN/dE

(2-5%)

State-of-the-art W/Z+jets estimation (arXiv:1705.04664)

- Carefully developed scheme to estimate uncertainties
- pQCD @ NNLO \succ
- EW corrections @ NLO \succ
- 2-loop EW Sudakov logarithms \succ

Simultaneous global fit to E_m^{miss} distributions in all control regions:

- \succ
- >
- Single *k*-factor for single top and top pair

Control regions

10

₹ 80 1.

Data

300 400 500 600 700 800 900 1000

Data 2015+201

Kith Standard Model

 $Z(\rightarrow vv) + iets$

W(→ lv) + jets

tt + single top

Dibosons

 $Z(\rightarrow II) + jets$

1000 1100 1200

E^{miss} [GeV]

ATLAS Preliminary

Z(→µµ) Control Region p₊(j1)>250 GeV, E₊^{miss}>250 GeV

√s = 13 TeV, 36.1 fb⁻¹

 $\mathbf{W} \rightarrow \mu \mathbf{v}$ ATLAS Preliminary

 $W(\rightarrow \mu v)$ Control Region p_(i1)>250 GeV, E_s^{miss}>250 GeV

√s = 13 TeV, 36.1 fb⁻¹

400 500 600 700 800 900

 $\mathbf{W}
ightarrow \mathbf{e} \mathbf{v}$

104

10

10

No

 $\mathbf{Z}/\gamma^* \rightarrow \mu\mu$

High Standard Model

 $Z(\rightarrow vv) + jets$

W(→ lv) + jets

Z(→ II) + jets

1200 1100

E_T^{miss} [GeV]

Top

📕 tt + single top

Dibosons

Mono+X searches: mono-jet

Collider Physics and the Cosmos

Jeroen Schouwenberg

Mono+X searches: mono-photon

Mono+X searches: mono-Z(→II)

Collider Physics and the Cosmos

Jeroen Schouwenberg

Resonant searches

1

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

Resonant / angular searches: di-jet

Resonant searches: di-lepton

Constraints (axial-)vector simplified models

Constraints (axial-)vector simplified models

Collider Physics and the Cosmos

Jeroen Schouwenberg

Mono-X & resonant searches v.s. direct detection constraints

Collider Physics and the Cosmos

Jeroen Schouwenberg

Dark Matter & SUSY

- Less simplified models
- Lightest neutralino can be a WIMP-like DM candidate (in R-parity conserving models)
- Extensive search programs at ATLAS and CMS for SUSY:
- EWK produced SUSY searches
- Searches for strongly produced stops and gluinos

[GeV]

Searches for longlived sparticles

Dark Matter + Heavy Flavour

300

Constraints from stop pair searches on color-neutral (pseudo-)scalar

- 1 lepton ATLAS-CONF-2017-037 (36.1 fb⁻¹)
- 0 lepton ATLAS-CONF-2016-077 (13.3 fb⁻¹)
- 2 lepton ATLAS-CONF-2016-076 (13.3 fb⁻¹)
- Parameters: $m(\phi)$, m(a), m_y , $g = g_y = g_{q}$

assuming $g = g_{\gamma} =$

Expected limit, g = 3.5 ($\pm 1 \sigma_{exp}$)

Observed limit, g = 3.5

ATLAS Preliminary

 $t\bar{t} + \phi$ production. $\phi \rightarrow \gamma \gamma$

300 [GeV]

250

200

150

100

50

[GeV] 300

n(X)

250

200

150

100

50

50 100 150 200 250

tt + a production, $a \rightarrow \chi \chi$

____ Expected limit, g = 3.5 (±1 σ_{ave}

Observed limit, g = 3.5

ATLAS Preliminary

(X)r

g

200000000

Collider Physics and the Cosmos

50 100 150 200 250 300

Constraints on (pseudo-) scalar simplified models

- Excl. (95% CL) cross sections for (pseudo-)scalar models as a function of the mediator mass
- Comparison of different E_m^{miss} based analysis
- Excluding g = 1 for m(a) < 420 GeV and $m(\phi) < 110$ GeV

CMS DM summary plots ATLAS DM summary plots

EWK SUSY searches v.s. direct detection constraints

- WIMP interpretations of **Run 1** EWK SUSY searches (21, 2τ , 31, 41)
- 5 dimensional scan of pMSSM (EWKH): M_1, M_2, μ , tan β, m_A
- Constraints from direct detection, relic DM density, precision flavour physics, Higgs mass, LEP searches
- High excl. sensitivity for LSP masses < 65 GeV
- Four (co-)annihilation enhanced regions
- Low sensitivity for heavy LSPs and compressed mass spectra (Wino/Higgsino-like neutralinos)
- Possible constraints from long-lived particles not included

JHEP09 (2016) 175

Neutralino composition of model points

Neutralino composition of model points

EWK SUSY searches v.s. direct detection constraints

- WIMP interpretations of **Run 1** EWK SUSY searches (21, 2τ , 31, 41)
- 5 dimensional scan of pMSSM (EWKH): M_1 , M_2 , μ , tan β , m_A
- Constraints from direct detection, relic DM density, precision flavour physics, Higgs mass, LEP searches
- High excl. sensitivity for LSP masses < 65 GeV
- Four (co-)annihilation enhanced regions
- Low sensitivity for heavy LSPs and compressed mass spectra
- Possible constraints from long-lived particles not included

Summary and outlook

>	Run 2 results constraining WIMP interpretation in terms of LHC DM WG's simplified models		
1	0	Mono-X searches excluding up to 1.8 TeV mediator masses and 0.7 TeV DM masses in (axial-)vector	
i i		mediator models	
i i	0	Excluding a coupling of $g = 1$ for pseudo scalar masses up to 420 GeV and scalar mediators up to 110 GeV	
i i	0	Additional constraints from resonant/angular searches on mediator masses	
	Impact of Run 1 EWK SUSY searches on WIMP DM evaluated		
i -	0	Limited sensitivity in compressed mass / coannihilation region \rightarrow Run 2 analysis	
i -	0	Plans for WIMP interpretation of Run 2 SUSY searches	
i		'	
Other models considered by LHC DM WG, not discussed in this overview			
	0	Flavour-Changing Neutral Current (FCNC) $\rightarrow E_{T}^{miss}$ + top / same sign top	
	0	2HDM Z' & baryonic Z' & 2HDM+pseudo scalar interpretation (Renjie Wang's talk)	
	Othe o o	er models considered by LHC DM WG, not discussed in this overview Flavour-Changing Neutral Current (FCNC) $\rightarrow E_T^{miss}$ + top / same sign top 2HDM Z' & baryonic Z' & 2HDM+pseudo scalar interpretation (Renjie Wang's talk)	

Backup slides

Constraints (axial-)vector simplified models (CMS)

EWK SUSY searches v.s. direct detection constraints

Dark Matter

WIMPs -- weakly interacting massive particles

Dark matter appears to be

- Non-luminous / neutral
- (M/L, rotational velocity, gravitational lensing)

- Non-baryonic
- Non-relativistic / cold
- Stable

- (no MACHOs, BBN, CMB)
- (structure formation)

WIMPs

- Particle produced in thermal equilibrium in early universe until "freeze-out"
- Self-annihilation cross section determines freeze-out point and relic density
- Should be compatible with observed DM abundance
- Electroweak particles of 0.1~1 TeV (e.g. neutralinos) fit this description -- "WIMP miracle"

Searching for WIMPs

Indirect detection (ID)

- Self-annihilation of DM
- Gamma-rays, antiprotons, positrons, neutrinos

Examples Simplified Models

LHC Dark Matter Working Group

- Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum (arXiv:1507.00966)
- Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter (arXiv:1603.04156)
- Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels (arXiv:1703.05703)

Mono+X searches: mono-Higgs

See Renjie Wang's talk: WIMP interpretation of Higgs searches

Dark Matter + Heavy Flavour

CMS-PAS-SUS-17-001

(Reinterpretation of direct stop pair search)

Color-neutral (pseudo-) scalar

- Parameters: m_{ϕ} , m_{a} , $m_{\chi} = 1$ GeV, $g = g_{\chi} = g_{\sigma} = 1$
- Excl. $\hat{g} = \hat{l}$ for $m_{\phi} < 100$ GeV and
- m_a < 70 GeV

