Discriminating quark/gluon jets with deep learning

Seungjin Yang

University of Soul

Contents

- 1. Introduction to jet discrimination
 - 1. Jet in particle physics
 - 2. Difference between quark and gluon jets
 - 3. Discriminating variables
 - 4. Jet image
- 2. Image classification with deep learning
 - 1. Convolutional Neural Networks
 - 2. Maxout unit
 - 3. Global average pooling

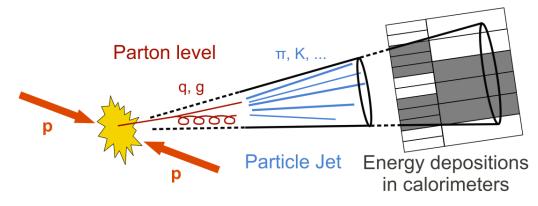
3. Experimental Setup

1 Detect

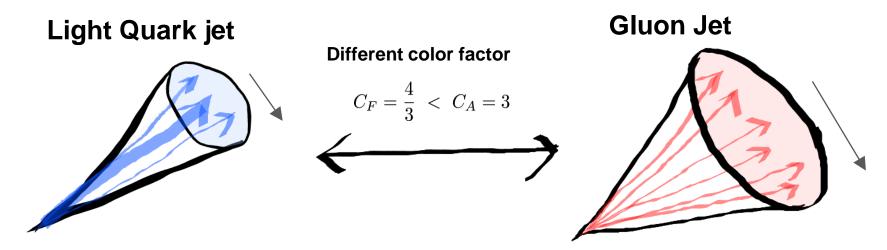
1.Introduction to jet discrimination

1.1 Jets in particle physics

- Narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. (from <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookGlossary</u>)
- In many searches for new physics signals at the LHC, jets are initiated by light-flavour quarks, while the jets in Standard Model background processes are initiated by gluons.



1.2 Difference between quark and gluon jets

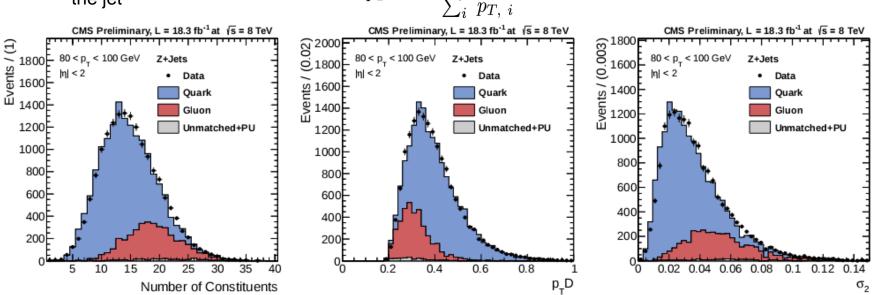


- Gluon jets produces more constituents with more uniform energy fragmentation. Therefore those are wider.
- Quark jets produces fewer constituents and hard constituents carry a significant fraction of the energy fragmentation. So those are narrow.

n

1.3 Discriminating variables

- > Multiplicity
- The number of particles constituting the jet



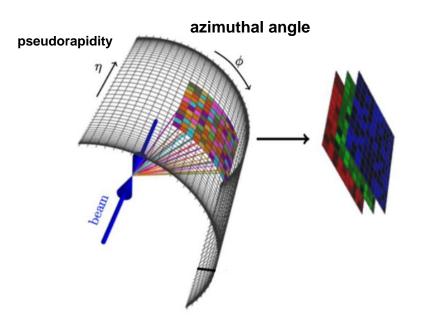
> Jet energy sharing variable

 $p_T D =$

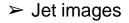
 $\sum_i p_{T, i}^2$

(ref. Tom Cornelis, for the CMS Collaboration. Quark-gluon Jet Discrimination At CMS), arXiv:1409.3072 [hep-ex]6/21

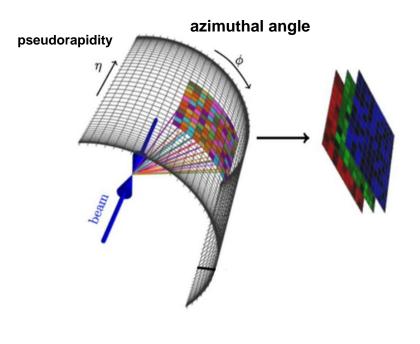
1.3 Jet images



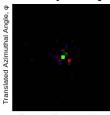
- The idea behind jet images is to treat the energy deposits in a calorimeter as intensities in a 2D image. (ref. Patrick T. Komiske, Eric M. Metodiev, and Matthew D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, arXiv:1612.01551 [hep-ph])
- We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer
 Vision. (ref. Josh Cogan, Michael Kagan, Emanuel Strauss, Ariel Schwartzman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging arXiv:1407.5675 [hep-ph])



1.3 Jet images



Down quark jet

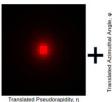


Translated Pseudorapidity, $\boldsymbol{\eta}$

Summed jet images (220K)
Quark jets

Neutral

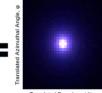
Charged multiplicity



Charged pT

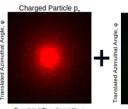
٠

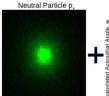
Translated Pseudorapidity, n



Translated Pseudorapidity, ŋ

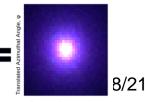
- Gluon jets





Charged Particle multiplicity

Translated Pseudorapidity, n



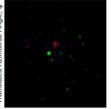
Translated Pseudorapidity, η

Translated Pseudorapidity, η

Translated Pseudorapidity, η

Translated Pseudorapidity, η

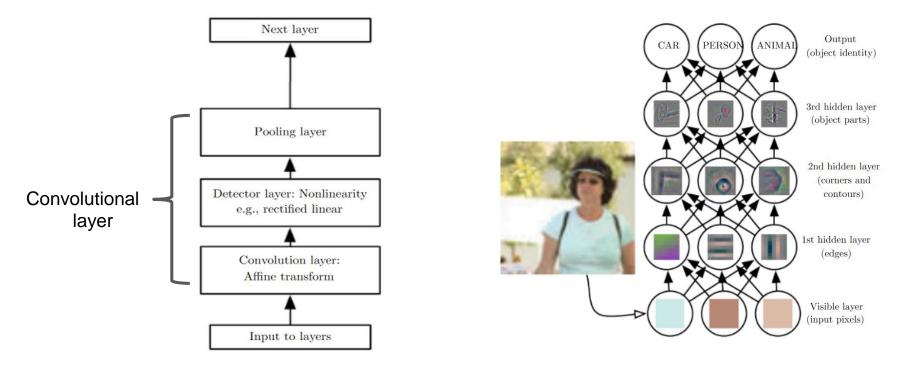
Gluon jet



Translated Pseudorapidity, η

2. Image Classification with Deep learning

2.1 Convolutional Neural Networks

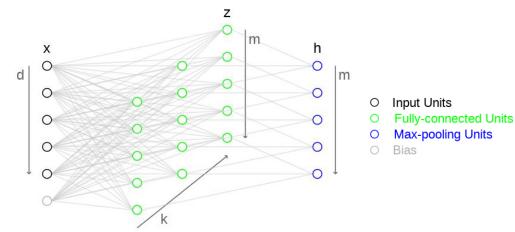


2.2 Maxout unit

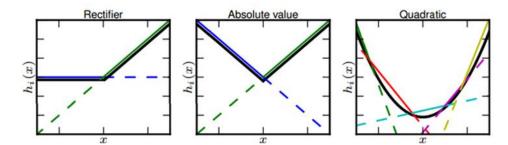
$$\succ z_{ij} = x^T W_{\dots ij} + b_{ij}$$
$$h_i(x) = \max_{j \in [1,k]} z_{ij}$$

- ➤ Generalization of rectified linear units.
- > Learning the activation function
- With large enough k, a maxout unit can learn to approximate any convex function with arbitrary fidelity.

ref. Ian Goodfellow and Yoshua Bengio and Aaron Courvill, *Deep learning*



(ref. http://www.simon-hohberg.de/2015/07/19/maxout.html)

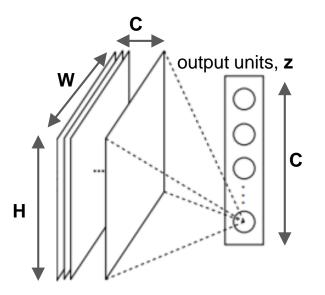


11/2 1

2.3 Global Average Pooling

 \succ $z_i = \sum_{j=1}^H \sum_{k=1}^W x_{ijk}$

- Global average pooling operation reports the average sum within all parameters in a feature map.
- Introduced to replace the traditional fully connected layers in CNN
- Global average pooling is itself a structural regularizer.

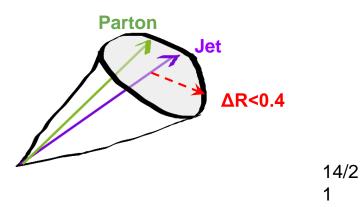


input feature maps, \boldsymbol{x}

3. Experimental Setup

3.1 Dataset

- ➤ Samples
 - QCD event generated by Pythia8 at LO using the CMSSW for the detector simulation.
 - jet eta cut: lnl < 2.4, jet pT < 20 GeV
- ➤ Jet image
 - 3 channels: charged particle pT, neutral particle pT and charged particle multiplicity
- $\eta, \varphi \in (-0.4, 0.4)$, where $(\eta, \varphi)=(0,0)$ is the jet center
- 33 x 33 pixels.
- NCHW format (cuDNN default)
- ➤ Jet matching
 - dR(jet, hard parton) < 0.4



3.2 Architecture of the model

Layer	Output size	#weight
Conv3-64 x2 Max Pool	[64, 17, 17]	1152 (=3x3x64x2)
Conv3-128 x2 Max Pool	[128, 9, 9]	2304
Conv3-256 x2 Max Pool	[256, 5, 5]	4608
Conv3-512 x2	[512, 3, 3]	9216
Global Average Pool	[512]	-
Maxout (k=10) Dropout (p=0.5)	[128]	656,640 (=513x128*10)
MaxOut (k=10) Dropout (p=0.5)	[2]	2580

➢ How to read

- Conv<kernel size>-<# output channels>
- Output size: [CHW] or [D]

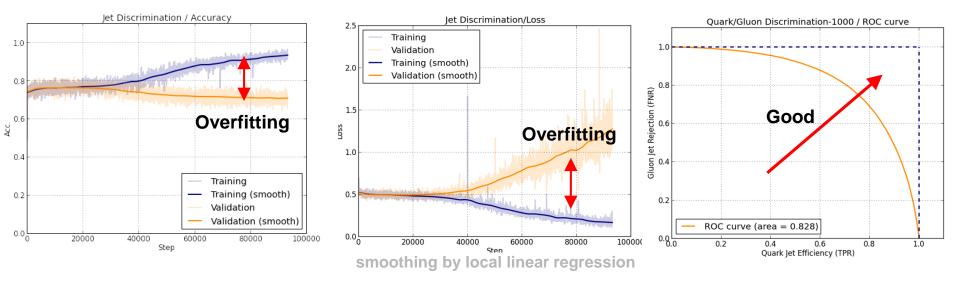
- > The number of weight
- 676K weight in 10 weight layer
- Most weights are in 1st maxout unit... (97%)

3.3 Setup details

Dataset	Training data 775K + Validation data 258K + Test data 258K	
Loss	(binary) cross entropy	
Optimization algorithm	Adam learning rate = 0.0015 1st / 2rd momentum decay = 0.9 / 0.999	
Weight Initialization	Xavier initialization	
Batch size	500 example	
#Epochs	100 (1 epoch ~ 1550 training step)	
Framework	TensorFlow (API r1.3)	

4. Results

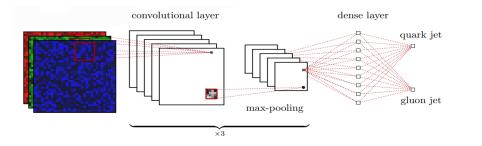
4.1 Metrics: acc., loss and ROC curve



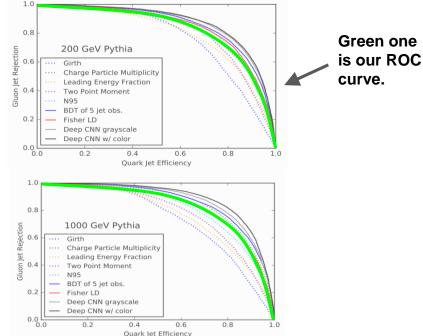
- ➤ Training took about 4.5 hours for 100 epochs on a single GPU
- ➤ Overfitting occurred after about 20000 steps.
- \succ The best auc is 0.838 on average.

18/2 1

4.2 Comparison with previous research



- Dataset in previous research
- clustering final state hadron (no detector simulation).
- jet eta cut: lnl < 2.5, jet pT cut: pT > 100 GeV
- Preprocessing: normalization + standardization
- pT binning: 200-220GeV, 1000-1100GeV
- ≻ Model
- 3 Conv. layer + 1 Dense layer

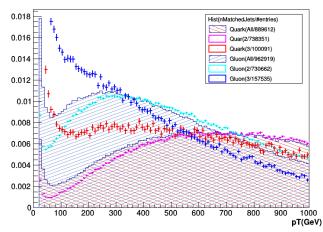


19/2

ref. Patrick T. Komiske, Eric M. Metodiev, and Matthew D. Schwartz, *Deep learning in color:* towards automated quark/gluon jet discrimination, <u>arXiv:1612.01551</u> [hep-ph]

4.3 Histogram of NN output with # matched jets

Quark/Gluon Jet Discrimination - 15000 step 10^{-2} 10^{-3 ⊢} Quark(all) Gluon(all) 10^{-4} Quark(nMatJets=2) Gluon(nMatJets=2) Quark(nMatJets=3) Gluon(nMatJets=3) 10^{-5} 02 0.3 04 0.5 0.607 0.8 0.9 01 quark-like gluon-like



Due to the ambiguity of jet matching, it is expected that gluon jets are mislabeled with quark jets.

CMS pt distribution (normalized)

20/2 1

5. Conclusion

> We trained deep neural networks to discriminate quark / gluon jets.

➤We need to investigate the quark / gluon jet definition and event level cleaning.

> We expect an improved model thorough

many normalization methods,

preprocessing method with minimization information loss