Recent Advances of Machine Learning

Jong-June Jeon

University of Seoul

September 7, 2017

- Learning based on data
- Regularization method
- Classification and deep learning

Learning based on data

Regression: Statistical method for learning the relation between two more variables

Figure: Scatter plots of paired data

Regression: Statistical method for learning the relation between two more variables

Figure: Which one is better?

Conventional interest in regression models

- Detected signal is statistically significant?
- If the true model is linear, then how can I measure the uncertainty of the estimated model
- What is the lower bound of the asymptotic variance of the estimated models.
- What is the most efficient estimation method?
- How can I select the true model under large samples?

Inference !

Prediction

- If we are only interested in prediction, there is another story.
 - Inference is out of interest (eg p-value, R square, selection consistency)
 - Under the circumstances of accumulating data, the learned (estimated) model depends on the observed data.
 - Predictive performances should be assessed by future data.

Goal is to improve prediction accuracy !

Change of paradigm

- Past: data is scare resource. If data is observed once, the model is estimated based on the observed data.
- Now: data is not scare resource any more. Whenever data is observed, the model is learned(estimated) based on the data.

Linear model

- Explanatory variable : $\mathbf{x} \in \mathbb{R}^p$
- Response variable: $y \in \mathbb{R}$
- Linear predictor: $\hat{y} = \mathbf{x}^T \hat{\boldsymbol{\beta}}$

 $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, \cdots, \hat{\beta}_p)^T \in \mathbb{R}^p$ is called of regression coefficient.

Linear model: estimation

- Let training set be $\mathcal{T}_r = \{(y_i, \mathbf{x}_i) : 1 \leq i \leq n\}$
- Least square method is given by the minimizer of $RSS(\beta)$ where

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$

• This estimator is called of least square estimator(LSE)

Figure: Estimated predictor: $\hat{Y} = 0.5274 + 1.0212X$

Linear model: estimation

Generative model assumption

•
$$y_i = \mathbf{x}_i^T \boldsymbol{\beta}^* + \epsilon_i$$

•
$$\epsilon_i \sim_{iid} (0, \sigma^2)$$

- If the true model is linear, it is known that LSE, $\hat{\beta}$, converges to the true parameter in probability.
- $\sqrt{n}(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}^*)$ weekly converges Gaussian distribution.

Linear model: estimation

- Note that the uncertainty of $\hat{oldsymbol{eta}}$ depends on the training set \mathcal{T}_r
- Let \mathbf{x}_0 be evaluation points then linear predictor is $\mathbf{x}_0^T \hat{\boldsymbol{\beta}}$ and the risk defined though l_2 loss function is given by $\mathbf{E}_F (Y \mathbf{x}_0 \hat{\boldsymbol{\beta}})^2$ where $Y \sim F$ (conditional distribution given $X = \mathbf{x}_0$.
- · Generally risk of the predicted model is given by

$$R(\hat{\boldsymbol{\beta}}) = \mathrm{E}_F (Y - X\hat{\boldsymbol{\beta}})^2$$

where $(Y, X) \sim F$

Linear model:Estimation

- model bias: discrepancy between true model and expectation of estimated model.
- Suppose that $\mathrm{E}(Y|\mathbf{X}=\mathbf{x}) \neq \mathbf{x}_i^T \boldsymbol{\beta}_j^*$
- For example,
 - $Y_i = 3 + X_i^2 + \epsilon_i$ where $\epsilon_i \sim N(0, 1)$
 - Note that $E(Y|\mathbf{X}_i = x) = 3 + x^2$
 - Try to fit a model in linear model space.

Linear model:Estimation

Figure: Blue line denotes the estimate model in the linear model space

Learning based on algorithm

- K-nearest neighbourhood algorithm
- Let (y_i, x_i) for $i = 1, \dots, n$ be training samples.
- $N_k(x)$: the index of k samples close to x
- Predictor is given by

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

10-NN algorithm

 $\hat{Y}(0) =$

10-NN algorithm

 $\hat{Y}(0) =$

10-NN algorithm

 $\hat{Y}(0) = 2.446989$

P

10-NN algorithm

 $\hat{Y}(1) = 4.024909$

10-NN algorithm

 $\hat{Y}(-1) = 4.314436$

10-NN algorithm

Figure: $\mathbf{x} = (x_1, x_2)' \in \mathbb{R}^2$

	y $\hat{~}$	x.1 [‡]	x.2 ¢
1	1	0.258422145	0.65652803
2	1	1.465052981	0.85302659
3	1	0.105764548	0.44688424
4	1	2.946235249	1.81687215
5	1	0.568850250	2.00187395
6	1	-0.700746413	1.27965349
7	1	1.605736680	1.23851520
8	1	2.161475264	1.11734064
9	1	1.213781464	1.78350109
10	1	0.803053201	0.66799860
11	1	1.108432017	3.51004978
12	1	1.357234148	1.31799414

э

- linear predictor: $\hat{y} = 0.62223 0.03565x_1 0.05486x_2$
- decision boundary:

 $\{(x_1, x_2) \in \mathbb{R}^2 : 0.5 = 0.62223 - 0.03565x_1 - 0.05486x_2\}$

Figure: decision boundary is given by hyperplane

$$\hat{Y}(x) = \begin{cases} 1 & \text{if } \frac{1}{k} \sum_{x_i \in N_k(x)} y_i \ge 1/2 \\ 0 & o.w \end{cases}$$

- ● ● ●

э

 $\frac{1}{k} \sum_{x_i \in N_k(x)} y_i = - \hat{Y}((0,2)) =$

 $\frac{1}{k} \sum_{x_i \in N_k(x)} y_i = 9/11 \ge 1/2 \Rightarrow \hat{Y}((0,2)) = 1$

 $\frac{1}{k} \sum_{x_i \in N_k(x)} y_i = 5/11 \le 1/2 \Rightarrow \hat{Y}((0,0)) = 0$

Non-linear decision boundary is obtained by K-NN algorithm.

< □ > < 同 > < 三 >

∃ >

Model complexity

• The selection of *K* is crucial to obtain the best predictive performance.

Model complexity

k = 1
Model complexity

k = 3

Model complexity

k = 11

Model complexity

k = 31

Idea of K-NN algorithm

- K-NN algorithm can produce nonlinear model easily.
- The idea of K-NN algorithm is local approximation.

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

- For small K less data are used for estimating local mean such that model become complex and variance of the local mean increases.
- For large K vice versa.

Bias-Variance Trade off

Prediction error = $(Model bias)^2 + Model Variance$

- Complex model : Large variance and small bias
- Simple model: small variance and large bias

Selection of model with moderate complexity is required to achieve the best predictive model under restricted training sample. **Ensemble method**: variance reducing method by combining predicted models(weak learners)

We will see examples of ensemble method applied to tree model.

Tree model

• Learning algorithm to split regions

data underlying function

Single regression tree

문 🛌 문

10 regression trees using randomly sampled data

averaging tree

æ

< ∃ >

▲□ ▶ ▲ 目

Hard problem for classification tree

single tree

Jong-June Jeon Recent Advances of Machine Learning

・ロン ・部 と ・ ヨ と ・ ヨ と …

25 averaged tree

< 1 →

э

25 voted tree

Jong-June Jeon Recent Advances of Machine Learning

・ロト ・回ト ・ヨト ・ヨト

bagging: Bootstrap Aggregating

- Bootstrapping: re-sample data B times $\mathcal{T}_r^{(b)}$
- Aggregating
 - Learn model \hat{f}^b using $\mathcal{T}_r^{(b)}$ for each $b=1,\cdots,B$
 - Aggregating
 - Regression

$$\hat{f}_{bag}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(\mathbf{x})$$

Classification

$$\hat{f}_{bag}(\mathbf{x}) = \mathsf{Voting}\{\hat{f}^b(\mathbf{x}) : 1 \le b \le B\}$$

Thererical background of bagging

- Variance reduction
- Bias does not change

Note that "Prediction error =Bias² + Variance"

Linear model

Why did so many statistician and mathematician study linear model?

High dimensional linear model

- Suppose that $Y_i = f(Z_i) + \epsilon_i$ where f is smooth function.
- For sufficiently large $p \ f(z) \simeq \beta_0 + \sum_{j=1}^p \beta_j z^j$ and

$$E(Y_i|Z_i) \simeq \beta_0 + \sum_{j=1}^p \beta_j X_{ij}$$

where $X_{ij} = Z_i^j$. • Let $\mathbf{X}_i = (X_{i1}, \cdots, X_{ip})' \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$ • Linear model

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i$$

High dimensional linear model linear model Even for non-smooth function f,

$$\mathrm{E}(Y_i|\mathbf{X}_i) \simeq \beta_0 + \sum_{j=1}^p \beta'_j B_j(\mathbf{X}_i)$$

by appropriate selection of basis functions B_j s.

How to control model complexity in the high dimensional linear model?

Regularization method

.⊒ . ►

Statistical learning by empirical risk minimization

•
$$\mathbf{z}_i = (y_i, \mathbf{x}'_i)' \sim_{iid} \mathcal{P}$$

•
$$y_i = g(\mathbf{x}_i) + \epsilon_i$$
 for $i = 1 \cdots, n$ for $g \in \mathcal{G}$

• loss function : $l : \mathcal{Z} \times \mathcal{G} \mapsto \mathbb{R}^+$

• l_2 loss function: $l(\mathbf{z}_i, g) = (y_i - g(\mathbf{x}_i))^2$

- risk function:
 - Risk function : $R(g) = E_{\mathcal{P}}l(\mathbf{z},g)$
 - Empirical risk function: $R_n(g) = \sum_{i=1}^n l(\mathbf{z}_i, g)/n$
- Statistical learning

$$\hat{g} = \operatorname{argmin}_{g \in \mathcal{G}} R_n(g)$$

Visualization of bias-variance trade-off

Regularization method utilizes the bias-variance trade-off by restricting model space

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Regularization

$$\hat{g} = \operatorname{argmin}_{g \in \mathcal{G}} R_n(g)$$

subject to $J(g) \leq C$,

where $J: \mathcal{G} \mapsto \mathbb{R}^+$ is a penalty (regularization) function

We can write the above optimization problem as follows:

$$\hat{g}$$
 = argmin $_{g}R_{n}(g) + \lambda J(g)$

for some $\lambda \geq 0$

LSE

• (y_i, \mathbf{x}_i) for $i = 1, \cdots, n$: pairs of response and explanatory variables $(y_i \in \mathbb{R} \text{ and } \mathbf{x}_i \in \mathbb{R}^p)$

•
$$\boldsymbol{\beta} = (\beta_1, \cdots, \beta_p)'$$

• $y_i = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i \ (\epsilon_i \sim_{iid} (0, \sigma^2))$
• LSE:
 $\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2$

- ∢ ≣ ▶

LSE

- LSE is the Best linear Unbiased Estimator (BLUE).
- When n > p LSE is not unique.
- When $n \simeq p$, the variance of LSE is large.

Ridge estimator

$$\hat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2 + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{\text{penalty function}}$$

for $\lambda > 0$.

- Ridge estimator always exists.
- There exist a λ > 0 such that the ridge estimator corresponding to the λ has better predictive performance than LSE.
- When p > n the consistency of $\hat{\beta}_{\lambda}$ (convergence to the true parameter) is not guaranteed.

LASSO estimator

$$\hat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_{i} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta})^{2} + \underbrace{\lambda \sum_{j=1}^{p} |\beta_{j}|}_{\text{penalty function}}$$

for $\lambda > 0$.

- \bullet In the high dimensional problem ($p\simeq \exp(n)$) LASSO works well.
- Under regularity condition the lasso estimator achieves minimax optimal error bound.
- But strong model conditions are required for selection consistency.

Regularized estimator with nonconvex penalty

$$\hat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2 + \underbrace{\sum_{j=1}^{p} G_{\lambda}(|\beta_j|)}_{\text{penalty function}}$$

for $\lambda > 0$.

- When signals is large ($> O(1/\sqrt{n})$), the method can choose the signal variable well (oracle property).
- But strong model conditions are required for minimax optimality.

Regularization method provides a useful view of machine learning application

Sparsity

- Form non-differential points in model constraints we know that there are positive probability that estimated model has exactly zero coefficients.
- By introducing various type of constraints having non-differential points, structural learning is possible.

Structural sparse modeling 1

•
$$y_i = \mu_i + \epsilon_i$$
 for $i = 1, \cdots, n$

•
$$\boldsymbol{\mu} = (\mu_1, \cdots, \mu_n)$$
:

$$(\hat{\mu}_1, \cdots, \hat{\mu}_n) = \underset{\mu}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \mu_i)^2 + \underbrace{\lambda \sum_{j=1}^{n-1} |\mu_{j+1} - \mu_j|}_{\text{penalty function}}$$

Note that

•
$$\lambda = \infty$$
: $\hat{\mu}_j = \bar{y}$ for all j .

•
$$\lambda = 0$$
: $\hat{\mu}_j = y_i$ for all j .

• λ controls the number of change points.

Signal approximator Model:

$$y_i = \beta_i + \epsilon_i$$

where $\epsilon_i \sim_{iid} N(0, \sigma^2)$ for $i = 1, \cdots, n$.

Figure: Sigmal approximator

Structural sparse modeling 2

•
$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \epsilon_i$$
 for $i = 1, \cdots, n$.

• We obtain the following estimator of

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \boldsymbol{\beta})^2 + \lambda \sum_{j \neq k} |\beta_j - \beta_k|$$

• clustering of estimate coefficients.

Map of estimated trends in extreme precipitation

Trend map

ъ
Classification and deep learning

Binary Classification

- Reponse varible: $y \in \mathcal{Y} = \{-1, 1\}$
- Explanatory variable: $\mathbf{x} \in \mathcal{X}$
- Classification function: $C : \mathcal{X} \mapsto \mathcal{Y}$

ex) Let y be a variable denotes disease or normal, and let x be a vector of result of diagnosys. A doctor is a classification function to map x to \mathcal{Y} .

Let P be a distribution of (y, \mathbf{x}) .

• missclassification error of C on population:

$$P(C(\mathbf{x}) \neq y) = P(C(\mathbf{x}) = -1, y = 1) + P(C(\mathbf{x}) = 1, y = -1)$$

• Bayes error:

$$\min_{C} P(C(\mathbf{x}) \neq y)$$

• Bayes classifier:

$$C^* = argmin_C P(C(\mathbf{x}) \neq y)$$

Note that the bayes classifier is given by

$$C^*(\mathbf{x}) = \begin{cases} 1 & \text{if } P(y=1|\mathbf{x}) \ge 0.5\\ -1 & o.w. \end{cases}$$

э

We assume that (y_i, \mathbf{x}_i) for $i = 1, \dots, n$ are iid random samples.

$$\min_{C} \sum_{i=1}^{n} \#(C(\mathbf{x}_i) \neq y_i)/n$$

- The final goal is to estimate a classifier which minimizes the classification error.
- The function C is too complex such that we adopt an alternative method to construct classifier.

Scoring function

 f: X → ℝ: a function assigns a score to the observation with covariate x. Using this score, we construct a classifier as following;

$$C(\mathbf{x}; f) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge 0\\ -1 & o.w. \end{cases}$$

Estimation and surrogate loss function It is reasonable to find f minimizing

$$\sum_{i=1}^{n} I(C(\mathbf{x}_i; f) \neq y_i)/n,$$

which is equivalently written by $\sum_{i=1}^{n} I(y_i f(\mathbf{x}_i) < 0)$. Here $y_i f(\mathbf{x}_i)$ is called margin. cf) I(x > 0) = 1, if x > 0, I(x > 0) = 0, otherwise.

Convex surrogate loss function

However, this task requires to heavy computation so that we cannot use this method. The complexity comes frome 0-1 loss function. We replace the 0-1 loss function with other convex loss function called of the surrogate loss function.

Surrogate loss function

< □ > < □ > < □ > < □</p>

문 🛌 문

Surrogate loss function

Finally, we minimize the surrogate risk function

$$L(f;\phi) = \sum_{i=1}^{n} \phi(y_i f(\mathbf{x}_i))/n$$

The estimator in the classification problem is given by

$$\hat{f} = argmin_f L(f;\phi)$$

If the region of $\hat{f}(\mathbf{x}) = 0$ is similar to that of $P(Y = 1 | \mathbf{x}) = 0.5$, then $\hat{f}(\mathbf{x})$ gives an approximated bayes classifier.

$$\hat{C}(\mathbf{x}) = \begin{cases} 1 & \text{if } \hat{f}(\mathbf{x}) \ge 0.5 \\ -1 & o.w \end{cases}$$

If $\hat{f}(\mathbf{x})$ is linear, the region $\hat{f}(\mathbf{x}) = 0$ is linear space. If the bayes classifier is not linear, the model bias in classification always exists.

Example: logistic regression

- linear model: $f(\mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}$
- logistic loss: $\phi(yf(\mathbf{x})) = -yf(\mathbf{x}) + \log(1 + \exp(-yf(\mathbf{x})))$
- estimator: $argmin_{\beta} \sum_{i=1}^{n} \phi(y_i \mathbf{x}'_i \beta)$

The estimator is equal to Maximum likelihood estimator in the logistic regression model.

How can we produce a complex model f?

э

Estimation of non-linear classifier

- Additive models: assume that f is a additive model of trees (stumps) or simple classifier. When $\phi(z) = \exp(-z)$ and ridge penalty (see regularization) is applied, then the classification problem is called adaBoost.
- Feature mapping: assume that the input space are project on a feature space. When $\phi(z) = (1-z)_+$ and ridge penalty (see regularization) is applied, then the classification problem is called support vector machine.

Neural Network for classification

- Composition
 - Input data is mapped onto linear space
 - Its image is transformed by non-linear activation function (sigmoid function, tanh, RELU...)
 - The transformed data is mapped onto linear space again.
 - • •
 - A feature of input data is obtained by above compositions.
 - Apply the conventional classification method.

Neural Network for classification

Figure: Visualization of neural network

э

∃ >

- **→** → **→**

Neural Network with l_2 loss for classification

Here we consider a single layer neural network without a bias term for notational simplicity. The objective function is given by

$$L(\boldsymbol{\beta}, \boldsymbol{\alpha}) = \sum_{i=1}^{n} (1 - y_i (\sum_{j=1}^{k} \beta_j \sigma(\mathbf{x}' \boldsymbol{\alpha}_j))^2 / n,$$

where σ is sigmoid function, $\beta = (\beta_1, \dots, \beta_k)$ and $\alpha = (\alpha_1, \dots, \alpha_k)$.

Neural Network for classification

$$argmin_{\beta,\alpha}L(\boldsymbol{\beta}) = argmin_{\beta,\alpha}\sum_{i=1}^{n} (1 - y_i \sum_{j=1}^{k} \beta_j \sigma(\mathbf{x}'_i \boldsymbol{\alpha}_j))^2$$

Note that the score functions is given by $f(x) = \sum_{j=1}^{k} \beta_j \sigma(\mathbf{x}' \boldsymbol{\alpha}_j)$ and the surrogate loss function $\phi(x) = (1-x)^2$.

- It is known that all methods (additive models, feature mapping, composition) can achieves ideal decision boundary as # of data goes to infinity.
- Then the natural question is that "what is more efficient way to construct a complex model": which methods requires less parameters to construct a nearly optimal decision functions.
- Answer is simple. It depends on the true model. But many difficult problems are solved by deep neural network (image, video data analysis). ⇒ High order composition works ! (deep learning)

Deep neural network

• Construct a nonlinear model by compositions

$$f(\mathbf{x}) = h_k \circ h_{k-1} \cdots \circ h_1(\mathbf{x})$$

- Regularization (tune the estimated model)
 - Scheduling learning rate
 - Selection of moment parameter
 - Drop-out rate
 - # of layer (depth)
 - • •
- Computational issue
 - # of parameter is very large (10⁷ \sim)
 - Develop parallel optimization algorithm.
 - GPGPU computing

- Recent advances of machine learning answers the question, "how to efficiently construct a model space that can fitted well for considered data."
- Three methods, additive models, high order feature mapping, compositions, are competing.
- Successes in engineering fields tells that complex model space induced by compositions is useful for many areas.
- But regularizing the model is still crucial task to select the best model.

Thank you

æ

э