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‣ String theorists have produced large sets of data / samples of the 
string landscape over the years 

• Calabi-Yau manifolds 

✦ CICYs in 3D and 4D 

✦ Kreuzer-Skarke database 

✦ Toric bases for F-Theory 

• String models 

✦ Type IIA/IIB models 

✦ Heterotic on CY/Orbifolds/Free fermionic 

✦ F-Theory

Data sets in String Theory
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‣ Currently no selection mechanism for string vacua       vast string 
landscape 

‣ Long term goal for: Map out the landscape 

• Find string models in the landscape 

• Find generic / common features of string-derived model 

• Extract string theory predictions from the landscape 

• Are low energy manifestations of string vacua linked? 

• Find new relations/mathematical theorems from string theory 

‣ Can we use neural networks (NNs) to answer or study such 
questions? 

Study String Vacua
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‣ Starting point: 12D/11D/10D  F/M/I-IIA-IIB-HE-HS       (rather) unique 
‣ Phenomenology of the model encoded in discrete (background) choices / 

data (compactification space, fluxes, …) 
‣ Given this data, can one decide whether a model has 

• SM gauge group 

• three generations with one pair of vector-like Higgs 

• correct Yukawa textures 

• 60 e-folds of slow-roll inflation 

• a Minkowski/de-Sitter vacuum solution 

• … 

‣ In principle possible (computable for a given choice), but I cannot see it 
directly from the input data       can a NN decide / compute (some of) these? 

‣ If so, how can we find most efficient NNs for the job?       Genetic algorithms

Study String Vacua
)
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‣ Introduction to Neural Networks 

• Neural Networks 101 - How/why do they work 

• Where can we apply neural networks 

‣ Genetic Algorithms 101 

‣ Combining both approaches 

• Example: Classifying stable line bundles 

• Example: Computing line bundle cohomology 

‣ Conclusions

Outline



Introduction to Neural Networks
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‣ Copy nature      modelled after human brain  

‣ Building blocks 

• Input layer 

• Hidden layer(s) 

• Output layer

Neural Networks 101
)
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‣ Connection between layers : Linear transformations    :  
Matrix multiplication 

‣ Each layer applies a function (activation function) to its input to 
compute its output. Common choices are  
 

     Ramp                        Logistic Sigmoid                   Tanh 
 
 
 
 

‣ Typical NN: 

Neural Networks 101
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‣ Do not connect all outputs of layer   to all inputs of layer   

• Add / multiply / concat results of parallel NN streams 

‣ Create loops 

• Feed output of an NN layer back into its input 

• Recurrent NN        Give the network a memory (LSTM layers)

Modifications / Extensions
i i+ 1
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Example NN

Output

f2

f1

Layer 1

Layer 2

Layer 3
Layer 5

Layer 4

Layer 6

Input

CL2 CL4 FL2 CL5

FL1

CL1

CL3

CL6Input Output

2 1 1

1

3

2

1

21 1

LinearLayer FunctionLayer
PartLayer CatenateLayer



‣ Precise way in which NN learn active field of research 

‣ In supervised ML you show the network the correct results 

‣ In unsupervised ML you let the network find common properties (clustering) and identify things 
that “don’t fit in” by itself 

‣ In this talk: supervised ML: 
• Divide data set into a training set (30% of data) and validation set (70% of data) 
• Randomly initialize the trainable parameters of the NN (e.g. weights and biases of the 

connections) 
• Let the network look at the entire train set (inputs and outputs) and minimize the difference 

between its output and the output of the training set (w.r.t. some metric) “back-
propagation” 

• Shuffle the training set and repeat until 
✦ Error is not significantly reduced anymore 
✦ Each training model has been used a set number of times 
✦ A certain amount of time has elapsed 

• Cross-check performance of trained NN against the validation set

Neural Networks - Training



‣ Three ways of applying neural networks 

(A) To find & bypass implementations of algorithms (in 
combination with genetic algorithms) 

(B) To approximate functions (predictor) 

(C) To classify outcome of some complicated / unknown            
    mathematical operation based on the structure of the input 

‣ Once we have built a neural network to apply to (A) - (C) we 
need to train it 

‣ Once trained NNs can perform very efficiently 

• They just apply simple functions to produce some output 

• Computations are independent     parallelizable

Neural Networks - Applications
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‣ This is more about abusing the modular nature of NN 

‣ Each layer performs an action / applies a function 

‣ Implement an arbitrary algorithm by 

• choosing the function appropriately 

• including a (possibly trained) NN that performs a specific algorithm (e.g. 
computes binomial coefficients) 

• emulating a computer using NNs (combine NN layers that perform bit-wise 
and/xor/not/… operations 

‣ Like playing LEGO

(A) Using NNs to implement algorithms



‣ Simple case: 1 layer, 1 node, logistic sigma function 
• Linear Layer:  

• Activation Function:  

•    : Steepness of step (step function for               ) 

•    : Position of step: (intersects    -axis at              for          ) 
   

(B) Using NN to approximate functions
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(B) Using NN to approximate functions



‣ More nodes     more steps     approximate any function (with 
one layer) “Universal Approximation Theorem” 

(B) Using NN to approximate functions

[Cybenko ’89; Hornik ’91; Nielsen‘15]
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‣ Simple (feed-forward) NNs can classify data that is linearly 
separable, i.e. their convex hulls are disjoint  
 

‣ When is data (linearly) separable? E.g. is the (3,2) torus knot 
linearly separable? 

(C) Using NN to classify data



‣ Several ways to make data “linearly” separable 

• Go to higher dimensions (an   -dimensional knot can be 
disentangled in             dimensions) 

• Change / warp the geometry by applying non-linear 
functions (away from Euclidean, a “straight” line looks 
different) 

• Deform the data to make the error (i.e. the line that cuts 
through the entangled data) as small as possible  

(C) Using NN to classify data
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‣ Ways to identify “topology” of point set: Persistent homology 

• Has been applied to string vacua in 

• Idea:  
✦ Replace data points by balls (several disconnected components) 

✦ As radius of points grow, components connect / form cycles / … 

✦ When radius grows further, cycles can disappear again  

(C) Using NN to classify data

[Cirafici ’15]



‣ For each   -cycle determine how long it exists as a function of the 
sphere radius      barcode (Betti number vs radius) 

‣ The longer a cycle exists the more likely it is to be a true feature 

‣ In this talk we want to follow a different approach 

• The bar codes you obtain depend on the way you plot the 
data

(C) Using NN to classify data
k
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(C) Using NN to classify data



‣ For each   -cycle determine how long it exists as a function of the 
sphere radius      barcode (Betti number vs radius) 

‣ The longer a cycle exists the more likely it is to be a true feature 

‣ In this talk we want to follow a different approach 

• The bar codes you obtain depend on the way you plot the 
data 

• For some applications we are only interested in a NN that 
works best

(C) Using NN to classify data
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‣ For each   -cycle determine how long it exists as a function of the 
sphere radius      barcode (Betti number vs radius) 

‣ The longer a cycle exists the more likely it is to be a true feature 

‣ In this talk we want to follow a different approach 

• The bar codes you obtain depend on the way you plot the 
data 

• For some applications we are only interested in a NN that 
works best 

‣ Instead of analyzing the data to decide the necessary 
complexity of the NN: Simply evolve a NN that works best

(C) Using NN to classify data
k
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Introduction to Genetic Algorithms



Genetic Algorithms 101
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Genetic Algorithms 101



‣ Idea: Copy nature again     dynamically evolve models 

‣ Applied in string theory to find models 

‣ Pros: 

• Evolve / improve themselves 24/7 (automated trial & error) 

• Evolution/fitness evaluation parallelizable within a generation 

‣ Possible applications: 

• Evolve connections rather than weighting them by training - similar to evolution 
of nerve connections between synapses in the human brain 

• Evolve training/validation set (important if the set cannot be easily randomized: 
the train set might accidentally have a feature which is picked up by the NN) 

• Evolve entire NNs (topology, activation function, no of layers, no of nodes per 
layer,…) - similar to evolving entire species in a computer

Genetic Algorithms 101
) [Darwin 1859]
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‣ Adjust fitness 
• accuracy of prediction 
• computation time 

‣ Change reproduction 
• cell division or cloning 
• n fittest get to reproduce via mating 
• all get to reproduce weighted by their fitness 
• mixture of cell division and mating depending on complexity of evolved species 

‣ Change mutation 
• change rate 
• adjust complexity of genes that can mutate 
• change gene properties instead of exchanging entire genes 

‣ Change complexity of genes in the gene pool  
• include higher level NNs 
• include trained NNs

Genetic Algorithms - Modifications



Combining both approaches



‣ Line bundle D-flat if  

‣ Stability restricts Kahler cone to sub-region 

‣ Still bounded by hyperplanes     well-suited for NNs 

‣ Simple example: CICY on              : 

•               (from the two      factors) 

• Kahler cone: 

• Line bundle: 

• Intersection numbers:                           ,   

• Stable iff                        or     

Example: Classify stable bundles
Z

X
c1(L) ^ J ^ J = ijkk

itjtk = 0

)

P2

P2 ⇥ P2

h1,1 = 2

t1, t2 > 0

c1(L) = OX(k1, k2)

112 = 122 = 3 111 = 222 = 0

k1 > 0, k2 < 0 k1 < 0, k2 > 0



Example: Classify stable bundles
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Example: Classify stable bundles
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Example: Classify stable bundles
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Example: Classify stable bundles



Example: Classify stable bundles

stable unstable



‣ Species computing           for Complete Intersection Calabi-Yau 
(codim 3) on  

‣ 10 Generations 

‣ Fittest 2 survive 

‣ Reproduction via cell division 

‣ Mutation rate 10% 

‣ During mutation, insert/replace genes at any position (“gene 
splicing”) 

‣ Training time 45 seconds on 3000 bundles 

‣ Fitness evaluated on another 7000 bundles

Example: Compute bundle cohomology 

h1(L)
P1 ⇥ P1 ⇥ P1 ⇥ P3



Example: Compute bundle cohomology 
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Example: Compute bundle cohomology 

Species:          , Generation: 1, Fitness 0.59h1(L)

Species:          , Generation: 10, Fitness 0.71h1(L)
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‣           and          max out at 83%,          and          max out at 72% 

‣           and          more complex, evolve LSTM Layer 

‣ Longer training of winner does not improve results 

‣ Computation of 10 000 cohomologies takes 

• 5 hours using Koszul / Leray spectral sequences 

• 30 seconds with trained network 

‣ Same network works on other CICYs (with same ambient space dimension) if trained 
with their data

Example: Compute bundle cohomology 

Average Fitness Maximal Fitness

h1(L)h0(L) h2(L)h3(L)

h1(L) h2(L)



‣ We have large sets of data in string theory with (potentially) interesting structure 

• Geometry (Calabi-Yaus) 

• String models 

‣ Machine learning / NN can be applied to 

(A) Find & bypass implementations of algorithms 

(B) Approximate functions (predictor) 

(C) Classify data 

‣ Tasks are versatile      dynamically evolve NN that is best equipped to handle 
individual situations 

• Feasible to evolve NN to compute bundle cohomologies 

• These NNs can be applied to different manifolds (if trained on them)

Conclusion
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Thank you for
your attention!


