June Test Beam: CERN GDD preliminary data analysis

On behalf of CERN GDD group

Overview

- The CERN GDD goal for June test beam was:
 - to understand the performance of the telescopes provided to the users
 - to start to build an analysis framework
- The work has been focused especially on the organization of the algorithms and tools

> We have just started to analyse the first datasets

A reminder of the setup

- 3 µM stations to reconstruct the track
- A device under test (two different Triple-GEM detectors) where the track information is used

• All detectors were read out with Gassiplex FEE in order to use the same DAQ

Software implementation

- All the analysis is performed with the ROOT package
- Raw data are converted from the binary DAQ format to a ROOT tree
- Each Gassiplex data are converted in an array of 96 elements, each giving the charge of one channel of the card.

Some examples of raw data..

A simple clustering algorithm

- Channels over a fixed threshold create a cluster
- Neighbouring over-threshold channels belong to the same cluster
- Cluster charge is the total charge, cluster position is the charge centre of gravity
- Two free parameters to be optimized:
 - Threshold
 - Max distance between two channels of the same cluster

A "Cluster" class

- "Cluster" objects are able to "Find()" themselves in an array of channels
- Easy to implement more sophisticate algorithms, while keeping the same interface
- .. and all the other advantages of object oriented programming

```
class Cluster
  : private TC
public:
 short firstch;
  short lastch;
 short maxpos;
 short maxq;
  float pos;
  float q:
  //Default constructor
 Cluster (short firstch = -1, short lastch = -1,
           short maxpos = -1, short maxq = 0,
           float pos = -1., float q = 0.;
  //Copy constructor
 Cluster (const Cluster& original);
  int Find(const short * arrayofch,
           const short startch, const short maxnumofch,
           const int threshold, const int rangecluster,
           short * lastcheckedch = 0);
  static float CentreOfGravity (const short * arrayofch,
                                 const short startch,
                                 const short endch,
                                 float * totalcharge = 0);
```

New information after running clustering algorithm

 Cluster multiplicity, cluster size, cluster charge, cluster position are all information included in a new "reconstruction" ROOT tree, saved in a new file that is later connected to the raw data tree

Pedestal calculation

- After clustering, all channels far enough (a new free parameter to optimise!) from a cluster are added to pedestal charge histograms
 - Any improvement of clustering algorithm will automatically affect the pedestals
- Histogram are saved in the "reconstruction" file

Track reconstruction

- A "Track" class has been implemented as well.
- In the following, to avoid also the strip readout combinatorial problem, tracks are reconstructed only in the events with <u>one and</u> <u>only one</u> cluster per µM station.
- Tracks are included in the "reconstruction" ROOT tree, to avoid the very long track fitting computational time (larger than 3 hours for 7000 tracks !!!)

Station misalignment problem

• The misalignment is corrected before track reconstruction

M. Alfonsi (CERN)

A view of the beam spot

(events with one and only one cluster per station!)

Reconstructed tracks

 The "reconstruction" ROOT file can be opened again for further analysis or to see the results, like with this simple "track viewer"

Analysis on "Device under test"

- The GEM chambers used as "Device under test" were instrumented with the same Gassiplex readout, but, due to connector mismatch, an interface board was required, leading to a mixing of channel map.
- Unfortunately we managed to resolve the problem late, so in the following slides only few correlation plots are shown.

All the other measurements will come in the following weeks

GEM cluster vs mM stations cluster

(note the different strip pitch!!!)

RD51 mini-week 24/09/2009

µM beam spot in GEM chamber

Future plans

- Complete the analysis also for the "Device under Test"
- Optimize the free parameters and improve the algorithms
- For the next October test beam, adapt the single offline analysis algorithms to online monitor algorithms