

Effect of spurious quench heater and CLIQ firing on the LHC and the future HL-LHC beams

M. Valette, B. Lindström CERN

151st Machine Protection Panel – 1 Sep 2017

Outline

- Quench Heater effect on the beam
 - Context, 2016 observations
 - MD#1826 on main dipole Quench Heaters
 - Quench Heater parameters and kicks for LHC and HL-LHC magnets
 - Conclusions and possible mitigations
 - Outlook on MD#2186 on triplet Quench Heaters
- CLIQ effect on the beam
 - CLIQ concept
 - CLIQ discharge in the triplet, currents and magnetic fields
 - Spurious discharge in Q1/Q3
 - Spurious discharge in Q2
 - Conclusions on interlocking limits

Context: 2016 observations

- In 2016, shortly before dumps caused by quenches, low level periodic losses were observed.
- It was associated with a small shift and oscillation of the beam in the vertical plane.
- The QH firing were identified as a potential cause.

MD#1816 MB Quench Heaters

- From simulations: the QH cause a 0.7 mT field in the beam area.
- Associated orbit change: +/- 400 µm, confirmed experimentally.
- A delay of up to 3 ms (35 turns) between QH firing and dump was also confirmed.

Quench heaters in other magnets

- **MB QH** are powered with **80 A**, some **QH in the LHC** are powered with **300 A** (e.g. D1 in IP2 & 8).
- Some HL-LHC magnets will be protected by up to 12 QH circuits.

- A broader analysis of the QH of LHC and HL-LHC magnets was performed:
 - The triplet and IPDs are long magnets with large local β-functions => large kicks.
 - IPQs (MQM, MQY, ...) with short magnetic lengths and smaller β functions were ignored.

Derivation of kicks

In the following:

 Many numerical simulations, magnetic field is derived analytically (<1% ≠ simulations):

$$B_x = \frac{4\sin(\theta)\,\mu_0\,IQH}{2\pi\,r}$$

Associated kick:

$$Kick = \frac{B_x L_{magnet}}{B\rho} \sqrt{\frac{\beta_{magnet}}{\varepsilon}}$$

Orbit excursion:

 $\sigma_{max} \cong Kick * 1.185$

(confirmed with MAD-X)

Quench Heater kicks for LHC and HL-LHC magnets

				HL-LHC				
Magnet	BL (T.m)	β (m)	kick (σ)		Magnet	BL (T.m)	β (m)	kick (σ)
MB	0.01	135	0.28		MB	0.01	420	0.49
MQ	0.002	181	0.08		MQ	0.002	575	0.15
D1	0.022	622	1.37		D1	0.008	18 km	1.98
D2	0.014	1244	1.18		D2	0.0125	5.8km	2.44
D3	0.009	304	0.38		11T	0.02	144	0.42
D4	0.015	441	0.74		Triplet	0.11	4.5km	28.8
11T	0.02	145	0.44		w/out IL		-	
Triplet	0.017	1400- 5800	2.51		Triplet with IL	0.20		52.0

- MQX & IPDs QH have **kicks > 1** σ => dump via the BLMs.
- If QH of all 3 MBs connected to an nQPS crate were to fire: kick up to 2.5 σ.
- HL-LHC triplet QH have very large kicks, beam would end up in aperture if fired before the dump.

=> Ensure the beam is dumped before these QH are fired.

Possible mitigations

- In the previous table: all QH kicks add up, for magnets with multiple circuits.
 - Could be mitigated by using other connection schemes with HL-LHC magnets: quadrupole, compensating dipoles, ...

=> Has to be brought to the circuit forum to verify compatibility with magnet protection.

Conclusions

- The kick from QHs in most LHC and HL-LHC superconducting magnets were calculated, with some assumptions.
- Very large kicks are to be expected for the triplets and IPDs.
- This effect can be mitigated by faster interlocking on QH firing.
- Alternative mitigation: lower the dipole kick of QH by using different connection schemes.

Outlook on MD#2186

- Follow-up MD will be performed at the end of the year on triplet QH.
- Allows verifying the kicks from the quench heaters and the delay before dump.
- Simulations
 suggest kicks
 up to 2 σ

(both planes)

 Will be performed on the ALICE triplet.

Quench Heater parameters for LHC and HL-LHC magnets

LHC				HL-LHC			
Magnet	L (m)	I _{QН} (А)	B _x (mT)	Magnet	L (m)	I _{QH} (А)	B _x (mT)
MB	14.3	80	0.71	D1 (HF)	6.27	168	0.93
MQ	3.1	80	0.86	D1 (LF)	6.27	168	0.36
D1	9.45	300	2.4	D2 (HF)	7.78	122	1.25
D2	9.45	190	1.4	D2 (LF)	7.78	122	0.38
D3	9.45	123	0.95	MQXFA	4.2	200	
D4	9.45	200	1.5	MQXFB	7.15	200	
11T (HF)	5.5x2		1.4	HF1		200	1.28
11T (LF)	5.5x2		0.47	HF2		200	0.6
MQXA	6.37	80	0.72	LF1		200	1.4
MQXB	5.5	80	0.72	LF2		200	0.25
				IL1		200	1.9

200

0.94

IL2

CLIQ – Coupling Loss Induced Quench

- CLIQ a new type of quench protection system
- Discharges 2 kA into magnet coils, heating the whole mass
 - Changes the magnetic field in the beam region
- Current and magnetic field simulations done in STEAM [1]
 - Tool for multi-physics simulations see reference for more info
- Effect on beam simulated in MAD-X*

* Optics: HLLHCV1.2: lhc_hllhc12_round

12

[1] L. Bortot et al. "A Consistent Simulation of Electrothermal Transients in Accelerator Circuits." *IEEE Transactions on Applied Superconductivity* 27.4 (2017): 1-5.

CLIQ – Coupling Loss Induced Quench

- Capacitor discharges current in magnet circuit
- 2 kA of current going into the magnet coils imperative to study its criticality
- Poles P3 and P1 see lower current
- Poles P4 and P2 see higher current
- Heat is deposited in the copper matrix via inter-filament and inter-strand coupling losses, causing a quench

CLIQ in Triplet (Q2 and Q3)

- Differences in connection, different magnetic fields.
- Q1 electrically same as Q3
- From optics, Q3 has larger beta function, and is thus more critical
- Q2: Symmetric discharge (opposite poles, same current change)
- Q1/Q3: Asymmetric discharge (one pole increased current, three poles decreased)

CLIQ in Triplet (Q2 and Q3)

- Differences in connection, different magnetic fields.
- Q1 electrically same as Q3
- From optics, Q3 has larger beta function, and is thus more critical
- Q2: Symmetric discharge -> Quadrupolar field -> beta beating
- Q1/Q3: Asymmetric discharge -> Skew dipolar field -> orbit excursion

Magnetic Field Decomposition

	Bn [mT]	Bs [mT]	dB/dx [mT/m]	dB/dxx [mT/m^2]
Q2	~0	~0	229	203
Q3	47.5	47.5	49.6	27000

CLIQ current approximated by a sinus until first peak (12 / 20 ms)

Q3 – orbit excursion

Beam lost shortly after turn 100

Q2 – Beta Beating

Beta beating of ~30 % at the TCPs

Conclusions

- CLIQ in Q3: Orbit changes too quick to rely on QPS, should be interlocked against:
 - 0.5 σ after ~2 ms (~310 A of CLIQ current, i.e. 1.9% current change)
 - 1 σ after ~4 ms (~620 A of CLIQ current, i.e. 3.8% current change)
- Could also be mitigated by changing the connection scheme, but must be weighted against magnet protection constraints
- CLIQ in Q2: Beta beating of ~30 % at TCPs. Need be verified with collimation how critical this is for the passive protection

Q3 – Compensating case

- Maximum orbit offset for compensating connection scheme (Q3a and b) smaller than baseline scheme; beam is not lost into aperture
- Less losses on skew collimators

