
Machine learning in the
string landscape

FABIAN RUEHLE (UNIVERSITY OF OXFORD)

CERN String Theory Seminar
12/09/2017

Based on [1706.07024]

‣ String theorists have produced large sets of data / samples of the
string landscape over the years

• Calabi-Yau manifolds

✦ CICYs in 3D and 4D

✦ Kreuzer-Skarke database

✦ Toric bases for F-Theory

• String models

✦ Type IIA/IIB models

✦ Heterotic on CY/Orbifolds/Free fermionic

✦ F-Theory

Data sets in String Theory

[Candelas,Dale,Lutken,Schimmrigk’88; Gray,Haupt,Lukas'13]

[Kreuzer,Skarke’00]

[Morrison,Taylor'12]

[Gmeiner,Blumenhagen,Honecker,Lust,Weigand’06; Davey,Hanany,Pasukonis'09; Franco,Lee,Seong,Vafa’16; …]

[Anderson,Constantin,Gray,Lukas,Palti'13;

[Taylor,Wang’15; Halverson,Tian’16; Halverson,Long,Sung’17; …]

Nilles,Vaudrevange’14; Abel,Rizos’14; Blaszczyk,Groot Nibbelink,Loukas,FR’15; …]

‣ Currently no selection mechanism for string vacua vast string
landscape

‣ Long term goal for: Map out the landscape

• Find string models in the landscape

• Find generic / common features of string-derived model

• Extract string theory predictions from the landscape

• Are low energy manifestations of string vacua linked?

• Find new relations/mathematical theorems from string theory

‣ Can we use neural networks (NNs) to answer or study such
questions? 

Study String Vacua

[He’17; Krefl,Seong’17; FR’17; Carifio,Halverson,Krioukov,Nelson’17]

)

‣ Starting point: 12D/11D/10D F/M/I-IIA-IIB-HE-HS (rather) unique
‣ Phenomenology of the model encoded in discrete (background) choices /

data (compactification space, fluxes, …)
‣ Given this data, can one decide whether a model has

• SM gauge group

• three generations with one pair of vector-like Higgs

• correct Yukawa textures

• 60 e-folds of slow-roll inflation

• a Minkowski/de-Sitter vacuum solution

• …

‣ In principle possible (computable for a given choice), but I cannot see it
directly from the input data can a NN decide / compute (some of) these?

‣ If so, how can we find most efficient NNs for the job? Genetic algorithms

Study String Vacua
)

)
)

‣ Introduction to Neural Networks

• Neural Networks 101 - How/why do they work

• Where can we apply neural networks

‣ Genetic Algorithms 101

‣ Combining both approaches

• Example: Classifying stable line bundles

• Example: Computing line bundle cohomology

‣ Conclusions

Outline

Introduction to Neural Networks

Output

f2

f1

Layer 1

Layer 2

Layer 3
Layer 5

Layer 4

Layer 6

Input

‣ Copy nature modelled after human brain

‣ Building blocks

• Input layer

• Hidden layer(s)

• Output layer

Neural Networks 101
)

Output

f2

f1

Layer 1

Layer 2

Layer 3
Layer 5

Layer 4

Layer 6

Input

‣ Connection between layers : Linear transformations :  
Matrix multiplication

‣ Each layer applies a function (activation function) to its input to
compute its output. Common choices are  
 

 Ramp Logistic Sigmoid Tanh 
 
 
 
 

‣ Typical NN:

Neural Networks 101

vi
out

= Aivi
in

+ bi

-6 -4 -2 2 4 6

0.5

1

-3 -2 -1 1 2 3

1

2

3

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

RM ! RN

Li

v 7! fn � Ln � . . . � f0 � L0

‣ Do not connect all outputs of layer to all inputs of layer

• Add / multiply / concat results of parallel NN streams

‣ Create loops

• Feed output of an NN layer back into its input

• Recurrent NN Give the network a memory (LSTM layers)

Modifications / Extensions
i i+ 1

)

=

Example NN

Output

f2

f1

Layer 1

Layer 2

Layer 3
Layer 5

Layer 4

Layer 6

Input

CL2 CL4 FL2 CL5

FL1

CL1

CL3

CL6Input Output

2 1 1

1

3

2

1

21 1

LinearLayer FunctionLayer
PartLayer CatenateLayer

‣ Precise way in which NN learn active field of research

‣ In supervised ML you show the network the correct results

‣ In unsupervised ML you let the network find common properties (clustering) and identify things
that “don’t fit in” by itself

‣ In this talk: supervised ML:
• Divide data set into a training set (30% of data) and validation set (70% of data)
• Randomly initialize the trainable parameters of the NN (e.g. weights and biases of the

connections)
• Let the network look at the entire train set (inputs and outputs) and minimize the difference

between its output and the output of the training set (w.r.t. some metric) “back-
propagation”

• Shuffle the training set and repeat until
✦ Error is not significantly reduced anymore
✦ Each training model has been used a set number of times
✦ A certain amount of time has elapsed

• Cross-check performance of trained NN against the validation set

Neural Networks - Training

‣ Three ways of applying neural networks

(A) To find & bypass implementations of algorithms (in
combination with genetic algorithms)

(B) To approximate functions (predictor)

(C) To classify outcome of some complicated / unknown  
 mathematical operation based on the structure of the input

‣ Once we have built a neural network to apply to (A) - (C) we
need to train it

‣ Once trained NNs can perform very efficiently

• They just apply simple functions to produce some output

• Computations are independent parallelizable

Neural Networks - Applications

)

‣ This is more about abusing the modular nature of NN

‣ Each layer performs an action / applies a function

‣ Implement an arbitrary algorithm by

• choosing the function appropriately

• including a (possibly trained) NN that performs a specific algorithm (e.g.
computes binomial coefficients)

• emulating a computer using NNs (combine NN layers that perform bit-wise
and/xor/not/… operations

‣ Like playing LEGO

(A) Using NNs to implement algorithms

‣ Simple case: 1 layer, 1 node, logistic sigma function
• Linear Layer:

• Activation Function:  

• : Steepness of step (step function for)

• : Position of step: (intersects -axis at for) 

(B) Using NN to approximate functions

a ! 1a

b b = 0y = 1/2y

a = 1, b = 0 a = 10, b = 0

-6 -4 -2 2 4 6

0.5

1

-6 -4 -2 2 4 6

0.5

1

-6 -4 -2 2 4 6

0.5

1

-6 -4 -2 2 4 6

0.5

1

a = �10, b = 30a = 10, b = �30

xint = axin + b

= 1/(1 + exp[axin + b])

x

out

= 1/(1 + exp[x

int

])

(B) Using NN to approximate functions

‣ More nodes more steps approximate any function (with
one layer) “Universal Approximation Theorem”

(B) Using NN to approximate functions

[Cybenko ’89; Hornik ’91; Nielsen‘15]

))

‣ Simple (feed-forward) NNs can classify data that is linearly
separable, i.e. their convex hulls are disjoint  
 

‣ When is data (linearly) separable? E.g. is the (3,2) torus knot
linearly separable? 

(C) Using NN to classify data

‣ Several ways to make data “linearly” separable

• Go to higher dimensions (an -dimensional knot can be
disentangled in dimensions)

• Change / warp the geometry by applying non-linear
functions (away from Euclidean, a “straight” line looks
different)

• Deform the data to make the error (i.e. the line that cuts
through the entangled data) as small as possible  

(C) Using NN to classify data

n
2n+ 2

‣ Ways to identify “topology” of point set: Persistent homology

• Has been applied to string vacua in

• Idea:
✦ Replace data points by balls (several disconnected components)

✦ As radius of points grow, components connect / form cycles / …

✦ When radius grows further, cycles can disappear again  

(C) Using NN to classify data

[Cirafici ’15]

‣ For each -cycle determine how long it exists as a function of the
sphere radius barcode (Betti number vs radius)

‣ The longer a cycle exists the more likely it is to be a true feature

‣ In this talk we want to follow a different approach

• The bar codes you obtain depend on the way you plot the
data

(C) Using NN to classify data
k

)

(C) Using NN to classify data

(C) Using NN to classify data

‣ For each -cycle determine how long it exists as a function of the
sphere radius barcode (Betti number vs radius)

‣ The longer a cycle exists the more likely it is to be a true feature

‣ In this talk we want to follow a different approach

• The bar codes you obtain depend on the way you plot the
data

• For some applications we are only interested in a NN that
works best

(C) Using NN to classify data
k

)

‣ For each -cycle determine how long it exists as a function of the
sphere radius barcode (Betti number vs radius)

‣ The longer a cycle exists the more likely it is to be a true feature

‣ In this talk we want to follow a different approach

• The bar codes you obtain depend on the way you plot the
data

• For some applications we are only interested in a NN that
works best

‣ Instead of analyzing the data to decide the necessary
complexity of the NN: Simply evolve a NN that works best

(C) Using NN to classify data
k

)

Introduction to Genetic Algorithms

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

‣ Idea: Copy nature again dynamically evolve models

‣ Applied in string theory to find models

‣ Pros:

• Evolve / improve themselves 24/7 (automated trial & error)

• Evolution/fitness evaluation parallelizable within a generation

‣ Possible applications:

• Evolve connections rather than weighting them by training - similar to evolution
of nerve connections between synapses in the human brain

• Evolve training/validation set (important if the set cannot be easily randomized:
the train set might accidentally have a feature which is picked up by the NN)

• Evolve entire NNs (topology, activation function, no of layers, no of nodes per
layer,…) - similar to evolving entire species in a computer

Genetic Algorithms 101
) [Darwin 1859]

[Allanach,Grellscheid,Quevedo’04; Abel,Rizos’14]

‣ Adjust fitness
• accuracy of prediction
• computation time

‣ Change reproduction
• cell division or cloning
• n fittest get to reproduce via mating
• all get to reproduce weighted by their fitness
• mixture of cell division and mating depending on complexity of evolved species

‣ Change mutation
• change rate
• adjust complexity of genes that can mutate
• change gene properties instead of exchanging entire genes

‣ Change complexity of genes in the gene pool
• include higher level NNs
• include trained NNs

Genetic Algorithms - Modifications

Combining both approaches

‣ Line bundle D-flat if

‣ Stability restricts Kahler cone to sub-region

‣ Still bounded by hyperplanes well-suited for NNs

‣ Simple example: CICY on :

• (from the two factors)

• Kahler cone:

• Line bundle:

• Intersection numbers: ,

• Stable iff or

Example: Classify stable bundles
Z

X
c1(L) ^ J ^ J = ijkk

itjtk = 0

)

P2

P2 ⇥ P2

h1,1 = 2

t1, t2 > 0

c1(L) = OX(k1, k2)

112 = 122 = 3 111 = 222 = 0

k1 > 0, k2 < 0 k1 < 0, k2 > 0

Example: Classify stable bundles

Linear Layer Ramp Plus LayerInput Layer Output LayerReplicate Layer

Example: Classify stable bundles

1 2 4 6 8

7

9

3 5

Input Output

2⨯2⨯1 2⨯1 2 2

2

2

2⨯
2⨯
1

2⨯1 2

2⨯1 1

ReplicateLayer Ramp
PartLayer Plus
LinearLayer

Example: Classify stable bundles

1 2 4 6 8

7

9

3 5

Input Output

2⨯2⨯1 2⨯1 2 2

2

2

2⨯
2⨯
1

2⨯1 2

2⨯1 1

ReplicateLayer Ramp
PartLayer Plus
LinearLayer

Example: Classify stable bundles

1 2 4 6 8

7

9

3 5

Input Output

2⨯2⨯1 2⨯1 2 2

2

2

2⨯
2⨯
1

2⨯1 2

2⨯1 1

ReplicateLayer Ramp
PartLayer Plus
LinearLayer

Example: Classify stable bundles

1 2 4 6 8

7

9

3 5

Input Output

2⨯2⨯1 2⨯1 2 2

2

2

2⨯
2⨯
1

2⨯1 2

2⨯1 1

ReplicateLayer Ramp
PartLayer Plus
LinearLayer

Example: Classify stable bundles

1 2 3 4 5 6Input Output

2 2 2 2 2 1

LinearLayer SoftmaxLayer
Tanh

Example: Classify stable bundles

1 2 3 4 5 6Input Output

2 2 2 2 2 1

LinearLayer SoftmaxLayer
Tanh

Example: Classify stable bundles

1 2 3 4 5 6Input Output

2 2 2 2 2 1

LinearLayer SoftmaxLayer
Tanh

Example: Classify stable bundles

1 2 3 4 5 6Input Output

2 2 2 2 2 1

LinearLayer SoftmaxLayer
Tanh

Example: Classify stable bundles

1 2 3 4 5 6Input Output

2 2 2 2 2 1

LinearLayer SoftmaxLayer
Tanh

Example: Classify stable bundles

Example: Classify stable bundles

stable unstable

‣ Species computing for Complete Intersection Calabi-Yau
(codim 3) on

‣ 10 Generations

‣ Fittest 2 survive

‣ Reproduction via cell division

‣ Mutation rate 10%

‣ During mutation, insert/replace genes at any position (“gene
splicing”)

‣ Training time 45 seconds on 3000 bundles

‣ Fitness evaluated on another 7000 bundles

Example: Compute bundle cohomology

h1(L)
P1 ⇥ P1 ⇥ P1 ⇥ P3

Example: Compute bundle cohomology

Input 1 Output

LogisticSigmoid

1 2 3 4Input Output

1⨯1 1⨯1

LinearLayer ReshapeLayer
ReplicateLayer LongShortTermMemoryLayer

1 2 4 6

53

Input Output

�

�

ReplicateLayer LinearLayer
PartLayer Times

1 2 4 6

53

Input Output

�

�

ReplicateLayer LinearLayer
PartLayer Plus

Input 1 Output

Ramp

1 2Input Output

LinearLayer SoftmaxLayer

Input 1 Output

Tanh

Ramp Layer Tanh Layer Softmax LayerLogistic Sigmoid
 Layer

LSTM Layer

Addition Layer Multiplication Layer

Available gene pool

Example: Compute bundle cohomology

Species: , Generation: 1, Fitness 0.59h1(L)

Species: , Generation: 10, Fitness 0.71h1(L)

1 2 3 4 5Input Output

352 352 32 32 64

LinearLayer MultiplicationLayer
SoftmaxLayer

1 2 3 4 5 6 7Input Output

57 1⨯57 19⨯3 19⨯57 231 64

Tanh LongShortTermMemoryLayer
LinearLayer PlusLayer
ReplicateLayer MultiplicationLayer
ReshapeLayer

‣ and max out at 83%, and max out at 72%

‣ and more complex, evolve LSTM Layer

‣ Longer training of winner does not improve results

‣ Computation of 10 000 cohomologies takes

• 5 hours using Koszul / Leray spectral sequences

• 30 seconds with trained network

‣ Same network works on other CICYs (with same ambient space dimension) if trained
with their data

Example: Compute bundle cohomology

Average Fitness Maximal Fitness

h1(L)h0(L) h2(L)h3(L)

h1(L) h2(L)

‣ We have large sets of data in string theory with (potentially) interesting structure

• Geometry (Calabi-Yaus)

• String models

‣ Machine learning / NN can be applied to

(A) Find & bypass implementations of algorithms

(B) Approximate functions (predictor)

(C) Classify data

‣ Tasks are versatile dynamically evolve NN that is best equipped to handle
individual situations

• Feasible to evolve NN to compute bundle cohomologies

• These NNs can be applied to different manifolds (if trained on them)

Conclusion

)

Thank you for
your attention!

