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3) I hear something I know already 
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I hope you will appreciate mine then..



Pierre Binetruy



Pierre Binetruy

Whatever is 
the length of your 

talk, never try to give 
more than 3 
messages



The first DM paper
Contrarily to the common belief, the first time the word « dark matter » is proposed in a 
scientific paper is not Oort in 1932 but Poincaré in 1906.  Indeed, Lord Kelvin in 1904 

had the genius to apply the kinetic theory of gas recently elaborated, to the galactic 
structures in his Baltimore lecture (molecular dynamics and the wave theory of light). 
Poincaré was impressed by this idea and computed the amount of stars in the Milky 

way necessary to explain the velocity of our sun one observes nowadays.
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Using the viral theorem, Poincaré computed first the density of stars around the sun, 
then supposing it constant, the radius of the sun to the galactic center, and then the 
number of stars in the Milky Way (~109) corresponding to the observations, thus 

discrediting the existence of dark matter, or dark stars.  
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The direct detection race



Perspectives

Julien Masbou, Moriond EW 2017, 23rd March 2017 30

PandaX-II	continue	data	taking	with	~400kg

XENON1T	is	analyzing	Science	Run	0	!

And	other	analysis	
already	published	or	
to	come:
- Axions /	ALP
- 2n double	electron	

capture	on	124Xe
- Low	mass
- Effective	field	

theories
- Calibration
- …
- Stay	tuned	!

XENONnT	&	LZ	construction	is	starting…

XENON 1T (2017); arXiv:1705.06655 + PandaX-II (2017); arXiv:1708.06917  
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The indirect detection status



Latest result by FERMI in May: nothing
   Aldo Morselli,  INFN Roma Tor Vergata                                        DSU 2016                                       28 July 2016 	 17	

DM limit improvement estimate in 15 years with the composite  
likelihood approach (2008- 2023) 

15 Years, 45 dwarfs 

E. Charles et.al, Phy Rep. 636 2016, arXiv:1605.02016  



Conclusion
The non-observation of any signal at direct and indirect 

detection experiments constrains the interaction cross section 
DM-SM to values below σ < 10-46 cm2 ~ 10-18 GeV-2  

What do we expect for a WIMP*:

*Not valid if one exchanges the Higgs or a Z’
p

χ

p

Z

χ

�EW (� p ! � p) ' G2
Fm

2
�

' g22
M4

Z

m2
� ' 10�9

⇣ m�

1 GeV

⌘2



Perspectives

Julien Masbou, Moriond EW 2017, 23rd March 2017 30

PandaX-II	continue	data	taking	with	~400kg

XENON1T	is	analyzing	Science	Run	0	!

And	other	analysis	
already	published	or	
to	come:
- Axions /	ALP
- 2n double	electron	

capture	on	124Xe
- Low	mass
- Effective	field	

theories
- Calibration
- …
- Stay	tuned	!

XENONnT	&	LZ	construction	is	starting…

WIMP 
(GF)



The WIMP miracle !

Why are we so attached to 
WIMP-like particle?
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Taking g⇢ ' 100 (see Fig.(2.5)), xf ⇠ 20 (Eq.(2.114)) and the value of ⇢0
c of Eq.(2.4) we can

write22

⌦Ah2 ' 0.17
h�vi

(1.2⇥10�26 cm3 s�1)

(2.105)

This is oftenly called ”WIMP miracle”. Indeed, we see that for a typical electroweak cross
section the relic abundance ⌦A reach 0.17/h2 ' 0.3 which is the measured value of the
matter content in the Universe. Some corrections has to be taken into account: the velocity
at decoupling time is not c, the value of xf should be computed iteratively (see next section
for a more complete calculation) and the dependance on the e↵ective degree of freedom or
mass of dark matter should be looked carefully. However, this approximation is surprisingly
quite accurate in any models with s-wave dominated annihilation process.

General solution

Now that we understood how to compute the relic abundance in a specific case, we can now
apply the same method in the generic case, developing �v = a + bv2, v being the relative
velocity between the two annihilating particles23. Notice that in the In the he Boltzmann
equation, it is not �v which enters in the definition of � in Eq.(2.98) but the thermal averaged
cross section h�vi. At the temperature of interest at freeze out (xf = m/Tf ⇡ 20 as we will
compute more in detail later on) we can consider that the annihilating particles ”1” and
”2” is non-relativistic and thus their Boltzmann distributions (2.23) can be approximate by
fi ' e�Ei/T ' e�(m+p2

i /2m)/T . One thus can write
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We can thus deduce ha+bv2i = a+bhv2i with in the non-relativistic limit v = |p2�p1|/m We
then have v2 = (|p1|2 + |p2|2 � 2p1p2 cos ✓)/m2, ✓ being the angle between the two colliding
particles. Noticing by symmetry that hcos ✓i = 0 and h|p1|2i = h|p2|2i, using Eq.(B.39) we
then can write24
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giving

22h�vi has been normalized to a typical electroweak cross section for a 100 GeV particle: 10�9 GeV�2 =
1.2 ⇥ 10�26cm3 s�1, Eq.(2.99).

23We define the relative velocity between two particles i and j by vij =
p
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, with pi and Ei

being four-momentum and energy of particle i.
24See the section (2.5.1) for another way to lead the integration for the mean h�vi.
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The Boltzmann equation 
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FIG. 1. Comoving number density evolution as a function of the ratio m�/T in the context of

the thermal freeze-out. Notice that the size of the annihilation cross section determines the DM

abundance since ⌦DM / 1/h�vi.

remarkable is the fact that independent theoretical reasons, such as naturalness and the

hierarchy problem, indicate that it is plausible to expect new physics at E
EW

; Moreover,

weak interactions are the only gauge interactions in the Standard Model that a DM

particle might interact through.

The WIMP paradigm is thus an attractive solution of the DM issues since the DM

abundance is set to the observed value by a new physics scale that is well motivated,

and by interactions mediated by one of the Standard Model gauge interactions. As a

result, concrete realizations of WIMP models had been developed in di↵erent Beyond

the Standard Model (BSM) frameworks, accessible to several di↵erent search strategies,

as reviewed in the next sections.

Operationally, all the information about the particle physics framework connected to

a specific DM particle candidate is contained in the thermally pair averaged cross section
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<σv> = 1.2 x 10-26 cm3 s-1 
= 10-9 GeV-2  ~  GF2
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as reviewed in the next sections.
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Let suppose the dark matter  
was not 

in thermal equilibrium with the visible 
sector

What is happening if one 
releases one hypothesis?

In other words, both sector are secluded or by 
tiny couplings (of the order of yν)  

or by massive particles  
(of the order of intermediate scale, 1010 GeV)
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Figure 1: RG evolution of the Higgs self coupling, for di↵erent Higgs masses for the central value of mt

and ↵s, as well as for ±2� variations of mt (dashed lines) and ↵s (dotted lines). For negative values

of �, the life-time of the SM vacuum due to quantum tunneling at zero temperature is longer than the

age of the Universe as long as � remains above the region shaded in red, which takes into account the

finite corrections to the e↵ective bounce action renormalised at the same scale as � (see [11] for more

details).

2 Stability and metastability bounds

We first present the analysis on the Higgs instability region at zero temperature. We are

concerned with large field field values and therefore it is adequate to neglect the Higgs mass

term and to approximate the potential of the real field h contained in the Higgs doublet H =

(0, v + h/
p
2) as

V = �(|H|2 � v2)2 ⇡ �

4
h4 . (1)

Here v = 174 GeV and the physical Higgs mass is mh = 2v
p
� at tree level. Our study here

follows previous state-of-the-art analyses (see in particular [9, 11, 12]). We assume negligible

corrections to the Higgs e↵ective potential from physics beyond the SM up to energy scales of

the order of the Planck mass. We include two-loop renormalization-group (RG) equations for all

the SM couplings, and all the known finite one and two-loop corrections in the relations between

3

Higgs quartic coupling 
µ ~ 1010 GeV

Motivations for 
an intermediate 

mass scale 

Leptogenesis/baryogenesis 
µ ~ 1010 GeV

See-saw mechanism with νR: 
mν=0.1 eV => MR ~ 1010 GeV

« Unification is one thing, and stability 
 [in Northeast Asia] is another thing. »  
Kim Dae Jung, president of South Korea

2

with

L⌫ = �(
1

2
MR +

ihp
2
A)⌫̄cR⌫R � yLRp

2
⌫̄LH⌫R + h.c. (2)

and

LA = �µ2

A

2
A2 � �A

4
A4

��HA

4
A2H2 +

1

2
@µA@

µA (3)

where H represents the real part of the SM Higgs field.
Here, we have simply assumed that the right handed neu-
trino has a Majorana mass, MR. We will explore a dy-
namical version of this extension in section IV.

The scalar A is massive and couples to the SM Higgs,
but does not itself get a vacuum expectation value (vev).
While there is no natural value for the mass scaleMR, de-
manding gauge coupling unification in di↵erent schemes
of SO(10) breaking naturally leads to intermediate scales
between 106 � 1014 GeV [14, 15]. It seems then rea-
sonable to expect that MR will lie in this energy range if
one embeds our model in a framework where one imposes
unification of the gauge couplings. However, we will at-
tempt to stay as general as possible1. In the context of
very light scalar A, of order a keV (though not consid-
ered in the present work), some authors have looked at
the e↵ect of a decaying A on the CMB [17] and more
recently the subleading e↵ect of decays to photons [18].

B. The see–saw mechanism

Once symmetry breaking is realized, the mass states in
the neutrino sector are mixed in the current eigenstate
basis. Diagonalization of the mass matrix leads to the
well known see–saw mechanism. We can write the mass
term

L⌫ = �1

2
n̄ M n, with n =

✓
⌫L + ⌫cL
⌫R + ⌫cR

◆
=

✓
n
1

n
2

◆

and

M =

✓
0 mD

mD MR

◆
, (4)

with mD = yLRvH/
p
2 (vH = 246 GeV being the Higgs

vev). M, being a complex symmetric matrix, can be
diagonalized with the help of one unitary matrix U, M =
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A look at the Lagrangian (8) implies some obvious phe-
nomenological consequences of the coupling of the scalar
to the neutrino sector. First of all, the field N
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is not
stable through its decay N
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and cannot be the
dark matter candidate as in the standard see-saw mech-
anism. Secondly, the scalar A is not stable, and its dom-
inant decay mode for MA . 8 TeV is A ! N
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, as
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is of the order of MR and is for now assumed
to be heavier than A. When we include A as part of a
dynamical mechanism for generating the mass MR, we
will see that the mass of A may be highly suppressed rel-
ative to MR, justifying a posteriori our assumption that
MA < MN1 , Moreover, because the coupling of A to N
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2 Notice that N1 and N2 are Majorana like particles.
3 We neglect the flavor structure of the SM neutrino sector as it
does not a↵ect our main conclusions.
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where H represents the real part of the SM Higgs field.
Here, we have simply assumed that the right handed neu-
trino has a Majorana mass, MR. We will explore a dy-
namical version of this extension in section IV.

The scalar A is massive and couples to the SM Higgs,
but does not itself get a vacuum expectation value (vev).
While there is no natural value for the mass scaleMR, de-
manding gauge coupling unification in di↵erent schemes
of SO(10) breaking naturally leads to intermediate scales
between 106 � 1014 GeV [14, 15]. It seems then rea-
sonable to expect that MR will lie in this energy range if
one embeds our model in a framework where one imposes
unification of the gauge couplings. However, we will at-
tempt to stay as general as possible1. In the context of
very light scalar A, of order a keV (though not consid-
ered in the present work), some authors have looked at
the e↵ect of a decaying A on the CMB [17] and more
recently the subleading e↵ect of decays to photons [18].
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The jungle of freeze-in 
processes



The dependence on the temperature of the rate 
R(T) is completely model-dependent and 

generates  
very different results.
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The main production is at late time (low temperature) so 
Maxwell Boltzman approximation is valid (eEi/T -1) ~ eEi/T

T < Mdm

Freeze-in (FIMP)

ψ
ψ

ψ
ψ

ψ
ψ

dark matter 
density

thermal bath 
density



this correspond to the exchange of a light mediator, coupling very 
feebly with the SM: 
M = �

s

p2 �m2
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Naturalness?

How natural is a ~10-11 coupling? 
Can we find a setup where FIMP is natural? 

and discuss about a « FIMP miracle » paradigm 
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We transformed a « non natural » 
tiny 10-11 coupling into a natural 

intermediate mass 1010 GeV, 
appearing in any SO(10), E6.. 

unification scheme . 2

introduce SU(5) singlets as potential dark matter can-
didates. The simplest extension in which singlets are
automatically incorporated is that of SO(10). There
are, however, many ways to break SO(10) down to
SU(3) × SU(2) × U(1). This may happen in multiple
stages, but here we are mainly concerned with the break-
ing of an additional U(1) (or SU(2)) factor at an inter-
mediate scale Mint. Here, we will not go into the details
of the breaking, but take some specific, well-known ex-
amples when needed. Assuming gauge coupling unifica-
tion, the GUT mass scale, MGUT , and the intermediate
scaleMint can be predicted from the low–energy coupling
constants with the use of the renormalisation group equa-
tion,

µ
dαi

dµ
= −biα

2
i . (1)

The evolution of the three running coupling constants
α1, α2 and α3 from MZ to the intermediate scale Mint is
obtained from Eq.(1) using the β–functions of the Stan-
dard Model: b1,2,3 = (−41/10, 19/6, 7)/2π. We note
that the gauge coupling, gD, associated with U ′(1) is

related at the GUT scale to g1 of U(1)Y by gD =
√

5

3
g1

and αi = g2i /4π. Between Mint and MGUT (both to
be determined) the running coupling constants are again
obtained from Eq.(1), now using β–functions associated
with the intermediate scale gauge group, which we will
label b̃i. The matching condition between the two differ-
ent runnings at Mint can be written:

(α0
i )

−1 + bi(tint − tZ) = α−1 + b̃i(tint − tGUT ) (2)

with tint = lnMint, tZ = lnMZ , tGUT = lnMGUT , α0
i =

αi(MZ) which is measured, and α = αi(MGUT ) is the
unified coupling constant at the GUT scale. This gives
us a system of 3 equations, for 3 unknown parameters:
α, tint, tGUT . Solving the Eq.(2), we obtain

tint =
1

b32 − b21

[

(α0
3)

−1 − (α0
2)

−1

b̃2 − b̃3
−

(α0
2)

−1 − (α0
1)

−1

b̃1 − b̃2

+(b32 − b21)tZ

]

, (3)

where bij ≡ (bi − bj)/(b̃i − b̃j).

To be concrete, we will consider a specific example to
derive numerical results for the case of the breaking of
SO(10): SO(10) → SU(4) × SU(2)L × U(1)R →Mint

SU(3)C × SU(2)L × U(1)Y →MEW
SU(3)C × U(1)em.

When the intermediate symmetry is broken by a 16
of Higgs bosons, the b̃i functions are given by b̃1,2,3 =
(5/2, 19/6, 63/6)/2π [5], where the computation was done
at 1-loop level. For this case, we obtain Mint = 7.8×1012

GeV and MGUT = 1.3 × 1015 GeV using (α0
1,2,3)

−1 ≃
(59.47, 29.81, 8.45). The evolution of the gauge couplings
for this example is shown in Fig. 1.
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FIG. 1. Example of the running of the SM gauge couplings for
SO(10) → SU(4)× SU(2)L × U(1)R.

III. HEAVY Z’ AND DARK MATTER

It has been shown in [8] and [9] that a stable dark
matter candidate may arise in SO(10) models from an un-
broken ZB−L

2 symmetry. If the dark matter is a fermion
(scalar) it should belong to a 3(B − L) even (odd) rep-
resentation of SO(10). For example, the 126 or 144
contains a stable component χ which is neutral under
the SM, yet charged under the extra U(1). As we have
seen, to explain the unification of the gauge couplings
in SO(10) one needs an intermediate scale Mint of or-
der 1010 GeV. The dark matter candidate, χ, can be
produced in the early Universe through s-channel Z ′ ex-
change: SM SM → Z ′ → χ χ. Since MZ′ = 5√

3
gD Mint,

the exchanged particle is so heavy (above the reheating
scale, as we show below) that the DM production rate is
very slow, and we can neglect the self annihilation pro-
cess in the Boltzmann equation. Thus while the dark
matter is produced from the thermal bath, we have a
non–equilibrium production mechanism for dark matter,
hence NETDM.

The evolution of the yield of χ, Yχ = nχ/s follows

dYχ

dx
=

√

π

45

gs√
gρ

mχMP
⟨σv⟩
x2

Y 2
eq (4)

where nχ is the number density of χ and s the entropy
of the universe, gρ, gs are the effective degrees of freedom
for energy density and entropy, respectively; x = mχ/T ,
mχ being the dark matter mass, MP the Planck mass
and

⟨σv⟩n2
eq ≈

κ2 T

2048π6

∫ ∞

4m2
χ

dsdΩ
√

s− 4m2
χ|M|2K1(

√
s/T ) .

(5)
Here neq is the equilibrium number density of the initial
state (SM) particles; and K1 is the first order modified
Bessel function and κ the effective degrees of freedom of
incoming particles.
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introduce SU(5) singlets as potential dark matter can-
didates. The simplest extension in which singlets are
automatically incorporated is that of SO(10). There
are, however, many ways to break SO(10) down to
SU(3) × SU(2) × U(1). This may happen in multiple
stages, but here we are mainly concerned with the break-
ing of an additional U(1) (or SU(2)) factor at an inter-
mediate scale Mint. Here, we will not go into the details
of the breaking, but take some specific, well-known ex-
amples when needed. Assuming gauge coupling unifica-
tion, the GUT mass scale, MGUT , and the intermediate
scaleMint can be predicted from the low–energy coupling
constants with the use of the renormalisation group equa-
tion,

µ
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= −biα
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The evolution of the three running coupling constants
α1, α2 and α3 from MZ to the intermediate scale Mint is
obtained from Eq.(1) using the β–functions of the Stan-
dard Model: b1,2,3 = (−41/10, 19/6, 7)/2π. We note
that the gauge coupling, gD, associated with U ′(1) is

related at the GUT scale to g1 of U(1)Y by gD =
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and αi = g2i /4π. Between Mint and MGUT (both to
be determined) the running coupling constants are again
obtained from Eq.(1), now using β–functions associated
with the intermediate scale gauge group, which we will
label b̃i. The matching condition between the two differ-
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where bij ≡ (bi − bj)/(b̃i − b̃j).

To be concrete, we will consider a specific example to
derive numerical results for the case of the breaking of
SO(10): SO(10) → SU(4) × SU(2)L × U(1)R →Mint

SU(3)C × SU(2)L × U(1)Y →MEW
SU(3)C × U(1)em.

When the intermediate symmetry is broken by a 16
of Higgs bosons, the b̃i functions are given by b̃1,2,3 =
(5/2, 19/6, 63/6)/2π [5], where the computation was done
at 1-loop level. For this case, we obtain Mint = 7.8×1012

GeV and MGUT = 1.3 × 1015 GeV using (α0
1,2,3)

−1 ≃
(59.47, 29.81, 8.45). The evolution of the gauge couplings
for this example is shown in Fig. 1.
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III. HEAVY Z’ AND DARK MATTER

It has been shown in [8] and [9] that a stable dark
matter candidate may arise in SO(10) models from an un-
broken ZB−L

2 symmetry. If the dark matter is a fermion
(scalar) it should belong to a 3(B − L) even (odd) rep-
resentation of SO(10). For example, the 126 or 144
contains a stable component χ which is neutral under
the SM, yet charged under the extra U(1). As we have
seen, to explain the unification of the gauge couplings
in SO(10) one needs an intermediate scale Mint of or-
der 1010 GeV. The dark matter candidate, χ, can be
produced in the early Universe through s-channel Z ′ ex-
change: SM SM → Z ′ → χ χ. Since MZ′ = 5√

3
gD Mint,

the exchanged particle is so heavy (above the reheating
scale, as we show below) that the DM production rate is
very slow, and we can neglect the self annihilation pro-
cess in the Boltzmann equation. Thus while the dark
matter is produced from the thermal bath, we have a
non–equilibrium production mechanism for dark matter,
hence NETDM.

The evolution of the yield of χ, Yχ = nχ/s follows

dYχ
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=

√

π

45

gs√
gρ

mχMP
⟨σv⟩
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Y 2
eq (4)

where nχ is the number density of χ and s the entropy
of the universe, gρ, gs are the effective degrees of freedom
for energy density and entropy, respectively; x = mχ/T ,
mχ being the dark matter mass, MP the Planck mass
and

⟨σv⟩n2
eq ≈

κ2 T

2048π6

∫ ∞

4m2
χ

dsdΩ
√

s− 4m2
χ|M|2K1(

√
s/T ) .

(5)
Here neq is the equilibrium number density of the initial
state (SM) particles; and K1 is the first order modified
Bessel function and κ the effective degrees of freedom of
incoming particles.
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automatically incorporated is that of SO(10). There
are, however, many ways to break SO(10) down to
SU(3) × SU(2) × U(1). This may happen in multiple
stages, but here we are mainly concerned with the break-
ing of an additional U(1) (or SU(2)) factor at an inter-
mediate scale Mint. Here, we will not go into the details
of the breaking, but take some specific, well-known ex-
amples when needed. Assuming gauge coupling unifica-
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scaleMint can be predicted from the low–energy coupling
constants with the use of the renormalisation group equa-
tion,
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The evolution of the three running coupling constants
α1, α2 and α3 from MZ to the intermediate scale Mint is
obtained from Eq.(1) using the β–functions of the Stan-
dard Model: b1,2,3 = (−41/10, 19/6, 7)/2π. We note
that the gauge coupling, gD, associated with U ′(1) is

related at the GUT scale to g1 of U(1)Y by gD =
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and αi = g2i /4π. Between Mint and MGUT (both to
be determined) the running coupling constants are again
obtained from Eq.(1), now using β–functions associated
with the intermediate scale gauge group, which we will
label b̃i. The matching condition between the two differ-
ent runnings at Mint can be written:

(α0
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−1 + bi(tint − tZ) = α−1 + b̃i(tint − tGUT ) (2)

with tint = lnMint, tZ = lnMZ , tGUT = lnMGUT , α0
i =

αi(MZ) which is measured, and α = αi(MGUT ) is the
unified coupling constant at the GUT scale. This gives
us a system of 3 equations, for 3 unknown parameters:
α, tint, tGUT . Solving the Eq.(2), we obtain
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To be concrete, we will consider a specific example to
derive numerical results for the case of the breaking of
SO(10): SO(10) → SU(4) × SU(2)L × U(1)R →Mint

SU(3)C × SU(2)L × U(1)Y →MEW
SU(3)C × U(1)em.

When the intermediate symmetry is broken by a 16
of Higgs bosons, the b̃i functions are given by b̃1,2,3 =
(5/2, 19/6, 63/6)/2π [5], where the computation was done
at 1-loop level. For this case, we obtain Mint = 7.8×1012

GeV and MGUT = 1.3 × 1015 GeV using (α0
1,2,3)

−1 ≃
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FIG. 1. Example of the running of the SM gauge couplings for
SO(10) → SU(4)× SU(2)L × U(1)R.
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It has been shown in [8] and [9] that a stable dark
matter candidate may arise in SO(10) models from an un-
broken ZB−L

2 symmetry. If the dark matter is a fermion
(scalar) it should belong to a 3(B − L) even (odd) rep-
resentation of SO(10). For example, the 126 or 144
contains a stable component χ which is neutral under
the SM, yet charged under the extra U(1). As we have
seen, to explain the unification of the gauge couplings
in SO(10) one needs an intermediate scale Mint of or-
der 1010 GeV. The dark matter candidate, χ, can be
produced in the early Universe through s-channel Z ′ ex-
change: SM SM → Z ′ → χ χ. Since MZ′ = 5√

3
gD Mint,

the exchanged particle is so heavy (above the reheating
scale, as we show below) that the DM production rate is
very slow, and we can neglect the self annihilation pro-
cess in the Boltzmann equation. Thus while the dark
matter is produced from the thermal bath, we have a
non–equilibrium production mechanism for dark matter,
hence NETDM.

The evolution of the yield of χ, Yχ = nχ/s follows

dYχ

dx
=

√

π

45

gs√
gρ

mχMP
⟨σv⟩
x2

Y 2
eq (4)

where nχ is the number density of χ and s the entropy
of the universe, gρ, gs are the effective degrees of freedom
for energy density and entropy, respectively; x = mχ/T ,
mχ being the dark matter mass, MP the Planck mass
and

⟨σv⟩n2
eq ≈

κ2 T

2048π6
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4m2
χ

dsdΩ
√

s− 4m2
χ|M|2K1(

√
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(5)
Here neq is the equilibrium number density of the initial
state (SM) particles; and K1 is the first order modified
Bessel function and κ the effective degrees of freedom of
incoming particles.
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The SO(10) spinor in the 16 representation naturally embed a right handed neutrino νR. The 
breaking of SO(10) into an intermediate group, at an intermediate (~1010 GeV) scale provides then 

the best framework for a natural see-saw mechanism (natural means yν ~ 1)
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As a free bonus, one also obtain unification at GUT scale!

3

Since the production of DM occurs mainly at TRH ≫
mχ, we can neglect mχ in estimating the amplitude for
production. In this case, assuming that both χ and the
initial state, f , are fermions, we obtain

|Mχ|2 ≈
g4Dq2χq

2
fN

f
c

(s−M2
Z′)2

[

s2(1 + cos2 θ)

]

(6)

where θ is the angle between the two outgoing DM par-
ticles, Nf

c is number of colors of the particle f , and qi is
the charge of the particle i under U ′(1) with a gauge cou-
pling gD. Here, q is an effective coupling which will ulti-
mately depend on the specific intermediate gauge group
chosen. With the approximations mχ,mf ≪

√
s and

MZ′ ≫ TRH , and after integration over θ and sum over
all incoming SM fermions in the thermal bath, we obtain

dYχ

dx
=

∑

f

g4Dq2χq
2
fN

f
c

x4

(

45

π

)3/2 1

gs
√
gρ

m3
χMP

M4
Z′

κ2
f

2π7
(7)

Solving Eq.(7) between the reheating temperature and
a temperature T gives

Yχ(T ) =
∑

f

q2χq
2
fN

f
c

(

45

gsπ

)3/2 MP

M4
int

3 κ2
f

1250π7

[

T 3
RH −T 3

]

(8)
where we replaced the mass of the Z ′ by MZ′ =
5√
3
gDMint and made the approximation gρ = gs. We

note that the effect of Z ′ decay on the abundance of χ is
completely negligible due to its Boltzmann suppression
in the Universe: the Z ′ is largely decoupled from the
thermal bath already at the time of reheating.

We note several interesting features from Eq.(8). First
of all, the number density of the dark matter does not de-
pend at all on the strength of the U ′(1) coupling gD but
rather on the intermediate scale (that is determined by
requiring gauge coupling unification as we demonstrated
in the previous section). Second, the production of dark
matter is mainly achieved at reheating. Thirdly, once
the relic abundance is obtained, the number density per
comoving frame (Y ) is fixed, never having reached ther-
mal equilibrium with the bath. And finally, upon apply-
ing the WMAP determination for the DM abundance,
we obtain a tight constraint on TRH once the pattern of
SO(10) breaking is known (and thus Mint fixed).

Thus, given a scheme of SO(10) breaking we can deter-
mine the reheating temperature very precisely from the
relic abundance constraint in the Universe. From

Y0 =
Ω

mχ

ρcrit0

s0
=

(

Ωh2

0.1

)

13.5

16π3

H2
0M

2
P

g0sT
3
0mχ

(9)

where H is the Hubble parameter and the index “0” cor-
responds to present-day values. Combining Eq.(8) and
Eq.(9) we find

T 3
RH =

5625 π4

16q2χ
∑

f κ
2
fq

2
fN

f
c

(

Ωh2

0.1

)

(gsπ

45

)3/2 MPH2
0

T 3
0mχg0s

M4
int

(10)
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FIG. 2. Reheating temperature as function of the SO(10) breaking
scale for different mass of dark matter : 10, 100 and 1000 GeV

TABLE I. Possible breaking schemes of SO(10).

SO(10) → G× [Higgs] Mint(GeV) TRH(GeV)

A 4× 2L × 1R [16] 1012.9 3× 109

A 4× 2L × 1R [126] 1011.8 1× 108

B 4× 2L × 2R [16] 1014.4 3× 1011

B 4× 2L × 2R [126] 1013.8 5× 1010

C 3C × 2L × 2R × 1B−L [16] 1010.6 3× 106

C 3C × 2L × 2R × 1B−L [126] 108.6 6× 103

or

TRH ≃ 2×108GeV

(

Ωh2

0.1

)1/3 (
100GeV

mχ

)1/3 ( Mint

1012GeV

)4/3

(11)
where we took for illustration q2χ

∑

f κ
2
fq

2
fN

f
c = 1. We

show in Fig.(2) the evolution of TRH as function of Mint

for different values of the dark matter mass mχ. We can
thus determine the reheating temperature predicted by
different symmetry breaking patterns1. We summarize
them in Table I, where the values of TRH are given for
mχ = 100GeV.

Finally, we must specify the identity of the NETDM
candidate in the context described above. The DM can
be in the 126 or 144 representations of SO(10). There
are several mechanisms to render the DM mass light [9],
one of which is through a fine-tuning of the SO(10) cou-
plings contributing with different Clebsh-Gordan coeffi-
cients (see for example, [10] and [11]) to the masses of
the various 126 components. For example, for the group

1 We note that the value obtained for the intermediate scale in
different SO(10) breaking schemes is not modified by the pres-
ence of a dark matter particle which is not charged under the
SM gauge group.

of DM spoils the desired unification of the gauge couplings.
In the following, we begin by discussing the origin of a discrete symmetry in a variety

of models with di↵erent intermediate gauge groups and the possible representations for
DM and the splitting of the DM multiplet. In section 3, we first demonstrate gauge
coupling unification in these models (without DM) and show the e↵ect of including the
two-loop functions in the RGE running and one-loop threshold e↵ects. We next consider
the question of gauge coupling unification in the presence of a DM multiplet. In section 4,
we discuss the criteria which select only two possible models in a specific example of the
NETDM scenario [4]. The phenomenological aspects of these models including neutrino
masses, proton decay, the production of DM through reheating after inflation will be
discussed in section 5. We also consider the case where the DM field is a singlet under
the intermediate gauge groups in section 6. Our conclusions will be given in section 7.

2 Candidates

We assume that the SO(10) gauge group is spontaneously broken to an intermediate
subgroup Gint at the GUT scale MGUT, and subsequently broken to the SM gauge group
GSM at an intermediate scale Mint:

SO(10) �! Gint �! GSM ⌦ ZN , (1)

with GSM ⌘ SU(3)C ⌦ SU(2)L ⌦ U(1)Y . The Higgs multiplets which break SO(10) and
Gint are called R1 and R2, respectively. In addition, we require that there is a remnant
discrete symmetry ZN that is capable of rendering a SM singlet field to be stable and
hence account for the DM in the Universe [9,10]. The mechanism for ensuring a remnant
ZN is discussed in detail in Sec. 2.1, and the possible intermediate gauge groups that
accommodate the condition are summarized in Sec. 2.2.

If moreover the DM couplings are such that the candidate is not in thermal equilibrium
at early times, as in the NETDM scenario, we obtain stringent constraints on the model
structure. We will consider this subject in Sec. 2.3.

2.1 Discrete symmetry in SO(10)

SO(10) is a rank-five group and has an extra U(1) symmetry beyond U(1)Y in the SM
gauge group. The U(1) charge assignment for fields in an SO(10) multiplet is determined
uniquely up to an overall factor. We define the normalization factor such that all of the
fields �i in a given model have integer charges Qi with the minimum non-zero value of
|Qi| is equal to +1. Now, let us suppose that a Higgs field �H has a non-zero charge QH .
Then, if QH = 0 (mod. N) with N � 2 an integer, the U(1) symmetry is broken to a
ZN symmetry after the Higgs field obtains a vacuum expectation value (VEV) [6–8]. One
can easily show this by noting that both the Lagrangian and the VEV h�Hi are invariant
under the following transformations:

�i ! exp

✓
iQi

N

◆
�i , h�Hi ! exp

✓
iQH

N

◆
h�Hi = h�Hi . (2)

2

LY =
g

2
16L.16L.10+

h

2
16L.16L.126

MR = hh126i

Example : SO(10) and νR

Y. M., K.A. Olive, J. Quevillon and B. Zaldivar; Phys.Rev.Lett. 110 (2013) [arXiv:1302.4438] 
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those of the SM. In particular for a Higgs boson
of 126 GeV, it leads to a vanishing of the quartic
coupling at scales of order 2⇥1010 GeV to 3⇥1011

GeV depending on the assumption on the degener-
acy of super particles soft masses, the exact value
of the top mass and the strong interaction gauge
coupling (see for instance [21]), so we take:

MSUSY . {1010 � 1011}GeV (4)

Allowed supersymmetry breaking scales beyond
this value can be achieved by a modification of the
RGEs through introduction of new light particles.
We shall not discuss these cases in details here, the
generalisation being straightforward.

2. The cosmological parameter:

The cosmological history described here starts af-
ter the Universe is reheated. Some assumptions
are made for this epoch: (i) The reheating temper-
ature TRH is small enough to not produce super-
partners of the Standard Model particles, thereof
TRH . MSUSY (ii) in the reheating process gold-
stinos are scarcely produced. This second condi-
tion is a constraint of the nature of the inflaton,
its scalar potential and the branching ratios in its
decay. A discussion of the production of goldstinos
at the end of inflation can be found for example in
[17] .

We consider that the dark matter gravitino inter-
actions are well approximated by the helicity ±1/2
components. This is true in virtue of the equiva-
lence theorem if the energy E of the gravitinos is
much bigger than their mass. Approximating the
former by the temperature T of the SM particles
in equilibrium leads to the mass hierarchies that
defines the self-consistency of our setup:

m3/2 ⌧ TRH . MSUSY .
p
F . ⇤mess ⌧ MPl

(5)

Note that our bound on the reheating temperature
is compatible with thermal leptogenesis. In fact,
a lower bound of the reheating temperature is ob-
tained when the latter is identified with the mass of
the lightest right handed neutrino. It is at most of
order 109 GeV but can be lower depending on as-
sumptions on the neutrinos initial abundance and
mass hierarchies (see for example [22]).

III. GOLDSTINO DARK MATTER

A. E↵ective goldstino interactions

Under the assumption m3/2 ⌧ E ⇠ T discussed
above, the gravitino interactions with SM fields are dom-
inated by the helicity ±1/2 components. Moreover, for

E ⇠ T . TRH . MSUSY , these are described by a non-
linear realization of supersymmetry in all the obervable
SM sector, since we will consider all superpartners to be
heavy and therefore not accessible in the thermal bath
after reheating1. The leading order goldstino-matter in-
teractions can be divided into two types of contributions:
universal [25] and non-universal ones [26, 27, 30]. We will
restrict our analysis to the former, s that corresponds to
the minimal couplings expected from the low energy the-
orem2. Their construction starts by defining a ”vierbein”
[28]

eam = �am � i

2F 2
@mG�aḠ+

i

2F 2
G�a@mḠ , (6)

that under a supersymmetry transformation of parame-
ter ✏ transform as a di↵eomorphism in general relativity

�eam = @m⇠
nean + ⇠n@ne

a
m , (7)

where ⇠n = i
F ena(✏�

aḠ�G�a✏̄). The couplings to matter
in this original geometrical prescription follows therefore
the standard coupling to matter of a metric tensor built
out from the vierbein gmn = ⌘abeamebn. The correspond-
ing goldstino-matter e↵ective operators are consequently
of dimension eight and take the form:

L2G =
i

2F 2
(G�µ@⌫Ḡ� @⌫G�µḠ)Tµ⌫ , (8)

where G is the goldstino field and Tµ⌫ is the energy mo-
mentum tensor of the SM matter fields. The energy mo-
mentum tensor is given by:

Tµ⌫ = � 2p
�g

�S̃

�gµ⌫
|g

µ⌫

=⌘
µ⌫

= +⌘µ⌫L̃
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X
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iDµ ̄a�̄⌫ a �DµHD⌫H
† +

X

SMgroup

1

2
F a⇠
µ F a

⌫⇠

+(µ $ ⌫) (9)

in which S̃ =
R
d4x

p
�gL̃. The scalar potential and mass

terms for scalar and fermions appear in the first term.
After the contraction between ⌘µ⌫ and G�µ@⌫Ḡ, the on-
shell production of two goldstinos give a cross section
proportional tom2

3/2. Asm3/2 is much smaller than TRH ,
these contributions can be neglected, as we will see later.

1 Reheating temperature below superpartner masses was proposed
and investigated in particular in [23] and [24]. The novelty in our
case is that we consider high-scale supersymmetry, so our reheat-
ing temperature is much higher compared to these references.

2 As we will see, our result will not depend drastically on this
hypothesis

3
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of the top mass and the strong interaction gauge
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MSUSY . {1010 � 1011}GeV (4)

Allowed supersymmetry breaking scales beyond
this value can be achieved by a modification of the
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inated by the helicity ±1/2 components. Moreover, for

E ⇠ T . TRH . MSUSY , these are described by a non-
linear realization of supersymmetry in all the obervable
SM sector, since we will consider all superpartners to be
heavy and therefore not accessible in the thermal bath
after reheating1. The leading order goldstino-matter in-
teractions can be divided into two types of contributions:
universal [25] and non-universal ones [26, 27, 30]. We will
restrict our analysis to the former, s that corresponds to
the minimal couplings expected from the low energy the-
orem2. Their construction starts by defining a ”vierbein”
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p
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terms for scalar and fermions appear in the first term.
After the contraction between ⌘µ⌫ and G�µ@⌫Ḡ, the on-
shell production of two goldstinos give a cross section
proportional tom2

3/2. Asm3/2 is much smaller than TRH ,
these contributions can be neglected, as we will see later.

1 Reheating temperature below superpartner masses was proposed
and investigated in particular in [23] and [24]. The novelty in our
case is that we consider high-scale supersymmetry, so our reheat-
ing temperature is much higher compared to these references.

2 As we will see, our result will not depend drastically on this
hypothesis

One can deduce the vierbein of the theory, just from the hypothesis that the 
longitudinal part of the gravitino is the goldstino of the SUSY transformation*

* see the incredibly modern article « Is the Neutrino a Goldstone particle » by D.V. Volkov and V.P. Akulov,Phys. Lett. B 46 (1973) 109 

I. Antoniadis, E. Dudas, D. M. Ghilencea and P. Tziveloglou, Nucl. Phys. B 841 (2010) 157
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Then the 2 ! 2 scatterings for the goldstino production
is dominated by the following operators3

i

2F 2
(G�µ@⌫Ḡ� @⌫G�µḠ)(@µH@⌫H

† + @µH@⌫H
†),

1

8F 2
(G�µ@⌫Ḡ� @⌫G�µḠ)⇥

( ̄�̄⌫@µ +  ̄�̄µ@⌫ � @µ �̄⌫ � @⌫ �̄µ ),
X

a

i

2F 2
(G�⇠@µḠ� @µG�

⇠Ḡ)Fµ⌫aF a
⌫⇠, (10)

where h,  and F a
⌫⇠ stand for a complex scalar (Higgs

doublet), gauge bosons and two-component fermions
(quarks and leptons), respectively. The expression of
these interactions in four-components Dirac spinors and
�-matrices notation is provided in the appendix. An-
other way to describe the two goldstinos interactions to
matter is to replace the superpartner soft mass terms
by couplings between the goldstino superfield and the
matter superfield multiplets. One can integrate out the
heavy (superpartner) components and to eliminate them
as a function of the light degrees of freedom : the SM
fields and goldstino. This leads to an e↵ective low-energy
theory where the incomplete multiplets are described in
terms of constrained superfields [27, 29]. The kinetic
terms of the sparticles will then lead to dimension-eight
operators containing two goldstinos and two SM fields
that generically di↵er from the ones computed from the
low-energy theorem couplings [26]. For the gauge and the
SM fermion sectors, the resulting cross sections only dif-
fer in the angular distribution and numerical constants,
whereas the energy dependence is the same as for the
low-energy theorem couplings.

Since the masses of the superpartners are of order
MSUSY <

p
F , one can worry about e↵ective oper-

ators generated after decoupling heavy superpartners,
with larger coe�cients. In particular, there can be
dimension-eight operators proportional to 1/M4

SUSY and
1/M2

SUSY F , that would be dominant over the universal
couplings we use in our paper. This issue was investi-
gated in the first reference in [29], where it was shown
that starting from MSSM only dimension-eight R-parity
violating couplings of this type are generated. Their ef-
fect on the gravitino production was investigated more
recently in [24].

3 See the appendix for the expression of these operators in 4-
component Dirac spinors and �-matrices notation.

B. Computation of the gravitino relic density

1. The framework

Contrarily to the weakly interacting neutralino, the grav-
itino falls in the category of feebly interacting dark mat-
ter. Its interactions at high energies are goverened by
the helicity-1/2 component whose couplings are natu-
rally suppressed by the supersymmetry breaking scale.
In gravity mediated supersymmetry breaking the grav-
itino is often heavier than the supersymmetric spectrum
that it generates. As a consequence, if the gravitino is not
su�ciently heavy (ie below 30 TeV) it is a long-lived par-
ticle which usually decay around the BBN epoch. This
gives rise to the famous ”gravitino problem” [31, 32]. In
that case, in order to minimize the observable e↵ects,
the gravitino density has to be small enough at the cost
of an upper bound on the reheating temperature of the
Universe (see eg [33]). On the other hand, if gravitino is
the LSP, it can be a very good dark matter candidate, ei-
ther as stable or metastable particle, with lifetime much
longer than the age of the Universe. The gravitino was
in fact the first supersymmetric dark matter candidate
ever proposed by Pagels and Primack [34]. Then sev-
eral groups generalised and refined the thermal analysis
and computed the relic abundance of gravitino [35, 36],
assuming that the goldstino component dominates the
production, i.e. the gravitino is su�ciently lighter than
the other superpartners. The relic abundance of graviti-
nos is then given by

⌦3/2h
2 ⇠ 0.3

✓
1 GeV

m3/2

◆✓
TRH

1010 GeV

◆X

i

ci

✓
Mi

100 GeV

◆2

,

(11)
where ci are coe�cient of order one, and Mi are the three
gaugino masses. We clearly see from Eq.(11) that the
density is settled by the reheating temperature. Lower
limits onM3 obtained by the non-observation of gluino at
LHC set (for a given gravitino mass) an upper limit on re-
heating temperature to avoid overclosure of the Universe.
These constraints are usually in tension with baryogene-
sis mechanisms [22].

On the other hand, all the scenario discussed above
made the hypothesis of thermal production of gravitino,
through supersymmetric partners in thermal equilibrium
with the primordial plasma. However, if for some reasons
the supersymmetric breaking scale is above the reheating
temperature, the SM superpartners will be too heavy to
reach the thermal equilibrium. A way to produce then
the gravitino as a dark matter candidate is through a
freeze-in mechanism. In this scenario, the gravitinos are
produced at a rate smaller than the one corresponding
to the expansion of the Universe, therefore they do not
have time to reach the thermal equilibrium. It ”freezes
in” in the process to reach it as the strong suppression of
the scattering cross sections by the scale F 2 in Eq.(10)
prevents the gravitinos to be in thermal equilibrium with

Which gives the Lagrangian between the SM and the goldstino

Notice how the Lagrangian has suppressed coupling (1/F2) and strong energy/
temperature dependance  
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ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =

✓
10

gs

◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�
2⇡

✓
m� MP

c

◆1/2

(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
m�

3⇥ 1013GeV

◆7/2 ✓
y�

2.9⇥ 10�5

◆7

(11)
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The Freeze-In mechanism  (FI)

5

the Standard Model bath.

2. Gravitino production through freeze in

From the interaction generated through the lagrangian
Eq.(10), one can compute the production rate R =
n2
eqh�vi of the gravitino G̃, generated by the annihilation

of the standard model bath of density neq. The detail of
the computation is developed in the appendix Eq.(27),
and we obtain

R =
X

i

n2
eqh�vii ' 21.65⇥ T 12

F 4
(12)

The Boltzmann equation for the gravitino density n3/2

can be written

dY3/2

dx
=

✓
45

g
⇤

⇡

◆3/2 1

4⇡2

MP

m5
3/2

x4R, (13)

with x = m3/2/T , Y3/2 = n3/2/s, s the density of en-
tropy and g

⇤

is the e↵ective number of degrees of freedom
thermalized at the time of gravitino decoupling (106.75
for the Standard Model). Here, we use the Planck mass
MP = 1.2⇥ 1019 GeV. We then obtain after integration

Y3/2 =
21.65MPT 7

RH

28⇡2F 4

✓
45

g
⇤

⇡

◆3/2

' 3.85⇥ 10�3 MPT 7
RH

F 4

(14)

The relic abundance

⌦h2 =
⇢3/2
⇢0c

=
Y3/2 s0 m3/2

⇢0c
' 5.84⇥ 108 Y3/2

⇣ m3/2

1 GeV

⌘

(15)
is then

⌦3/2h
2 ' 0.11

✓
100 GeV

m3/2

◆3 ✓ TRH

5.4⇥ 107 GeV

◆7

(16)

As we notice, the dependence on the reheating tempera-
ture is completely di↵erent from the case where the grav-
itino is produced through the scattering of the gaugino in
Eq.(11). A similar behavior can be observed in SO(10)
framework [37] or in extended neutrino sectors [23] . All
these models have in common that the production pro-
cess appears at the beginning of the thermal history, and
is then very mildly dependent on the hypothesis or the
physics appearing after reheating. The reheating tem-
perature is then a prediction of the model (for a given

gravitino mass) once one applies the experimental con-
straints of WMAP [38] and PLANCK [39]. Another in-
teresting point, is that a look at Eqs.(14) and (16) shows
that even the dependance on the particle content is very
mild. Indeed, due to the large power T 7

RH, the total num-
ber of degrees of freedom, or even channels does not in-
fluence that much the final reheating temperature, which
is predicted to be around 108 GeV for a gravitino with
electroweak scale. Even the hypothesis of universal cou-
plings [25] or non-universal ones [26, 27] will not a↵ect
drastically our Eq.(16).
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T R
H

[G
eV

]

MSUSY > 1011GeV

Freeze out region

m3/2 > TRH

hot DM

FIG. 1: Region in the parameter space (m3/2;TRH) respecting
the relic abundance constraint [38, 39] from Eq.(16). The points
above the black line are excluded because gravitino would overclose
the Universe. The blue line constraint is from the Higgs mass with
an observed value 125 GeV, which sets a upper limit for the scale
of supersymmetry breaking (Eq.4).

Our result is plotted in Fig.(1) where we represent
the parameter space allowed by the relic abundance con-
straints ⌦3/2h

2 ' 0.12 [38, 39]. As we notice, there exist
a large part of the parameter space allowed by cosmol-
ogy, giving reasonable values of TRH ' 105�1010 GeV for
a large range of gravitino masses MeV-PeV. The region
below the orange (dashed) line is excluded as the grav-
itino would be too heavy to be produced by freeze–in
mechanism, whereas the region above the green (dotted)
line corresponds to a freeze out scenario. In the latter
region, the production cross section h�vi is su�ciently
high to reach the thermal equilibrium. This occurs when
nh�vi & H(TRH) ' T 2

RH/MPl. A quick look at Eq.(12)
shows that such large cross section is obtained for high re-
heating temperature or small values of F (and thus light
gravitino), explaining the shape of the green region in
Fig.(1). However, once the gravitino is in thermal equi-
librium, its density is given by the classical Freeze Out
(FO) mechanism

⌦FO
3/2 =

n3/2m3/2

⇢0c
) ' 0.1

⇣ m3/2

180 eV

⌘
(17)
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the Standard Model bath.

2. Gravitino production through freeze in

From the interaction generated through the lagrangian
Eq.(10), one can compute the production rate R =
n2
eqh�vi of the gravitino G̃, generated by the annihilation

of the standard model bath of density neq. The detail of
the computation is developed in the appendix Eq.(27),
and we obtain

R =
X

i

n2
eqh�vii ' 21.65⇥ T 12

F 4
(12)
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MP = 1.2⇥ 1019 GeV. We then obtain after integration
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As we notice, the dependence on the reheating tempera-
ture is completely di↵erent from the case where the grav-
itino is produced through the scattering of the gaugino in
Eq.(11). A similar behavior can be observed in SO(10)
framework [37] or in extended neutrino sectors [23] . All
these models have in common that the production pro-
cess appears at the beginning of the thermal history, and
is then very mildly dependent on the hypothesis or the
physics appearing after reheating. The reheating tem-
perature is then a prediction of the model (for a given

gravitino mass) once one applies the experimental con-
straints of WMAP [38] and PLANCK [39]. Another in-
teresting point, is that a look at Eqs.(14) and (16) shows
that even the dependance on the particle content is very
mild. Indeed, due to the large power T 7

RH, the total num-
ber of degrees of freedom, or even channels does not in-
fluence that much the final reheating temperature, which
is predicted to be around 108 GeV for a gravitino with
electroweak scale. Even the hypothesis of universal cou-
plings [25] or non-universal ones [26, 27] will not a↵ect
drastically our Eq.(16).

FIG. 1: Region in the parameter space (m3/2;TRH) respecting
the relic abundance constraint [38, 39] from Eq.(16). The points
above the black line are excluded because gravitino would overclose
the Universe. The blue line constraint is from the Higgs mass with
an observed value 125 GeV, which sets a upper limit for the scale
of supersymmetry breaking (Eq.4).

Our result is plotted in Fig.(1) where we represent
the parameter space allowed by the relic abundance con-
straints ⌦3/2h

2 ' 0.12 [38, 39]. As we notice, there exist
a large part of the parameter space allowed by cosmol-
ogy, giving reasonable values of TRH ' 105�1010 GeV for
a large range of gravitino masses MeV-PeV. The region
below the orange (dashed) line is excluded as the grav-
itino would be too heavy to be produced by freeze–in
mechanism, whereas the region above the green (dotted)
line corresponds to a freeze out scenario. In the latter
region, the production cross section h�vi is su�ciently
high to reach the thermal equilibrium. This occurs when
nh�vi & H(TRH) ' T 2

RH/MPl. A quick look at Eq.(12)
shows that such large cross section is obtained for high re-
heating temperature or small values of F (and thus light
gravitino), explaining the shape of the green region in
Fig.(1). However, once the gravitino is in thermal equi-
librium, its density is given by the classical Freeze Out
(FO) mechanism

⌦FO
3/2 =

n3/2m3/2

⇢0c
) ' 0.1

⇣ m3/2

180 eV

⌘
(17)

Including inflaton decay

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =

✓
10

gs

◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�
2⇡

✓
m� MP

c

◆1/2

(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
m�

3⇥ 1013GeV

◆7/2 ✓
y�

2.9⇥ 10�5

◆7

(11)
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MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11
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TRH
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(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]
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(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
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0.1 EeV
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◆3 ✓
m�
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(11)

Φ
yΦ

E. Dudas, Y. M. and K. Olive;  Phys.Rev.Lett. 119 (2017)  [arXiv:1704.03008]



5

the Standard Model bath.

2. Gravitino production through freeze in

From the interaction generated through the lagrangian
Eq.(10), one can compute the production rate R =
n2
eqh�vi of the gravitino G̃, generated by the annihilation

of the standard model bath of density neq. The detail of
the computation is developed in the appendix Eq.(27),
and we obtain

R =
X

i

n2
eqh�vii ' 21.65⇥ T 12

F 4
(12)

The Boltzmann equation for the gravitino density n3/2

can be written

dY3/2

dx
=

✓
45

g
⇤

⇡

◆3/2 1

4⇡2

MP

m5
3/2

x4R, (13)

with x = m3/2/T , Y3/2 = n3/2/s, s the density of en-
tropy and g

⇤

is the e↵ective number of degrees of freedom
thermalized at the time of gravitino decoupling (106.75
for the Standard Model). Here, we use the Planck mass
MP = 1.2⇥ 1019 GeV. We then obtain after integration

Y3/2 =
21.65MPT 7

RH
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(14)

The relic abundance

⌦h2 =
⇢3/2
⇢0c

=
Y3/2 s0 m3/2

⇢0c
' 5.84⇥ 108 Y3/2

⇣ m3/2

1 GeV

⌘

(15)
is then

⌦3/2h
2 ' 0.11

✓
100 GeV

m3/2

◆3 ✓ TRH

5.4⇥ 107 GeV

◆7

(16)

As we notice, the dependence on the reheating tempera-
ture is completely di↵erent from the case where the grav-
itino is produced through the scattering of the gaugino in
Eq.(11). A similar behavior can be observed in SO(10)
framework [37] or in extended neutrino sectors [23] . All
these models have in common that the production pro-
cess appears at the beginning of the thermal history, and
is then very mildly dependent on the hypothesis or the
physics appearing after reheating. The reheating tem-
perature is then a prediction of the model (for a given

gravitino mass) once one applies the experimental con-
straints of WMAP [38] and PLANCK [39]. Another in-
teresting point, is that a look at Eqs.(14) and (16) shows
that even the dependance on the particle content is very
mild. Indeed, due to the large power T 7

RH, the total num-
ber of degrees of freedom, or even channels does not in-
fluence that much the final reheating temperature, which
is predicted to be around 108 GeV for a gravitino with
electroweak scale. Even the hypothesis of universal cou-
plings [25] or non-universal ones [26, 27] will not a↵ect
drastically our Eq.(16).

FIG. 1: Region in the parameter space (m3/2;TRH) respecting
the relic abundance constraint [38, 39] from Eq.(16). The points
above the black line are excluded because gravitino would overclose
the Universe. The blue line constraint is from the Higgs mass with
an observed value 125 GeV, which sets a upper limit for the scale
of supersymmetry breaking (Eq.4).

Our result is plotted in Fig.(1) where we represent
the parameter space allowed by the relic abundance con-
straints ⌦3/2h

2 ' 0.12 [38, 39]. As we notice, there exist
a large part of the parameter space allowed by cosmol-
ogy, giving reasonable values of TRH ' 105�1010 GeV for
a large range of gravitino masses MeV-PeV. The region
below the orange (dashed) line is excluded as the grav-
itino would be too heavy to be produced by freeze–in
mechanism, whereas the region above the green (dotted)
line corresponds to a freeze out scenario. In the latter
region, the production cross section h�vi is su�ciently
high to reach the thermal equilibrium. This occurs when
nh�vi & H(TRH) ' T 2

RH/MPl. A quick look at Eq.(12)
shows that such large cross section is obtained for high re-
heating temperature or small values of F (and thus light
gravitino), explaining the shape of the green region in
Fig.(1). However, once the gravitino is in thermal equi-
librium, its density is given by the classical Freeze Out
(FO) mechanism

⌦FO
3/2 =

n3/2m3/2

⇢0c
) ' 0.1

⇣ m3/2

180 eV

⌘
(17)

Including inflaton decay

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n2h�vi ' 21.65⇥ T 12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
T 6/F 4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =

✓
10

gs

◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�
2⇡

✓
m� MP

c

◆1/2

(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
m�

3⇥ 1013GeV

◆7/2 ✓
y�

2.9⇥ 10�5

◆7

(11)

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m2

�. The
gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m2

�p
3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �scat

N [45, 46]. Fur-
thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt = n2
�h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T 3M2

SUSY /M
2
Pm

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM2

SUSY /MPm
2
3/2,

where we have simply taken the Hubble parameter as
T 2/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2
These messengers could in principle also play a role in restoring

unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]
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where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T 8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T 3, and for gravitino production, we expect h�vi /
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dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
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standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T 9/M4

Pm
4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T 7/M3

Pm
4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11

✓
0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]
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and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
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FIG. 1. Region of the parameter space allowed by PLANCK

constraints [32] in the plane (m3/2, y�) for di↵erent values of the

branching ratio B3/2 and m� = 3 ⇥ 10

13
GeV (see the text for

details).

where we have set c = 1.2. The cosmological constraint is
plotted in Fig.(1) in the (m3/2, y�) plane, where we show
the region allowed by PLANCK [32]. The black (solid)
line represents the PLANCK constraint ⌦h2 = 0.11. One
immediately sees the linear increase in the Yukawa cou-
pling y� with increasing gravitino mass in order to coun-
terbalance the weakening of the e↵ective coupling 1/F
responsible for its production in the thermal bath.

A large inflaton-matter coupling produces a high re-
heating temperature, which in turn increases the grav-
itino abundance. Then, as one can see from Eq.(11), the
solid curve in Fig. 1 is an upper bound on y� to avoid
an overabundant gravitino. In fact, one can extract an
upper bound on y� independent of m3/2 simply requir-
ing m3/2 < TRH , a necessary condition for the gravitino
to be thermally produced. The condition m3/2 < TRH

implemented in Eq.(11) with the expression (10) gives

y� . 1.6⇥ 10�3

✓
3⇥ 1013 GeV

m�

◆1/2

, (12)

shown as the horizontal dashed line in the Figure 1. We
can then extract the maximum reheating temperature
TRH . 1.1⇥1012 GeV. Combined with the condition (7)
m3/2 > 0.2 EeV, the relic abundance constraint (9) gives

2.7⇥ 1010 GeV . TRH . 1.1⇥ 1012 GeV (13)

which is a strong prediction of our model.

D. Gravitino production by inflaton decay

It is also possible to produce gravitinos through the
direct decay of the inflaton. For example, in no-scale

supergravity models of inflation, the decay of the infla-
ton to gravitinos is highly suppressed. In simple models,
there is no coupling at the tree-level [51]. However, it is
possible to couple the inflaton to moduli without spoiling
the inflationary potential [41, 42]. We can parameterize

the decay to a pair of gravitinos as �3/2 = m�
y2
3/2

72⇡ .

The branching ratio of decays to gravitinos is then

B3/2 = �3/2/�� =
|y3/2|2

9y2�
. (14)

Using the result from [41] for the gravitino abundance
produced by inflaton decay at the epoch of reheating, we
get

n3/2

n�
⇡ 3.6B3/2

(��MP)1/2

m�
⇡ 0.7B3/2y�

✓
MP

m�

◆1/2

(15)
corresponding to

⌦decay
3/2 h2 = 0.11

✓
B3/2

1.3⇥ 10�13

◆✓
y�

2.9⇥ 10�5

◆
(16)

⇥
⇣ m3/2

0.1 EeV

⌘✓
3⇥ 1013 GeV

m�

◆1/2

.

today.

The condition (7) is then translated into

B3/2y� =
|y3/2|2

9|y�|
. 1.9⇥ 10�18

✓
0.1 EeV

m3/2

◆
(17)

for m� = 3 ⇥ 1013 GeV. Contrary to the case of ther-
mal gravitino production, our limit to the coupling y�
is strengthened as m3/2 is increased when gravitino pro-
duction occurs through inflaton decay. Since the den-
sity through the decay of the inflaton is proportional to
n�B3/2m3/2, where m�n� is the inflaton energy density,
the limit on the coupling is improved when either the
branching ratio or the gravitino mass is increased.

This result is also shown in Fig.(1) where we clearly see
the changing in the slope for larger value of B3/2 > 10�19

where the direct production from inflaton decay may
dominate over the thermal production. We note that the
constraints obtained on the inflaton coupling to graviti-
nos are strong. We recall, however, that in no-scale mod-
els of inflation [41, 42, 51] and in classes of inflationary
models with so-called stabilized field [52, 53], this cou-
pling is naturally very small. Finally, we point out that in
the case of the direct production of the gravitino through
inflaton decay, both the ±3/2 and the ±1/2 components
of the gravitino populate the Universe, whereas in the
case of thermal production (Eq.9) only the longitudinal
goldstino component contributes to the relic abundance.
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where we have set c = 1.2. The cosmological constraint is
plotted in Fig.(1) in the (m3/2, y�) plane, where we show
the region allowed by PLANCK [32]. The black (solid)
line represents the PLANCK constraint ⌦h2 = 0.11. One
immediately sees the linear increase in the Yukawa cou-
pling y� with increasing gravitino mass in order to coun-
terbalance the weakening of the e↵ective coupling 1/F
responsible for its production in the thermal bath.

A large inflaton-matter coupling produces a high re-
heating temperature, which in turn increases the grav-
itino abundance. Then, as one can see from Eq.(11), the
solid curve in Fig. 1 is an upper bound on y� to avoid
an overabundant gravitino. In fact, one can extract an
upper bound on y� independent of m3/2 simply requir-
ing m3/2 < TRH , a necessary condition for the gravitino
to be thermally produced. The condition m3/2 < TRH

implemented in Eq.(11) with the expression (10) gives
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shown as the horizontal dashed line in the Figure 1. We
can then extract the maximum reheating temperature
TRH . 1.1⇥1012 GeV. Combined with the condition (7)
m3/2 > 0.2 EeV, the relic abundance constraint (9) gives

2.7⇥ 1010 GeV . TRH . 1.1⇥ 1012 GeV (13)

which is a strong prediction of our model.

D. Gravitino production by inflaton decay

It is also possible to produce gravitinos through the
direct decay of the inflaton. For example, in no-scale

supergravity models of inflation, the decay of the infla-
ton to gravitinos is highly suppressed. In simple models,
there is no coupling at the tree-level [51]. However, it is
possible to couple the inflaton to moduli without spoiling
the inflationary potential [41, 42]. We can parameterize
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The branching ratio of decays to gravitinos is then
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for m� = 3 ⇥ 1013 GeV. Contrary to the case of ther-
mal gravitino production, our limit to the coupling y�
is strengthened as m3/2 is increased when gravitino pro-
duction occurs through inflaton decay. Since the den-
sity through the decay of the inflaton is proportional to
n�B3/2m3/2, where m�n� is the inflaton energy density,
the limit on the coupling is improved when either the
branching ratio or the gravitino mass is increased.

This result is also shown in Fig.(1) where we clearly see
the changing in the slope for larger value of B3/2 > 10�19

where the direct production from inflaton decay may
dominate over the thermal production. We note that the
constraints obtained on the inflaton coupling to graviti-
nos are strong. We recall, however, that in no-scale mod-
els of inflation [41, 42, 51] and in classes of inflationary
models with so-called stabilized field [52, 53], this cou-
pling is naturally very small. Finally, we point out that in
the case of the direct production of the gravitino through
inflaton decay, both the ±3/2 and the ±1/2 components
of the gravitino populate the Universe, whereas in the
case of thermal production (Eq.9) only the longitudinal
goldstino component contributes to the relic abundance.
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responsible for its production in the thermal bath.
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sity through the decay of the inflaton is proportional to
n�B3/2m3/2, where m�n� is the inflaton energy density,
the limit on the coupling is improved when either the
branching ratio or the gravitino mass is increased.

This result is also shown in Fig.(1) where we clearly see
the changing in the slope for larger value of B3/2 > 10�19

where the direct production from inflaton decay may
dominate over the thermal production. We note that the
constraints obtained on the inflaton coupling to graviti-
nos are strong. We recall, however, that in no-scale mod-
els of inflation [41, 42, 51] and in classes of inflationary
models with so-called stabilized field [52, 53], this cou-
pling is naturally very small. Finally, we point out that in
the case of the direct production of the gravitino through
inflaton decay, both the ±3/2 and the ±1/2 components
of the gravitino populate the Universe, whereas in the
case of thermal production (Eq.9) only the longitudinal
goldstino component contributes to the relic abundance.

E. Dudas,  Y.M. and K.A. Olive, arXiv:1701.06574 

Conclusion: EeV gravitino is compatible with inflationary 
scenario and DM constraints.
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coupling � depend only weakly on the temperature, eq. (4) integrates to
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when T < TRH . We have assumed n > �1 in eq. (6) (so that the first term dominates in

the square parenthesis of eq. (5)). We can then define

R�,instant.(T ) =
Y�,instant.(T )

Y�,instant.

(7)

as the ratio of the temperature-dependent abundance relative to its asymptotic value.

In the next subsection we compare the result (5), obtained under the assumption of

instantaneous reheating, against the abundance obtained if we more properly account for

the finite duration of reheating.

2.2 Instantaneous thermalization

Reheating after inflation is a continuous process, that dumps the energy density of the

inflaton into the relativistic plasma, while diluting the previously created content of the

universe. Therefore, in order to track the relic dark matter density, one must solve the

following system of equations

⇢̇� + 3H⇢� + ��⇢� = 0 (8)

⇢̇� + 4H⇢� � ��⇢� = 0 (9)

ṅ� + 3Hn� + h�|v|i ⇥n2

� � (neq

� )2
⇤
= 0 (10)

⇢� + ⇢� = 3M2

P H2 (11)

where ⇢� and ⇢�, are, respectively, the energy density of the inflaton and of the thermal

bath formed by inflaton decay. We stress that we are assuming that the dark matter is

not directly coupled to the inflaton, and it is only produced by the thermal bath with the

cross section (1). We continue to assume instantaneous thermalization of the inflaton decay

products, as justified in [4, 5]. Finally, we disregard the production of dark matter in the

5
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We illustrate the behavior of the temperature as function of the reduced scale factor a/aI on
Fig.(2.31). We clearly see that the temperature first increase, due to the dominance of the
decay rate of the inflaton on the expansion rate of the universe. The plasma is heated by
the decay process. However, when the Hubble expansion rate begin to dominate, the plasma
reaches a classical thermal equilibrium, without the introduction of new particles from the
inflaton decay (or at least, their influence diminishes). The temperature then follows the
classic T / 1/a law. We can compute the value amax for which the temperature of the
plasma reaches is maximum by derivate Eq.(2.215), which gives

xmax =
amax

aI
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8

3

◆2/5

' 1.5 (2.216)

which is independent on the initial conditions. It means that when the Universe was roughly
1.5 times larger than after the inflation phases, the temperature begins to decreases toward
a reheating temperature. The maximal temperature can be computed injecting xmax in
(2.215), we obtain
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second and fourth equations (9 and 11), as we will work in the limit of small dark matter

production, so that ⇢� and H are negligibly modified by dark matter production.

Solving the first two equations of the system one finds that the thermal bath reaches

a maximum temperature T
max

when only a small amount of the inflaton energy has decayed

[5–7]. This temperature is much higher than the reheating temperature, defined to be the

temperature of the thermal bath when it starts to dominate over the residual energy of the

inflaton. One finds (see for instance [5])

T
max

' 0.5

✓
m�

��

◆
1/4

TRH , (12)

where m� is the inflaton mass. Perturbativity requires �� < m�, and it is not uncommon

to have �� ⌧ m� (this is for instance the case if the inflaton decays gravitationally).

Therefore T
max

can be many orders of magnitude greater than TRH , possibly leading to

a larger production of dark matter. This opens the question regarding the accuracy of

the result (5), that assumes that the temperature was never above TRH . On the other

hand, most of the energy of the universe is still in the inflaton when T = T
max

, and the

entropy generated by the subsequent decay of this energy dilutes the dark matter quanta

produced at T ⇠ T
max

. Given these two contrasting arguments, only an explicit solution

of the system (8)-(9)-(10) can shed light on the accuracy of the instantaneous reheating

result (5).

We assume that the inflaton performs coherent oscillations about the (quadratic)

minimum of its potential at the end of inflaton. This leads to an equation of state for the

inflaton w = p/⇢ = 0, when averaged over a complete oscillation (the oscillations occur on

a timescale m�1

� , which is much shorter than the other timescales of reheating, and taking

w = 0 for the inflaton is therefore a very accurate assumption). The inflaton dominates

the energy density until the very end of reheating, so it is a good approximation to set

w = 0 for the whole duration of reheating. This will allow us to obtain an analytic result

for the dark matter abundance, that we can compare with an exact numerical solution of

the system (8)-(9)-(10). Under this assumption, the scale factor evolves as [5]
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with v ⌘ �� (t� t
end

) (the su�x “end” indicating the end of inflation, when w = �1/3)

and
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end
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��

m
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where the O(1) factor in the second equality is approximately equal to 2.8 for Starobinsky

inflation, and to 1.3 for a quadratic potential.

6

2.1 Instantaneous reheating

Under the assumption of instantaneous reheating, the inflaton instantaneously decays into

a thermal bath of initial temperature [2, 3]

TRH =

✓
40

gRH⇡2

◆
1/4

✓
��MP

c

◆
1/2

, (2)

which dominates the energy density of the universe, where �� is the inflaton decay rate,

gRH ⌘ g (TRH) is the number of e↵ective degrees of freedom in the thermal bath, and c is

an order one parameter that depends on when exactly the decay is assumed to take place.

For instance, c = 1 if we set the decay time tRH = ��1

� , or c = 2/3 if we set the Hubble

rate H(TRH) = ��. Numerical solutions to reheating give c ⇡ 1.2 [5, 19]. In what follows

we will set c = 1 for definiteness.

Consider for instance the process �
1

+ �
2

! �
1

+ �
2

, where �
1,2 are constituents

of the thermal plasma, and �
1,2 denote the scattering products, out of which �

1

or both

�
1,2 correspond to the dark matter particle; in this section we assume for simplicity that

�
1

= �
2

⌘ �. If the scattering cross section is small enough to keep the dark matter number

density, n�, well below its thermal equilibrium value, neq

� , at all times, then the Boltzmann

equation controlling the dark matter abundance Y� (T ) ⌘ n�(T )

nrad(T )

is of the form 1

Ẏ� + 3
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T

!
Y� = g2
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where H is the Hubble rate and g� is the number of degrees of freedom of � (times 3/4 if

� is a fermion). This is solved by
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where g (T ) is the number of e↵ective relativistic degrees of freedom in the thermal bath

at temperature T . We have assumed entropy conservation so that gT 3a3 = const., where

a is the cosmological scale factor.

We now use the thermal cross section (1), and assume a vanishing dark matter abun-

dance at the beginning of reheating, Y�(TRH) = 0. Accounting for the fact that g and the

1Here for convenience, nrad is defined as the number density of a single bosonic relativistic degree of

freedom in thermal equilibrium, nrad = ⇣(3)T 3/⇡2. The final abundance Y� can be immediately related to

the dark matter relic fractional density through ⌦� =
m�n�

⇢c
=

m� Y�nrad

⇢c
, where ⇢c is the critical energy

density of the universe.
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when T < TRH . We have assumed n > �1 in eq. (6) (so that the first term dominates in

the square parenthesis of eq. (5)). We can then define

R�,instant.(T ) =
Y�,instant.(T )

Y�,instant.

(7)

as the ratio of the temperature-dependent abundance relative to its asymptotic value.

In the next subsection we compare the result (5), obtained under the assumption of

instantaneous reheating, against the abundance obtained if we more properly account for

the finite duration of reheating.

2.2 Instantaneous thermalization

Reheating after inflation is a continuous process, that dumps the energy density of the

inflaton into the relativistic plasma, while diluting the previously created content of the

universe. Therefore, in order to track the relic dark matter density, one must solve the

following system of equations

⇢̇� + 3H⇢� + ��⇢� = 0 (8)

⇢̇� + 4H⇢� � ��⇢� = 0 (9)

ṅ� + 3Hn� + h�|v|i ⇥n2
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= 0 (10)

⇢� + ⇢� = 3M2
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where ⇢� and ⇢�, are, respectively, the energy density of the inflaton and of the thermal

bath formed by inflaton decay. We stress that we are assuming that the dark matter is

not directly coupled to the inflaton, and it is only produced by the thermal bath with the

cross section (1). We continue to assume instantaneous thermalization of the inflaton decay

products, as justified in [4, 5]. Finally, we disregard the production of dark matter in the
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cross section (1). We continue to assume instantaneous thermalization of the inflaton decay

products, as justified in [4, 5]. Finally, we disregard the production of dark matter in the

5

2.1 Instantaneous reheating

Under the assumption of instantaneous reheating, the inflaton instantaneously decays into

a thermal bath of initial temperature [2, 3]

TRH =
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40

gRH⇡2
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1/4

✓
��MP

c

◆
1/2

, (2)

which dominates the energy density of the universe, where �� is the inflaton decay rate,

gRH ⌘ g (TRH) is the number of e↵ective degrees of freedom in the thermal bath, and c is

an order one parameter that depends on when exactly the decay is assumed to take place.

For instance, c = 1 if we set the decay time tRH = ��1

� , or c = 2/3 if we set the Hubble

rate H(TRH) = ��. Numerical solutions to reheating give c ⇡ 1.2 [5, 19]. In what follows

we will set c = 1 for definiteness.

Consider for instance the process �
1

+ �
2

! �
1

+ �
2

, where �
1,2 are constituents

of the thermal plasma, and �
1,2 denote the scattering products, out of which �

1

or both

�
1,2 correspond to the dark matter particle; in this section we assume for simplicity that

�
1

= �
2

⌘ �. If the scattering cross section is small enough to keep the dark matter number

density, n�, well below its thermal equilibrium value, neq

� , at all times, then the Boltzmann

equation controlling the dark matter abundance Y� (T ) ⌘ n�(T )

nrad(T )

is of the form 1

Ẏ� + 3

 
H +

Ṫ

T

!
Y� = g2

�h�|v|inrad

, (3)

where H is the Hubble rate and g� is the number of degrees of freedom of � (times 3/4 if

� is a fermion). This is solved by

Y�(T ) = Y�(TRH)
g(T )

gRH

� g(T )

Z T
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�h�|v|inrad

(⌧)

g(⌧)H(⌧) ⌧
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⌧

3

d ln g(⌧)
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�
d⌧ , (4)

where g (T ) is the number of e↵ective relativistic degrees of freedom in the thermal bath

at temperature T . We have assumed entropy conservation so that gT 3a3 = const., where

a is the cosmological scale factor.

We now use the thermal cross section (1), and assume a vanishing dark matter abun-

dance at the beginning of reheating, Y�(TRH) = 0. Accounting for the fact that g and the

1Here for convenience, nrad is defined as the number density of a single bosonic relativistic degree of

freedom in thermal equilibrium, nrad = ⇣(3)T 3/⇡2. The final abundance Y� can be immediately related to

the dark matter relic fractional density through ⌦� =
m�n�

⇢c
=

m� Y�nrad

⇢c
, where ⇢c is the critical energy

density of the universe.
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If one defines Rχn as Y/Yinst. one obtains

In the regime A ⌧ v ⌧ 1, we obtain [5]
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where � denotes the lower incomplete gamma function. This in turn, implies
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which is solved by
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Dividing this by n
rad

, we find, at the end of reheating,
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We can now compare this result with (6), obtained under the assumption of instan-

taneous reheating. At T ⌧ TRH we find

R(n)
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Y�,instant.
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where we have inserted a function f(n) shown in Fig. 1, which corrects the analytic result

discussed above, with the exact numerical evaluation. This correction is necessary as,
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Our conclusions are given in section 5.

2 Dark matter production at reheating

For our analysis, we first need to compute the dark matter production at early stages of

reheating. We can define the thermally averaged cross section

h�|v|i = �T n

⇡Mn+2

, (1)

for dark matter production, where we assumed a dark matter mass m� ⌧ T , and that � is

coupled to the thermal bath by a heavy mediator of mass mX � T . In this case, the mass

scale M in (1) is parametrically related to the mediator mass, M ⇠ mX . For the case of

the gravitino, one should associate the scale M with the supersymmetry breaking scale, F

which may be related to the geometric mean of the Planck scale MP , and gravitino mass,

m
3/2

for the production of longitudinal modes of the gravitino.

Reheating is a finite duration process that starts at the end of inflation, and is con-

cluded with the formation of a dominant thermal bath due to inflaton decay. Assuming

instantaneous thermalization of the inflaton decay products [4,5], this thermal bath reaches

the maximum temperature T
max

shortly after inflation ends, when only a small fraction of

the inflaton energy has decayed, and the energy density of the universe is still dominated

by the inflaton mass. This temperature may be orders of magnitude greater than the re-

heating temperature TRH , that is achieved later on, when most of the inflaton energy has

decayed, and the thermal bath has become dominant [5–7]. Most computations of relic

abundances from the early universe assume an instantaneous inflaton decay into a ther-

mal bath of temperature TRH . These computations ignore any production that took place

during reheating (namely, while the thermal bath was subdominant, as its temperature

decreased from T
max

to TRH). This approach is valid as long as the production rate in

eq. (1) is not competitive with the dilution rate due to the inflaton decay, which is (as we

will demonstrate) not always justified.

In this section, we propose to precisely quantify the validity of this assumption, by

comparing the dark matter production obtained supposing an instantaneous reheating (sub-

section 2.1) with the complete process, that accounts for the finite-time duration of the

inflaton decay (subsection 2.2). We will see that the degree of accuracy depends on the spe-

cific value of the exponent n in the temperature dependence T n of the thermally averaged

cross-section (1). We will then discuss three di↵erent microscopic/UV models, character-

ized by three di↵erent values of n.
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Rχn does not depends on λ or M (!!)



Exemple, for n=6

Our conclusions are given in section 5.

2 Dark matter production at reheating

For our analysis, we first need to compute the dark matter production at early stages of

reheating. We can define the thermally averaged cross section

h�|v|i = �T n

⇡Mn+2

, (1)

for dark matter production, where we assumed a dark matter mass m� ⌧ T , and that � is

coupled to the thermal bath by a heavy mediator of mass mX � T . In this case, the mass

scale M in (1) is parametrically related to the mediator mass, M ⇠ mX . For the case of

the gravitino, one should associate the scale M with the supersymmetry breaking scale, F

which may be related to the geometric mean of the Planck scale MP , and gravitino mass,

m
3/2

for the production of longitudinal modes of the gravitino.

Reheating is a finite duration process that starts at the end of inflation, and is con-

cluded with the formation of a dominant thermal bath due to inflaton decay. Assuming

instantaneous thermalization of the inflaton decay products [4,5], this thermal bath reaches

the maximum temperature T
max

shortly after inflation ends, when only a small fraction of

the inflaton energy has decayed, and the energy density of the universe is still dominated

by the inflaton mass. This temperature may be orders of magnitude greater than the re-

heating temperature TRH , that is achieved later on, when most of the inflaton energy has

decayed, and the thermal bath has become dominant [5–7]. Most computations of relic

abundances from the early universe assume an instantaneous inflaton decay into a ther-

mal bath of temperature TRH . These computations ignore any production that took place

during reheating (namely, while the thermal bath was subdominant, as its temperature

decreased from T
max

to TRH). This approach is valid as long as the production rate in

eq. (1) is not competitive with the dilution rate due to the inflaton decay, which is (as we

will demonstrate) not always justified.

In this section, we propose to precisely quantify the validity of this assumption, by

comparing the dark matter production obtained supposing an instantaneous reheating (sub-

section 2.1) with the complete process, that accounts for the finite-time duration of the

inflaton decay (subsection 2.2). We will see that the degree of accuracy depends on the spe-

cific value of the exponent n in the temperature dependence T n of the thermally averaged

cross-section (1). We will then discuss three di↵erent microscopic/UV models, character-

ized by three di↵erent values of n.

3

Our conclusions are given in section 5.

2 Dark matter production at reheating

For our analysis, we first need to compute the dark matter production at early stages of

reheating. We can define the thermally averaged cross section

h�|v|i = �T n

⇡Mn+2

, (1)

for dark matter production, where we assumed a dark matter mass m� ⌧ T , and that � is

coupled to the thermal bath by a heavy mediator of mass mX � T . In this case, the mass

scale M in (1) is parametrically related to the mediator mass, M ⇠ mX . For the case of

the gravitino, one should associate the scale M with the supersymmetry breaking scale, F

which may be related to the geometric mean of the Planck scale MP , and gravitino mass,

m
3/2

for the production of longitudinal modes of the gravitino.

Reheating is a finite duration process that starts at the end of inflation, and is con-

cluded with the formation of a dominant thermal bath due to inflaton decay. Assuming

instantaneous thermalization of the inflaton decay products [4,5], this thermal bath reaches

the maximum temperature T
max

shortly after inflation ends, when only a small fraction of

the inflaton energy has decayed, and the energy density of the universe is still dominated

by the inflaton mass. This temperature may be orders of magnitude greater than the re-

heating temperature TRH , that is achieved later on, when most of the inflaton energy has

decayed, and the thermal bath has become dominant [5–7]. Most computations of relic

abundances from the early universe assume an instantaneous inflaton decay into a ther-

mal bath of temperature TRH . These computations ignore any production that took place

during reheating (namely, while the thermal bath was subdominant, as its temperature

decreased from T
max

to TRH). This approach is valid as long as the production rate in

eq. (1) is not competitive with the dilution rate due to the inflaton decay, which is (as we

will demonstrate) not always justified.

In this section, we propose to precisely quantify the validity of this assumption, by

comparing the dark matter production obtained supposing an instantaneous reheating (sub-

section 2.1) with the complete process, that accounts for the finite-time duration of the

inflaton decay (subsection 2.2). We will see that the degree of accuracy depends on the spe-

cific value of the exponent n in the temperature dependence T n of the thermally averaged

cross-section (1). We will then discuss three di↵erent microscopic/UV models, character-

ized by three di↵erent values of n.

3

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 1: Numerical correction to the analytical result (20) for the ratio of the exact dark

matter yield to the instantaneous approximation, R(n)

� . The function f(n) asymptotes to

the value ⇠ 0.4 for large n .

around v ⇠ 1, the approximation (16) to the plasma temperature is not accurate, due to

the shift of the equation of state parameter from w ⇡ 0 to w ⇡ 1/3; moreover, entropy

production continues beyond v = 1, which further dilutes the dark matter yield below the

analytical approximation. Note that, nevertheless, the correction is not large, 0.4 . f(n) .
3.3 for n > 0. Eq. (20) is one of the main results of this paper.

We see from eq. (20) that as n increases, the final result for the abundance is in-

creasingly sensitive to the highest temperature, and the details of reheating are relevant.

In particular, physically di↵erent results are obtained for n < 6 vs. n � 6, as already

noted in [7] (that only focused on the n < 6 case). For n < 6 the more accurate result (19)

corrects the instantaneous reheating result by a factor of O(1). For a steeper dependence of

the cross section on the temperature, the final dark matter abundance can be significantly

di↵erent from the naive expectation. In particular, in terms of the inflaton decay rate, the

enhancement for the n = 6 case can be equivalently rewritten as

R� ' 1.14 ln

✓
m�

��

◆
� 3.17 . (21)

3 Representative examples

In this section we consider three representative cases characterized by the thermal cross

section (1), with three di↵erent values of the coe�cient n. These are: (1) Gravitino pro-

duction in low scale supersymmetry models (with a single gravitino in the final state). This

8

where F =
p
3MPm

3/2

is the supersymmetry breaking order parameter.

The strong suppression (/ F 4) of the cross section would indicate that a relatively

high reheating temperature and gravitino mass are required to produce a su�cient quantity

of gravitinos to account for the observed relic density. Indeed for a gravitino mass of 1 EeV,

a reheating temperature of approximately 5 ⇥ 1010 GeV is needed [23], placing strong

constraints on inflationary models and supersymmetry breaking [28].

Figure 5 shows the exact and instantaneous results for R� in the n = 6 case. In this

case, one sees that the standard estimate of the dark matter abundance evaluated at TRH

is not very accurate and the final ratio is R� ⇠ 25.7, consistent with the result (21). From

eq. (6) we see that, in order to obtain the correct gravitino dark matter abundance, the

reheating temperature should be decreased by a factor ⇠ 2

3

with respect to that indicated

by the naive assumption of instantaneous decay.
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Figure 5: As in Fig. 2, for n = 6.

4 Conclusions

Reheating after inflation is responsible for the entire matter and radiation content of the

Universe. Thus, understanding the details of this process is crucial to our ability to develop

models incorporating entropy production, baryogenesis, and dark matter among many other

important ideas in cosmology.

In many models of dark matter, including well studied models of supersymmetric

dark matter, thermally produced dark matter particles come into thermal equilibrium, and

their final abundance is often determined after they freeze out of the thermal bath. On

13

In the regime A ⌧ v ⌧ 1, we obtain [5]

⇢� ' ⇢
end

A2v�8/3�(5/3, v) ' 3

5
⇢

end

A2v�1 =
4

5
(��MP )

2v�1 , (15)

where � denotes the lower incomplete gamma function. This in turn, implies
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With the scattering cross section given by (1), and neq
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which is solved by
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Dividing this by n
rad

, we find, at the end of reheating,
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We can now compare this result with (6), obtained under the assumption of instan-

taneous reheating. At T ⌧ TRH we find
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where we have inserted a function f(n) shown in Fig. 1, which corrects the analytic result

discussed above, with the exact numerical evaluation. This correction is necessary as,
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Our conclusions are given in section 5.

2 Dark matter production at reheating

For our analysis, we first need to compute the dark matter production at early stages of

reheating. We can define the thermally averaged cross section

h�|v|i = �T n

⇡Mn+2

, (1)

for dark matter production, where we assumed a dark matter mass m� ⌧ T , and that � is

coupled to the thermal bath by a heavy mediator of mass mX � T . In this case, the mass

scale M in (1) is parametrically related to the mediator mass, M ⇠ mX . For the case of

the gravitino, one should associate the scale M with the supersymmetry breaking scale, F

which may be related to the geometric mean of the Planck scale MP , and gravitino mass,

m
3/2

for the production of longitudinal modes of the gravitino.

Reheating is a finite duration process that starts at the end of inflation, and is con-

cluded with the formation of a dominant thermal bath due to inflaton decay. Assuming

instantaneous thermalization of the inflaton decay products [4,5], this thermal bath reaches

the maximum temperature T
max

shortly after inflation ends, when only a small fraction of

the inflaton energy has decayed, and the energy density of the universe is still dominated

by the inflaton mass. This temperature may be orders of magnitude greater than the re-

heating temperature TRH , that is achieved later on, when most of the inflaton energy has

decayed, and the thermal bath has become dominant [5–7]. Most computations of relic

abundances from the early universe assume an instantaneous inflaton decay into a ther-

mal bath of temperature TRH . These computations ignore any production that took place

during reheating (namely, while the thermal bath was subdominant, as its temperature

decreased from T
max

to TRH). This approach is valid as long as the production rate in

eq. (1) is not competitive with the dilution rate due to the inflaton decay, which is (as we

will demonstrate) not always justified.

In this section, we propose to precisely quantify the validity of this assumption, by

comparing the dark matter production obtained supposing an instantaneous reheating (sub-

section 2.1) with the complete process, that accounts for the finite-time duration of the

inflaton decay (subsection 2.2). We will see that the degree of accuracy depends on the spe-

cific value of the exponent n in the temperature dependence T n of the thermally averaged

cross-section (1). We will then discuss three di↵erent microscopic/UV models, character-

ized by three di↵erent values of n.
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matter yield to the instantaneous approximation, R(n)
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around v ⇠ 1, the approximation (16) to the plasma temperature is not accurate, due to

the shift of the equation of state parameter from w ⇡ 0 to w ⇡ 1/3; moreover, entropy

production continues beyond v = 1, which further dilutes the dark matter yield below the

analytical approximation. Note that, nevertheless, the correction is not large, 0.4 . f(n) .
3.3 for n > 0. Eq. (20) is one of the main results of this paper.

We see from eq. (20) that as n increases, the final result for the abundance is in-

creasingly sensitive to the highest temperature, and the details of reheating are relevant.

In particular, physically di↵erent results are obtained for n < 6 vs. n � 6, as already

noted in [7] (that only focused on the n < 6 case). For n < 6 the more accurate result (19)

corrects the instantaneous reheating result by a factor of O(1). For a steeper dependence of

the cross section on the temperature, the final dark matter abundance can be significantly

di↵erent from the naive expectation. In particular, in terms of the inflaton decay rate, the

enhancement for the n = 6 case can be equivalently rewritten as

R� ' 1.14 ln

✓
m�

��

◆
� 3.17 . (21)

3 Representative examples

In this section we consider three representative cases characterized by the thermal cross

section (1), with three di↵erent values of the coe�cient n. These are: (1) Gravitino pro-

duction in low scale supersymmetry models (with a single gravitino in the final state). This

8

where F =
p
3MPm

3/2

is the supersymmetry breaking order parameter.

The strong suppression (/ F 4) of the cross section would indicate that a relatively

high reheating temperature and gravitino mass are required to produce a su�cient quantity

of gravitinos to account for the observed relic density. Indeed for a gravitino mass of 1 EeV,

a reheating temperature of approximately 5 ⇥ 1010 GeV is needed [23], placing strong

constraints on inflationary models and supersymmetry breaking [28].

Figure 5 shows the exact and instantaneous results for R� in the n = 6 case. In this

case, one sees that the standard estimate of the dark matter abundance evaluated at TRH

is not very accurate and the final ratio is R� ⇠ 25.7, consistent with the result (21). From

eq. (6) we see that, in order to obtain the correct gravitino dark matter abundance, the

reheating temperature should be decreased by a factor ⇠ 2

3

with respect to that indicated

by the naive assumption of instantaneous decay.

10- 10- 0.01 10

10

104

107

1010

Figure 5: As in Fig. 2, for n = 6.

4 Conclusions

Reheating after inflation is responsible for the entire matter and radiation content of the

Universe. Thus, understanding the details of this process is crucial to our ability to develop

models incorporating entropy production, baryogenesis, and dark matter among many other

important ideas in cosmology.

In many models of dark matter, including well studied models of supersymmetric

dark matter, thermally produced dark matter particles come into thermal equilibrium, and

their final abundance is often determined after they freeze out of the thermal bath. On

13

In the regime A ⌧ v ⌧ 1, we obtain [5]

⇢� ' ⇢
end

A2v�8/3�(5/3, v) ' 3

5
⇢

end

A2v�1 =
4

5
(��MP )

2v�1 , (15)

where � denotes the lower incomplete gamma function. This in turn, implies

T '
✓

24

⇡2g

◆
1/4

(��MP )
1/2v�1/4 . (16)

With the scattering cross section given by (1), and neq

� = g�nrad

, we can readily rewrite

(10) as

d

dT

"
n�

✓
a

a
end

◆
3

#
=

g2

�h�|v|in2

�

Ṫ

✓
a

a
end

◆
3

= g2

�

✓
�T n

⇡Mn+2

◆✓
⇣(3)T 3

⇡2

◆
2

✓
�96��M

2

P

g⇡2T 5

◆✓
24�2

�M
2

P

g⇡2T 4A

◆
2

, (17)

which is solved by

n�

✓
a

a
end

◆
3

=
55296⇣(3)2 g2

���
5

�M
6

P

g3⇡11Mn+2A2

⇥

8
>><

>>:

1

n� 6
(T n�6

max

� T n�6) , n 6= 6

ln

✓
T

max

T

◆
, n = 6

. (18)

Dividing this by n
rad

, we find, at the end of reheating,

Y (n)

� (TRH) =
96⇣(3) g2

��MPT
7

RHp
40g1/2

RH⇡
4Mn+2

⇥

8
>><

>>:

1

n� 6

�
T n�6

max

� T n�6

RH

�
, n 6= 6

ln

✓
T

max

TRH

◆
, n = 6

. (19)

We can now compare this result with (6), obtained under the assumption of instan-

taneous reheating. At T ⌧ TRH we find

R(n)

� (T ) ⌘ Y
(n)

� (T )

Y�,instant.

' f(n)

8
>>>>>>>>><

>>>>>>>>>:

8

5

✓
n+ 1

6� n

◆
, n < 6

56

5
ln

✓
T

max

TRH

◆
, n = 6

8

5

✓
n+ 1

n� 6

◆✓
T

max

TRH

◆n�6

, n > 6

, (20)

where we have inserted a function f(n) shown in Fig. 1, which corrects the analytic result

discussed above, with the exact numerical evaluation. This correction is necessary as,
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« And what is the signature of such 
models? »

A smoking gun signal (CTA? HAWK?)
K.A. Olive et al., work in progress 
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~
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Messages to keep in mind
Salviati:  

Did you know 
that the first 
dark matter 

computation in the 
Universe was made 

by Poincare 
himself in 

1906?

Simplicius:  
And I also 

recently noticed 
that secluding a 

sector by an 
intermediate scale 

leads to a 
miracle

Sagredo:  
Yes, but be 

careful in the 
Early Universe 

when dealing with 
high energy 
processes


