





## Optics with M2D ON

J. Pasternak, Imperial College London / ISIS - RAL- STFC

#### Design Optics in Cooling Channel



Beam incoming from beam line, optimised for transmission, passes through variable thickness high-Z diffuser to increase emittance above the equilibrium value in a controlled way at the entrance to the Channel.

- Optics of the channel assumes matched beam ( $\alpha$ =0) in both upstream and downstream solenoids.
  - To maximise transmission.
  - To minimise emittance growth due to mismatch.
  - In practice this condition is met only approximately, but a matched beam sample can be selected with sufficient statistics.
- Small beta waist is created with the help of Matched Coils and AFC at absorber (centre).
  - Solenoid and flip modes are proposed and used for data taking.
- Optics can only be approximately symmetric due to energy loss and large momentum spread.

### Beam Optics: Data Taking

- Failure of QPS during training caused one of the Matching Coils in SSD to be inoperable.
- This caused beam mismatch and a decrease in transmission, which could be partially compensated.
  - Compensation required operation with reduced field in SSs (4T→3T)
  - As an effect the optics is non-symmetric
- In the downstream solenoid, the second match coil (M2D) was not operated as a precaution.
  - Operation with M2D on is foreseen in October.
- The flexibility of the lattice has allowed the optics to be tuned such that a cooling signal is expected.



β without both downstream Matched Coils

Beta function in flip mode

## Transmission with and w/o M2D



Beam: 140MeV/c, 6mm,

## Emittance with and w/o M2D

Emittance, mm



Beam: 140 MeV/c, 6mm, 4.8% dp/p

### How to reduce emittance growth?

- Reduce 4D emittance
  - Cooling effect will be affected
- Reduce momentum spread
  - Statistics will be smaller

# Emittance with and w/o M2D

Emittance, mm



Beam: 140 MeV/c, 4.2mm, 1.5% dp/p

# Example new setting with M2D on FLIP

- Beamline:
  - pionic at 140 MeV/c
- Cooling channel:

#### Currents in A

| Setting             | E2u   | Cu    | E1u   | M2u    | M1u   | FCu    | FCd     | M1<br>d | M2d     | E1d    | Cd     | E2d    |
|---------------------|-------|-------|-------|--------|-------|--------|---------|---------|---------|--------|--------|--------|
| Sol_140_with<br>M2d | 205.7 | 205.7 | 205.7 | 168.25 | 191.0 | 129.24 | -129.24 | 0.0     | -195.72 | -205.7 | -205.7 | -205.7 |

- Stored energy in SSD ~1.9 MJ
- •SSU/FC force 13t

# Search for solenoid mode seetings

- Constraints
  - Acceptable forces
  - 205.7A in E-C-E (both SSs)
  - Good transmission
  - As good cooling as possible
- Method
  - Choose the lattice based on lattice parameters
  - Test the performance using MAUS MC (Imperial framework developed by C. Hunt and J-B. Lagrange)

Or

- Scan parameters space using MAUS MC
- We tested many lattices and downselected

# Downselected lattices Solenoid mode

### **Black Lattice**

#### Currents in A

| Setting             | E2u   | Cu    | E1u   | M2u    | M1u    | FCu   | FCd    | M1<br>d | M2d         | E1d    | Cd     | E2d    |
|---------------------|-------|-------|-------|--------|--------|-------|--------|---------|-------------|--------|--------|--------|
| Sol_140_with<br>M2d | 205.7 | 205.7 | 205.7 | 177.52 | 193.97 | 65.73 | +65.73 | 0.0     | +192.8<br>1 | +205.7 | +205.7 | +205.7 |

### **Red Lattice**

#### Currents in A

| Setting             | E2u   | Cu    | E1u   | M2u   | M1u    | FCu   | FCd    | M1<br>d | M2d         | E1d    | Cd     | E2d    |
|---------------------|-------|-------|-------|-------|--------|-------|--------|---------|-------------|--------|--------|--------|
| Sol_140_with<br>M2d | 205.7 | 205.7 | 205.7 | 154.2 | 209.54 | 65.53 | +65.53 | 0.0     | +190.8<br>6 | +205.7 | +205.7 | +205.7 |

•SSU/FC force 13.7t for red

# Optics, 140 MeV/c



# Transmission, 6mm beam

#### N of particles



## Emittance evolution, 6mm beam

#### N. RMS emittance, mm



Black seems to have stronger emittance growth

due to larger beta downstream the absorber?

### Which to choose?

- Red seems to have better emittance evolution, while both have pretty similar transmission
  - But where is cooling?



# Downselected lattices Solenoid mode with lower SSD field

#### Black Lattice 2T

#### Currents in A

| Setting             | E2u   | Cu    | E1u   | M2u    | M1u    | FCu   | FCd    | M1<br>d | M2d         | E1d    | Cd     | E2d    |
|---------------------|-------|-------|-------|--------|--------|-------|--------|---------|-------------|--------|--------|--------|
| Sol_140_with<br>M2d | 205.7 | 205.7 | 205.7 | 175.55 | 174.36 | 55.88 | +55.88 | 0.0     | +205.8<br>1 | +137.1 | +137.1 | +137.1 |

#### Red Lattice 2.1T

#### Currents in A

| Setting             | E2u   | Cu    | E1u   | M2u   | M1u    | FCu   | FCd    | M1<br>d | M2d         | E1d    | Cd     | E2d    |
|---------------------|-------|-------|-------|-------|--------|-------|--------|---------|-------------|--------|--------|--------|
| Sol_140_with<br>M2d | 205.7 | 205.7 | 205.7 | 154.2 | 209.54 | 65.53 | +65.53 | 0.0     | +190.8<br>6 | +144.0 | +144.0 | +144.0 |

•SSU/FC force 13.7t for red

# Emittance evolution, low SSD B, 4.2mm beam, 140 MeV/c



Red lattice has ~2% cooling effect, while black does not have (in IC MC MAUS framework)

## Summary

- Red lattices seems to perform a bit better using IC analysis toolkit.
  - We have a different results in MC (comparing with C. Rogers),
     which causes the decision making more challenging.
- Still both black and red are very close in many aspects, which is quite promising.
- Proposal:
  - Run 140 MeV/c with high and reduced field in solenoid mode
  - Run the best cooling performance and one 200 MeV/c setting in the flip mode.
  - Can we have more settings (next Run?)