GridPix/Gossip MPGDs: test beam results

Martin Fransen, Nikhef

RD51,23-25 sept 2009, CERN

Outline

- Testing GridPix at DESY
- Testing Gossip at CERN

- And the 2nd part:
- Photon sensitive Gridpix

Gridpix detectors

Gridpix detectors

- Drift volume E= ~0.1-1kV/cm.
- Grid.
- Gain region E= ~80kV/cm
- Pixel readout chip.

Discharge protection

- Quenching of discharges.
- Some conductivity to prevent net charge build up.
- Si₃N₄ , silicon nitride (Twente), SiNProt.
- Affecting signal development?
- Put to the test at DESY.

RD51,23-25 sept 2009, CERN

- Few GeV e
- TimePix chips
- SiNi layers of 2,4,6,and 8 um
- How do this affect signal development?
- When do the chips break down?

(this is, of course, the last test performed)

- The detectors:
- 11.5 mm drift gap
- Used gases:
 - Ar/ISO 80:20
 - He/ISO 80:20
 - T2K, Ar/CF4/ISO 95:3:2
 - Ar/CO2
 - He/CO2

- counting electrons per track.
- compare this per chip.
- He/ISO 80:20
- E drift = 450V/cm

- Ar/ISO 80:20
- E drift = 900V/cm
- continue using the 4 um chip

counted e per track Ar/ISO 80/20

RD51,23-25 sept 2009, CERN

- Ar/ISO 80:20
- E drift = 900V/cm

- And finally destruction...
- After hours of suffering >2 sparks/sec still no sign of problems BUT:
- After few more days, under normal operation:
 - The 6 um dies (Ar/ISO 80:20, Vgrid -430V)
 - Ten days later the 2 um dies (He/CO2 70:30, Vgrid -520V)
 - Another 6 days, the 4 um (T2K, Vgrid -360V)
- All breakdowns are similar, regardless of thickness of SiNi Layer.

Beamtests at CERN

- TimePix chips
- 3 X Gossip and DICE in series
- DICE drift length 19.5 mm
- Gossips: 1, 1.4 and 1.5 mm drift
- Ar/ISO 80:20 and CO2/DME 50:50
- E drift = 900V/cm and 2kV/cm

Beamtests at CERN

- Special cable to fake a single quad board. (thanks to Peter Jansweijer)
- read out four chips simultaneously
- needed 1.5 ns delay in dataline between chips to function properly

RD51,23-25 sept 2009, CERN

Beamtests at CERN

- DICE is reference detector
- •Determine center of gravities in G1, G2 and G3 \rightarrow h1,2,3
- No time information used (too much timewalk)
- Determine relative positions of chips
- L12, L23; distance between detectors
- X1,2,3; best fit

Beamtest H8 (SPS)

- 150 GeV "stuff"
- Ar/ISO 80:20

RD51,23-25 sept 2009, CERN

Beamtest H8 (SPS)

- 150 GeV "stuff"
- negligible multiple scattering
- Ar/ISO 80:20

Beamtest H8 (SPS)

- 150 GeV "stuff"
- negligible multiple scattering
- Ar/ISO 80:20

- 6 GeV p and pi +
- multiple scattering ~ 15-50 um
- Ar/ISO 80:20

• Now go to CO2/DME 50:50

• E drift 2kV/cm

• Now go to CO2/DME 50:50

• E drift 2kV/cm

Conclusions for part1

- a good 4 um SiNi layer is sufficient spark protection
- But what causes that still sometimes a chip dies?
- for gains>5k single e eff>90%
- need gains>15k to keep average timewalk within 1 timebin (10 ns).
- CO2/DME significantly better resolution than Ar/ISO mix
- Still have to look at track efficiency
- Use this data to verify simulations

Photon-sensitive InGrid detectors

- University of Twente: Joost Melai, Victor Blanco Carballo, Cora Salm, Jurriaan Schmitz
- NIKHEF: Martin Fransen, Yevgen Bilevych, Joop Rövekamp, Harry van der Graaf, Jan Timmermans, Jan Visschers
- Weizmann (Israel): Amos Breskin, Alexey Lyashenko, Moshe Klin
- First experiments presented at IWORID 2009 (see proceedings in NIM-A)

- Photon-sensitive InGrid by deposition of reflective CsI Photo-Cathode
- Reflective PC is durable and easy to deposit (blanket thermal evaporation)

Photocurrent extraction from CsI

Gain of 75 µm device in different gases

Conclusions

- CsI deposition on InGrid is easy, CsI PC works succesfully
- Photocurrent can be multiplied, max gain ~ 5000
- Transfer efficiency of primaries appears to be very good (I_{photo} (from PC) ≈ I_{anode} (at 0 gain))
- IBF currently ~2% (earlier InGrid record 1/1000)
- Single photon pulses could not be recorded (with external amplifiers)
- Read-out needs to be improved: Timepix

InGrid on Timepix

- Univ. Twente and Weizmann institute
- Timepix with 80 µm InGrid
- Gossip detector set up
- Read out with USB interface and pixelman
- UV light source D₂ lamp
- No dedicated PC, just Al grid (with native oxide)

The set up

- Chip in medipix mode
- Gas He/ISO 80:20
- Try to find plateau
- Count hits in certain area

Determine working point

Increase VgridKeep Vdrift=0

- No plateau
- Charge spread over multiple pixels?

What can we do with a photosensitive MPGD?

- Don't touch the UV window! They'll know it was you!
- A whole range of PC can be applied.
- Sensitivity can be ~ q eff.
- Add ns time resolution and a flash bulb (Timepix2?)

Questions? (or remarks)

