Machine learning in the
string landscape

FABIAN RUEHLE (UNIVERSITY OF OXFORD)

CERN String Theory Seminar
12/09/2017

UNIVERSITY OF

Based on [1706.07024] OXFORD

Data sets in String Theory

» String theorists have produced large sets of data / samples of the
string landscape over the years

e (Calabi-Yau manifolds

4+ CICYs in 3D and 4D [Candelas,Dale,Lutken,Schimmrigk'88; Gray,Haupt,Lukas'13]

+ Kreuzer-Skarke database [KreuzerSkarke'00]
+ Joric bases for F-Theory [Morrison,Taylor'12]
e String models

+ Type IIA/IIB models

[Gmeiner,Blumenhagen,Honecker,Lust,Weigand’'06; Davey,Hanany,Pasukonis'09; Franco,Lee,Seong,Vafa’16; ...]

+ Heterotic on CY/Orbifolds/Free fermionic (anderson Constantin,Gray,Lukas Pali'13;
Nilles,Vaudrevange’14; Abel,Rizos’ 14; Blaszczyk,Groot Nibbelink,Loukas,FR’15; ...]

+ [-Theory

[Taylor,Wang’15; Halverson, Tian’16; Halverson,Long,Sung’17; ...]

Study String Vacua

» Currently no selection mechanism for string vacua => vast string
landscape

» Long term goal for: Map out the landscape
* Find string models in the landscape
* Find generic / common features of string-derived model
e Extract string theory predictions from the landscape
* Are low energy manitestations of string vacua linked?
* Find new relations/mathematical theorems from string theory

» Can we use neural networks (NNs) to answer or study such
queS’[ionS? [He'17; Krefl,Seong’17; FR’17; Carifio,Halverson,Krioukov,Nelson’17]

Study String Vacua

» Starting point: 12D/11D/10D F/M/I-IIA-1IB-HE-HS => (rather) unique

» Phenomenology of the model encoded in discrete (background) choices /
data (compactification space, fluxes, ...)

» Given this data, can one decide whether a model has

« SM gauge group

three generations with one pair of vector-like Higgs

correct Yukawa textures

00 e-folds of slow-roll inflation

a Minkowski/de-Sitter vacuum solution

» In principle possible (computable for a given choice), but | cannot see it
directly from the input data = can a NN decide / compute (some of) these?

» If so, how can we find most efficient NNs for the job”? = Genetic algorithms

Outline

» Introduction to Neural Networks
 Neural Networks 101 - How/why do they work
 Where can we apply neural networks

» Genetic Algorithms 101

» Combining both approaches
 Example: Classitying stable line bundles
 Example: Computing line bundle cohomology

» Conclusions

Introduction to Neural Networks

Neural Networks 101

» Copy nature = modelled after human brain

» Building blocks
* |nput layer
 Hidden layer(s)
e Qutput layer

Input

Neural Networks 101

» Connection between layers : Linear transformations L;:
Matrix multiplication v, = A'v;, + 0"

» Each layer applies a function (activation function) to its input to
compute its output. Common choices are

Ramp Logistic Sigmoid Tanh

3 1 1t

i

» Typical NN: RM 5 RN
v— fp,olL,o...0 fgo L

Modifications / Extensions

» Do not connect all outputs of layer 2z to all inputs of layer ¢ + 1
e Add/ multiply / concat results of parallel NN streams

» Create loops
* Feed output of an NN layer back into its input

 Recurrent NN = Give the network a memory (LSTM layers)

N - NN

Example NN

- ———

Output

o
CL3 FL1
v
7
1 3 2 1 1 2 1
® o o {] o ®
Input CL1 CL2 CL4 FL2 CL5 CL6 Output

® | inearLayer ® FunctionLayer
PartLayer CatenateLayer

Neural Networks - [raining

v

v

v

v

Precise way in which NN learn active field of research

In supervised ML you show the network the correct results

In unsupervised ML you let the network find common properties (clustering) and identify things
that “dont fit in” by itself

In this talk: supervised ML.:

Divide data set into a training set (30% of data) and validation set (70% of data)

Randomly initialize the trainable parameters of the NN (e.g. weights and biases of the
connections)

et the network look at the entire train set (inputs and outputs) and minimize the difference
between its output and the output of the training set (w.r.t. some metric) “back-
propagation”

Shuffle the training set and repeat until
+ Error is not significantly reduced anymore
+ Each training model has been used a set number of times
+ A certain amount of time has elapsed

Cross-check performance of trained NN against the validation set

Neural Networks - Applications

» Three ways of applying neural networks

(A) To find & bypass implementations of algorithms (in
combination with genetic algorithms)

(B) To approximate functions (predictor)

(C) To classify outcome of some complicated / unknown
mathematical operation based on the structure of the input

» Once we have built a neural network to apply to (A) - (C) we
need to train it

» Once trained NNs can perform very efficiently
* They just apply simple functions to produce some output

 Computations are independent =-parallelizable

(A) Using NNs to implement algorithms

» This is more about abusing the modular nature of NN
» Each layer performs an action / applies a function
» Implement an arbitrary algorithm by

* choosing the function appropriately

* including a (possibly trained) NN that performs a specific algorithm (e.g.
computes binomial coefficients)

 emulating a computer using NNs (combine NN layers that perform bit-wise
and/xor/not/... operations

» Like playing LEGO

(B) Using NN to approximate functions

» Simple case: 1 layer, 1 node, logistic sigma function

e Linear Layer: Tint = axin + b

» Activation Function: Zout = 1/(1 + exp

—1/(1

exp

Tint))

azin + bl)

* a: Steepness of step (step function for a — o0)

* b : Position of step: (intersects y-axisaty =1/2forb=10)

0.5}

~2 2

4 6 6 -4 -2 2 4

a=10,b=0 a=10,b=-30 a=—10,0=30

6

(B) Using NN to approximate functions

/\

_ L/

(B) Using NN to approximate functions

» More nodes = more steps = approximate any function (with
one layer) “Universal Approximation Theorem”
[Cybenko '89; Hornik '91; Nielsen‘15]

(C) Using NN to classity data

» Simple (feed-forward) NNs can classity data that is linearly
separable, i.e. their convex hulls are disjoint

» When is data (linearly) separable” E.g. is the (3,2) torus knot
linearly separable?

(C) Using NN to classity data

» Several ways to make data “linearly” separable

* (o to higher dimensions (ann-dimensional knot can be
disentangled in 2n + 2 dimensions)

 Change / warp the geometry by applying non-linear
functions (away from Euclidean, a “straight” line looks
different)

 Deform the data to make the error (i.e. the line that cuts
through the entangled data) as small as possible

(C) Using NN to classity data

» Ways to identity “topology” of point set: Persistent homology

 Has been applied to string vacua in [Cirafici "15]

* |dea:
+ Replace data points by balls (several disconnected components)

+ As radius of points grow, components connect / form cycles / ...

+ When radius grows further, cycles can disappear again

(C) Using NN to classity data

» For each k-cycle determine how long it exists as a function of the
sphere radius = barcode (Betti number vs radius)

» The longer a cycle exists the more likely it is to be a true feature
» In this talk we want to follow a different approach

* The bar codes you obtain depend on the way you plot the
data

Using NN to classify data

Using NN to classity data

(C) Using NN to classity data

» For each k-cycle determine how long it exists as a function of the
sphere radius = barcode (Betti number vs radius)

» The longer a cycle exists the more likely it is to be a true feature

» In this talk we want to follow a different approach

* The bar codes you obtain depend on the way you plot the
data

 [or some applications we are only interested in a NN that
works best

(C) Using NN to classity data

» For each k-cycle determine how long it exists as a function of the
sphere radius = barcode (Betti number vs radius)

» The longer a cycle exists the more likely it is to be a true feature
» In this talk we want to follow a different approach

* The bar codes you obtain depend on the way you plot the
data

 [or some applications we are only interested in a NN that
works best

» Instead of analyzing the data to decide the necessary
complexity of the NN: Simply evolve a NN that works best

Introduction to Genetic Algorithms

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Genetic Algorithms 101

Algorithms 101

1C

Genet

Genetic Algorithms 101

v

v

v

v

ldea: Copy nature again=-dynamically evolve models [Darwin 1859]

Applied in string theory to find models [Allanach,Grellscheid,Quevedo’04; Abel,Rizos'14]

Pros:

Evolve / improve themselves 24/7 (automated trial & error)

Evolution/fitness evaluation parallelizable within a generation

Possible applications:

Evolve connections rather than weighting them by training - similar to evolution
of nerve connections between synapses in the human brain

Evolve training/validation set (important if the set cannot be easily randomized:
the train set might accidentally have a feature which is picked up by the NN)

Evolve entire NNs (topology, activation function, no of layers, no of nodes per
layer,...) - similar to evolving entire species in a computer

Genetic Algorithms - Modifications

» Adjust fithess
e accuracy of prediction

e computation time

v

Change reproduction
e cell division or cloning
* nfittest get to reproduce via mating
e all getto reproduce weighted by their fitness

 mixture of cell division and mating depending on complexity of evolved species

v

Change mutation
e change rate
e adjust complexity of genes that can mutate

* change gene properties instead of exchanging entire genes

v

Change complexity of genes in the gene pool
e include higher level NNs

e include trained NNs

Combining both approaches

Example: Classify stable bundles

» Line bundle D-flat if [e1(€) A7 AT = wyukitit =0
» Stability restricts Kahler cone to sub-region
» Still bounded by hyperplanes = well-suited for NNs
» Simple example: CICY on P? x P?
e pb1 =2 (from the two P? factors)
« Kahler cone: ¢',t* >0
 Line bundle: c1(£) = Ox (k1, k2)
e [ntersection numbers: K112 = K190 = 3, K111 = ko222 = 0

e Stableiff k1 > 0,ka <0 0Or k1 <0,ky >0

Example: Classify stable bundles

Example: Classify stable bundles

2x 1 2
® e
N/ 3 5 7

+q/+

v O

2x1 2x2x1 2x1 2 2 2 1
o ® ° o ° o
2 4 6 8 9 Output

Input 1
ReplicateLayer ® Ramp
PartLayer ® Plus
® |inearLayer

Example: Classify stable bundles

2x 1 2
® e
N/ 3 5 7

+q/+

v O

2x1 2x2x1 2x1 2 2 2 1
o ® ° o ° o
2 4 6 8 9 Output

ReplicateLayer ® Ramp
PartLayer ® Plus
® |inearLayer

Example: Classify stable bundles

2x 1 2

o]

N/ 3 5 7
+q/+
v O
2x1 2x2x1 2x1 2 2 2 1
o o L @ o ®
Input 1 2 4 6 8 9 Output

ReplicateLayer ® Ramp
PartLayer ® Plus
® |inearLayer

Example: Classity stable bundles

2x1 2

(G20)

Input 4 6 8 L9 Output
® ReplicateLayer ® Ramp
® PartLayer ® Plus
® |inearLayer
o

Example: Classify stable bundles

o ° o o ° ® o o
Input 1 2 3 4 5 6 Output
® |inearLayer ® SoftmaxLayer

® Tanh

Example: Classity stable bundles

Example: Classity stable bundles

® | inearLayer ® SoftmaxLayer
® Tanh

Example: Classity stable bundles

® | inearLayer ® SoftmaxLayer
® Tanh

Example: Classity stable bundles

® | inearLayer ® SoftmaxLayer
® Tanh

Example: Classify stable bundles

Example: Classify stable bundles

stable unstable

Example: Compute bundle cohomology

» Species computing k' (L) for Complete Intersection Calabi-Yau
(codim 3) on P! x P! x P! x P9

» 10 Generations

» Fittest 2 survive

» Reproduction via cell division
» Mutation rate 10%

» During mutation, insert/replace genes at any position (“gene
splicing”)
» Training time 45 seconds on 3000 bundles

» Fitness evaluated on another 7000 bundles

Example: Compute bundle cohomology

Avallable gene pool

[L J L] [@ L] o L] L J @ L]
Input 1 Output Input 1 Output Input 1 Output Input 1 2 Output

® Tanh ® | ogisticSigmoid ® | inearLayer ® SoftmaxLayer

® Ramp

Ramp Layer Tanh Layer Logistic Sigmoid Softmax Layer
Layer

@ L J {] ®
Input 1 2 3 4 Output

® | inearLayer ReshapelLayer
ReplicateLayer ® LongShortTermMemoryLayer

LSTM Layer

. : ° ° . . ° . .
Input 1 2 4 6 Output Input 1 2 4 6 Output

ReplicateLayer @ LinearLayer
PartLayer ® Times

ReplicateLayer @ LinearLayer
PartLayer ® Plus

Addition Layer Multiplication Layer

Example: Compute bundle cohomology

57 1x 57 193 19 x 57 231 64
° o) ° ° ° ° o
Input 1 2 3 4 5 6 7 Output
® Tanh ® | ongShortTermMemoryLayer
® |inearLayer ® PlusLayer

ReplicateLayer ® MultiplicationLayer
ReshapelLayer

Species: h' (L), Generation: 1, Fitness 0.59

352 352 32 32 64

ol o o
Input 2 3 4 5 Output

—_—

® |inearLayer ® MultiplicationLayer
® SoftmaxLayer

Species: h'(L), Generation: 10, Fitness 0.71

Example: Compute bundle cohomology

Correct predictions [%]

80}
60}
40t 2

20 7

. s - - ~ Generation
2 4 6 8 10

Average Fitness

80¢

60|

40¢

20}

Correct predictions [%]

—

——

Maximal Fithess

4

6

» hP(L)and h*(L£) max out at 83%, h* (L) and h*(L£) max out at 72%

» h'(L)and h*(L£) more complex, evolve LSTM Layer
» Longer training of winner does not improve results
» Computation of 10 000 cohomologies takes

* 5 hours using Koszul / Leray spectral sequences

30 seconds with trained network

8

-~ (Generation
10

— h°(L)
h'(L)
H(L)

— (L)

» Same network works on other CICY's (with same ambient space dimension) if trained

with their data

Conclusion

» We have large sets of data in string theory with (potentially) interesting structure
* Geometry (Calabi-Yaus)
e String models
» Machine learning / NN can be applied to
(A) Find & bypass implementations of algorithms
(B) Approximate functions (predictor)
(C) Classity data

» Tasks are versatile =>dynamically evolve NN that is best equipped to handle
individual situations

* Feasible to evolve NN to compute bundle cohomologies

 These NNs can be applied to different manifolds (if trained on them)

Thank you for

your attention!

