

COMPUTING & SOFTWARE

Durga Rajaram

MICE CM 49 Oct 4, 2017

CONTROLS & MONITORING

- Lots of improvements since last CM
 - Remote monitoring for LH₂
 - IOC, GUI
 - Adding run-by-run LH₂ parameters to the CDB needs a post-processor later
 - Major improvements to the alarm limits & ALH implementation
 - Run control has features but is stable during running
- More from Ajit Kurup...

ONLINE

- Trigger & DAQ readout
 - Trigger, readout & software: stable
 - Major intervention in April/May with tracker cryostats
 - Several dead channels → waveguide reconfiguration to optimize
 - Issue with EMR readout during 2017-02 startup
 - EMR VRB(s) failed to initialize, then later died on first event
 - Still not clear if issue with VRB or the DBB-VRB communication
 - DAQ automatically stops when readout drops out
 - Tracker veto timing is not optimized, results in readout mismatch unpacking errors at high instantaneous rates

Online Monitoring

- Working as advertised
- Traps unpacking/corrupt data errors & raises alarm
- Requires shifter intervention to stop run if alarm status remains "serious"

Online Reconstruction

- Automatic
- Runs in multithreading mode, occasional crashes which are not seen in single threaded mode. Restarts by itself after a crash

OFFLINE

Reconstruction

- Currently @ MAUS v3.0.0
- Detectors:
 - Rolling review of trackers to focus on improving efficiency. Changes to pattern recognition fitter
 - Issues with tracker calibrations post-remapping are being addressed
 - TOF2 inefficiency, offset & MC-data discrepancy need to be resolved

- Globals:

- Global (track matching) in MAUS
- Performance (speed) is a resource issue: ~x3-5 slower
- Performance (efficiency) needs to be studied
- Fitting & PID need to come in

Geometry & Fields:

- Bugs in diffuser description (thickness, materials, z-order) resolved
- Issue with interpretation of alignment corrections fixed, but needs to go into production geometry

INFRASTRUCTURE (SPARES)

- Need to ensure availability of hot-swappable spares
 - Tracker:
 - Need working left & right AFE boards
 - Spares available, but need to be flashed. Can be done only from the hall

- EMR:

- During startup we were hampered by lack of working spare readout modules.
- Since then, have identified spares at INFN Trieste

- DAQ:

 Failover computer in place & up-to-date but requires tweaking for switch-over

- CDB:

Failover has been tested & documented

DATA PROCESSING

- Offline reconstruction routinely done in MLCR
 - Automatically triggered at the end of each run
 - Online reconstruction plots bundled with output
 - Added "globals version" of reconstruction as a second parallel production task
- Reprocessing currently being done in MLCR
 - Takes ~ week
 - Step4 data will be reprocessed with new MAUS after datataking & tracker calibrations are finalized

• GRID:

- the current job scheduling interface is being retired
- Ray & Dimitrije have tested submissions with the DIRAC framework MC productions now with new framework
- Our Grid load at the moment is just MC
- Post-MLCR, plan is to use PPD nodes for batch reprocessing

MC PROCESSING

- Dimitrije has been pushing MC requests to the Grid & turn around time is ~ < 1 day
- Status & issues:
 - Have generated beam libraries for the now-standard pion-beam currents & "tuned" currents
 - Submission successfully framework moved from WMS (which is being retired) to DIRAC
 - Production for LH2 MC needs to be done
 - Need to check framework for running non-standard MC (for analysis systematics)

PUBLICATIONS

MICE Software publication:

- Covers MAUS framework, simulation & reconstruction software
- Does not cover DAQ, C&M,
 CDB, Data-handling could consider separate publications for those
- Comments on draft 1 from KL –
 to be implemented

Contents

1.	Intr	roduction	2
	1.1	The MICE Experiment	2
	1.2	Software Requirements	2
2.	MAUS		3
	2.1	Code Design	3
	2.2	Data Structure	6
		2.2.1 Physics Data	6
		2.2.2 Top Level Data Organisation	10
	2.3	Data Flow	10
	2.4	Testing	10
3.	Moi	nte Carlo	11
	3.1	Beam generation	12
	3.2	GEANT4	12
	3.3	Geometry	12
	3.4	Tracking, Field Maps and Beam Optics	13
	3.5	Detector response and digitization	13
4.	Reconstruction		14
	4.1	Time of flight	14
	4.2	Scintillating fiber trackers	14
	4.3	KL calorimeter	15
	4.4	Electron-muon ranger	15
	4.5	Cherenkov	15
	4.6	Global reconstruction	15
		4.6.1 Global Track Matching	16
		4.6.2 Global PID	16
	4.7	Online reconstruction	19
_	G		20

- 1 -

SUMMARY

- Lots of improvements
 - LH2 monitoring, alarm handler, state machines...
 - DAQ stable, must understand dead channels in tracker
 - Remaining inefficiencies & calibration issues in track reconstruction being addressed
 - Beam description in MC being understood & improved
 - Fast-reconstruction in MLCR routine
 - Production with global track matching has been implemented
 - Overall stable operation pushing data out for analysis