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Motivation

→ Transient FEM simulation

Fig.: Cross-section of an
induction machine (J. Gyselinck).

→ System evolution in time

• Long settling time till the steady
state

• Many time steps =⇒
time-consuming computation!
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The eddy current problem

Fundamentals of electromagnetism: Maxwell’s equations.

Assumptions:

� Quasi-static regime: |J| �
∣∣∣∣∂ D
∂t

∣∣∣∣;
� Neglect hysteresis.

The eddy current equation:

σ
∂A
∂t

+ curl(ν(|curl A|) curl A) = Js,

A − unknown magnetic vector potential;
Js − impressed current density;
σ, ν − electric conductivity and magnetic reluctivity.
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Semi-discrete problem

Solve the IVP in time:

Mdtu(t) = f(t ,u), t ∈ I := (0,T ),

u(0) = u0,

where u : I 7→ RNdof denotes the space-discretization of A .

• f(t ,u) = −Ku(t) + g(t);

• M,K ∈ RNdof×Ndof − mass and stiffness matrices;

• g(t) − excitation (e.g., impressed current).
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The Parareal method: splitting of the time interval

Partitioning the time interval into N windows (e.g., one per core) yields
Mdtu0 = f(t ,u0), u0(T0) = U0, t ∈ (T0,T1],

Mdtu1 = f(t ,u1), u1(T1) = U1, t ∈ (T1,T2],

...
MdtuN−1 = f(t ,uN−1), uN−1(TN−1) = UN−1, t ∈ (TN−1,TN ],

T0 T1 T2 T3 T4 T5

u(t)

t
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Parareal as the Newton-Raphson method (I)

Let F(t ,Ti ,U) be the solution operator of the IVP on (Ti ,Ti+1], for
i = 0, . . . ,N − 1, which propagates the initial value U in time.

Matching conditions can be satisfied by root finding
U1 − F(T1,T0,U0) = 0,
...
UN−1 − F(TN−1,TN−2,UN−2) = 0

or, equivalently,

F(U) = 0, with UT =
(

UT
0 ,U

T
1 , ...,U

T
i , ...,U

T
N−1

)
.

M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, Domain Decomposition
Methods in Science and Engineering XVII, Springer Berlin Heidelberg, 2008.
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Parareal as the Newton-Raphson method (II)

The Newton-Raphson iteration: for k = 0,1, . . .

U(k+1)
0 = u0,

U(k+1)
n = F

(
Tn,Tn−1,U

(k)
n−1

)
+
∂F(Tn,Tn−1,U)

∂U

(
U(k+1)

n−1 − U(k)
n−1

)
,

where n = 1, . . . ,N − 1.

How to calculate the derivative?

Cheap approximation by a coarse propagator G :

∂F(Tn,Tn−1,U)

∂U

(
U(k+1)

n−1 − U(k)
n−1

)
≈

≈ G
(

Tn,Tn−1,U
(k+1)
n−1

)
− G

(
Tn,Tn−1,U

(k)
n−1

)
.
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Parareal as the Newton-Raphson method (III)

For k = 0,1, . . . and n = 1, . . . ,N solve

U(k+1)
0 = u0,

U(k+1)
n = F(Tn,Tn−1,U

(k)
n−1) + G(Tn,Tn−1,U

(k+1)
n−1 )− G(Tn,Tn−1,U

(k)
n−1).

Propagators:

� Fine Ũ(k)
n := F

(
Tn,Tn−1,U

(k)
n−1

)
: e.g., backward Euler’s method;

� Coarse Ū(k)
n := G

(
Tn,Tn−1,U

(k)
n−1

)
: lower-order scheme or the

same time-integrator as F but with coarser discretization.

−→ Parallel solution of fine problems;
−→ Sequential solution of coarse problems.
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Considering the periodic constraint: PP-IC

PP-IC: periodic parareal algorithm with initial value coarse problem:

For k = 0,1, . . . and n = 1, . . . ,N solve

U(k+1)
0 = U(k)

N ,
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n := G

(
Tn,Tn−1,U

(k)
n−1

)
: lower-order scheme or the

same time-integrator as F but with coarser discretization.

−→ Parallel solution of fine problems;
−→ Sequential solution of coarse problems.

TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 13/33



Considering the periodic constraint: PP-IC

PP-IC: periodic parareal algorithm with initial value coarse problem:

For k = 0,1, . . . and n = 1, . . . ,N solve

U(k+1)
0 = U(k)

N ,

U(k+1)
n = F(Tn,Tn−1,U

(k)
n−1) + G(Tn,Tn−1,U

(k+1)
n−1 )− G(Tn,Tn−1,U

(k)
n−1).

Propagators:

� Fine Ũ(k)
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The PP-IC algorithm

1 initialize: U(0)
0 ← U0 and k ← 0;

2 for n← 1 to N do
3 U(0)

n ← Ū(0)
n ← G(Tn,Tn−1,U

(0)
n−1);

4 end
5 while ‖error (k)‖ > tol do
6 parfor n← 1 to N do
7 Ũ(k)

n ← F(Tn,Tn−1,U
(k)
n−1);

8 end
9 U(k+1)

0 ← U(k)
N ;

10 for n← 1 to N do
11 Ū(k+1)

n ← G(Tn,Tn−1,U
(k+1)
n−1 );

12 U(k+1)
n ← Ũ(k)

n + Ū(k+1)
n − Ū(k)

n ;
13 end
14 increment: k ← k + 1;
15 end
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n − Ū(k)

n ;
13 end
14 increment: k ← k + 1;
15 end

T0 T1 T2 T3

u(t)

t

TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 14/33



The PP-IC algorithm

1 initialize: U(0)
0 ← U0 and k ← 0;

2 for n← 1 to N do
3 U(0)

n ← Ū(0)
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7 Ũ(k)

n ← F(Tn,Tn−1,U
(k)
n−1);

8 end
9 U(k+1)

0 ← U(k)
N ;

10 for n← 1 to N do
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Numerical example: coaxial cable model

For t ∈ [0,T ] find u(t) ∈ RNdof s.t.

Mdtu(t) + Ku(t) = Xi(t),
u(0) = u(T ),

space-discrete eddy current
problem with Ndof = 2269.

T = 0.02, ω = 2π/T ,
i(t) = 100 sin (ωt)

Dimensions: rCu = 0.254cm,
rAir = 1.27cm, rFe = 2.54cm. Fig.: Wire inside of a steel tube.
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Coaxial cable model: convergence PP-IC

Fig.: PP-IC: initial approximation. Fig.: Solution after the 1st iteration.

Iteration 1 50 125 200 260
Rel. error 2.3 · 10−1 8.0 · 10−4 7.3 · 10−5 6.7 · 10−6 9.9 · 10−7
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Coaxial cable model: speed-up PP-IC

Fig.: PP-IC: solution within tol ≈ 10−6. Fig.: Sequential steady-state solution.

Sequential time: 35.6 min; Number of periods: 261
PP-IC time: 1.5 min −→ 23 times faster.
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Time-periodic problem to be solved: PP-PC

PP-PC: periodic parareal algorithm with periodic coarse problem:
I 0 . . . −G (TN ,TN−1, ·)

−G (T1,T0, ·) I 0
...

. . . . . .
...

0 . . . −G (TN−1,TN−2, ·) I




U(k+1)
0

U(k+1)
1
...

U(k+1)
N−1

 =

=


F
(

TN ,TN−1,U
(k)
N−1

)
− G

(
TN ,TN−1,U

(k)
N−1

)
F
(

T1,T0,U
(k)
0

)
− G

(
T1,T0,U

(k)
0

)
...

F
(

TN−1,TN−2,U
(k)
N−2

)
− G

(
TN−1,TN−2,U

(k)
N−2

)



−→ Large size and inconvenient structure!
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PP-PC: backward Euler’s method as coarse solver

Assume y (k+1)
n := G

(
Tn,Tn−1,U

(k+1)
n−1

)
is defined by the backward

Euler’s method:(
M
∆t

+ K
)

︸ ︷︷ ︸
=:Q

y (k+1)
n − M

∆t︸︷︷︸
=:C

U(k+1)
n−1 = g(Tn)

for n = 1, . . . ,N with ∆t = T/N.

The system reads:
Q −C
−C Q

. . . . . .
−C Q


︸ ︷︷ ︸

=:G


U(k+1)

0
U(k+1)

1
...

U(k+1)
N−1
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QF

(
TN ,TN−1,U

(k)
N−1

)
− CU(k)

N−1)

QF
(

T1,T0,U
(k)
0

)
− CU(k)

0
...

QF
(

TN−1,TN−2,U
(k)
N−2

)
− CU(k)

N−2


︸ ︷︷ ︸

=:r(k)
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Coarse solution via the spectral basis

U0, . . .UN−1 are values of a periodic function at t0, . . . , tN−1.

−→ can be expanded into the Fourier series over the period [0,T ] :

U(t) =
∑

m∈M
Ûm exp (ıωmt),

with the frequencies ωm = 2πm/T , and M := {−N/2 + 1, . . . ,N/2}.

At the k th iteration

U(k+1)
n =

∑
m∈M

Û(k+1)
m exp (ıωmtn), n = 0, . . . ,N − 1.

−→ into the PP-PC system.
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Frequency domain solution of the coarse problem

Let F denote the discrete Fourier transform matrix:

Fpq =
1√
N

exp(−ıωptq)

and F̃ = F⊗ I, with I ∈ RNdof×Ndof .

Restriction to the spectral basis in
the discrete PP-PC system is equivalent to the solution of(

F̃ G F̃H
)

︸ ︷︷ ︸
=:Ĝ

Û(k+1) = F̃r(k)︸ ︷︷ ︸
=:̂r(k)

for Û(k+1)T
=
[
Û(k+1)T

−N/2+1, . . . , Û
(k+1)T

N/2

]
in the frequency domain.

G − block-circulant→ Ĝ − block-diagonal: Ĝpp = Q−C exp(−ı∆tωp).
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Û(k+1)T

−N/2+1, . . . , Û
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Let F denote the discrete Fourier transform matrix:

Fpq =
1√
N

exp(−ıωptq)

and F̃ = F⊗ I, with I ∈ RNdof×Ndof . Restriction to the spectral basis in
the discrete PP-PC system is equivalent to the solution of(

F̃ G F̃H
)

︸ ︷︷ ︸
=:Ĝ

Û(k+1) = F̃r(k)︸ ︷︷ ︸
=:̂r(k)

for Û(k+1)T
=
[
Û(k+1)T

−N/2+1, . . . , Û
(k+1)T

N/2

]
in the frequency domain.
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Frequency domain solution of the coarse problem

Solve for each harmonic component independently:{
Q− C exp(−ı∆tωp)

}
Û(k+1)

p = r̂(k)p , p = −N/2 + 1, . . . ,N/2.

−→ Allows parallelization on the coarse level: one needs to solve N
separate systems of Ndof equations.

Solution in the time domain is obtained by the inverse Fourier
transformation:

U(k+1) = F̃HÛ(k+1).

−→ Can be calculated using the fast Fourier transform algorithm;

−→ Matrices F̃ and F̃H do not have to be explicitly constructed.

TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 24/33



Frequency domain solution of the coarse problem

Solve for each harmonic component independently:{
Q− C exp(−ı∆tωp)

}
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Coaxial cable model: convergence PP-PC

Fig.: Solution after the 1st iteration Fig.: Solution after the 10th iteration

Iteration 1 3 5 7 10
Rel. error 2.0 · 10−1 6.3 · 10−3 3.2 · 10−4 2.0 · 10−5 3.7 · 10−7
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Comparison of computational time: strong scaling

1 5 10 25 50
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Number of CPUs Ncpu
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IVP
PP-IC
PP-PC LU
PP-PC FT

All the results are obtained for Ndof = 2269 degrees of freedom, rel. error ≈ 10−6.
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Systems with nonsmooth excitations

PWM (pulse width modulation):
high-order components in the
frequency spectra of exciting
currents/voltages.

Mdtu(t) = f̄(t ,u) + f̃(t), t ∈ I

u(0) = u(T ),

� f̄ smooth input;
� f̃ piecewise continuous,

square integrable on I.

−→ Very fine discretization
required to capture the pulses.

Fig.: PWM signal with a switching
frequency of 20 kHz and a sine wave
of 50 Hz.
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Comparison of computational time: PWM input
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All the results are obtained for Ndof = 2269 degrees of freedom, rel. error ≈ 10−6.
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Conclusions and outlook

Conclusions

� Parareal method significantly accelerates convergence to the
steady state;

Outlook
� Consider nonlinear problems;
� Application to an electrical machine;

TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 31/33



Conclusions and outlook

Conclusions

� Parareal method significantly accelerates convergence to the
steady state;

Outlook
� Consider nonlinear problems;
� Application to an electrical machine;

TU Darmstadt | GSC CE | Iryna Kulchytska | Time-parallel solution of the eddy current problem | 31/33



Thank you!
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