

High Eta Forward Muon Trigger and Tracking detector for CMS

High η imperative for improving trigger efficiency

Initial RE system –tailored to budget

ER

High η imperative for improving trigger efficiency

Increase Trigger Efficiency by adding - 4th layer -High eta

NIM A <u>609</u> 2009 (825-829) A. Sharma and S. Beri

Guesstimated Particle rates in CMS

RPC Region	Rates Hz/cm ² LHC (10 ³⁴ cm ² /s)	High Luminosity LHC 2.3 x LHC	(10 ³⁵ cm ² /s) Phase II SLHC ??
RB	30	Few 100	kHz (tbc)
RE 1, 2, 3,4 η < 1.6	30	Few 100	kHz (tbc)
Expected Charge in 10 years	0.05 C/cm ²	0.15 C/cm ²	~ C/cm ²
RE 1,2,3,4 η > 1.6	kHz	Few kHz	Few 10s kHz
Total Expected Charge in 10 years	~ C/cm ²	few C/cm ²	Few 10s C/cm ²

Rate: 30 Hz/cm²

Average total charge: **30 pC** Effective operation time: **5x10⁷ s (10 LHC years)** The total expected charge is **5 10⁻² C/cm²**

Punch through Rates, Neutrons, Gammas, Low Energy Protons, Non uniform Magnetic Field ..

Dose expected at LHC, High Lumi and Phase II at high eta (1.6 – 2.1)

To be evaluated: p-p Beam losses Cosmics Material thickness Punch through hadronic showers

... Need more information, simulations and measurements at LHC

MPGDs as candidate technology

Improve contribution to Muon Trigger Efficiency Combine triggering and tracking functions?

Instrument the noninstrumented zone in CMS (1.6 >η>2.1) - and increase up to 2.4

CCMS reading the second secon

MPGDs as candidate technology

- Enhance and optimize the readout $(\eta \phi)$ granularity by improved rate capability
- Rate capability 10⁴/mm²
 - Spatial resolution ~ 100 μ m (Θ_{track} < 45°)
 - Good double track resolution
 - Time resolution ~ 2-3 ns (Gas!)
 - Efficiency > 98%
 - Rate capability > 5 kHz/cm²
 - Argon CO2 (non flammable mixture - big plus)

MPGDs as candidate technology?

- Potential for going to large areas ~ 1m x 2m with industrial processes (cost effective)
- Long term operation experience in Compass
- Negligible Discharge probability with no consequence
- Implemented for LHCb first muon station (4m²)
- Proposed for ATLAS Muon upgrade (1000m²)

- 1. Assembly and test of two small MPGD prototypes
 - Micromegas
 - Triple Gem
- 2. Planning for mock up of large prototype
 - Size and envelope limitations
 - Drawings
- 3. Beam test preparation
 - Mechanics and gas lines
 - Readout electronics(?)
 - DAQ

Small proto-CMS-MM-01

- Standard bulk micromegas fabricated at CERN-TS/DEM
- Homogeneous stainless steel mesh
- Wire diameter ~25 μm
- Amplification gap = 250 μm
- 100mm x 100mm active area
- Strip patterns (128 strips in 100mm
 ~ 0.700 μm)
- Drift gap: 3 mm

Small proto-CMS-TG-01

(

proto-CMS-TG-01

SY-9

3

0

16

12

-12

-

HV Drift (Volts)

RD 51 Mini Week Sept 2009 AS

GAIN STUDIES WITH TRIPLE GEM ARGON CO2 CURRENT WITH Cu X-Rays

HV Drift (Volts)

DISCHARGE STUDIES WITH TRIPLE GEM ARGON CO2

HV Drift (Volts)

RATE CAPABILITY STUDIES WITH TRIPLE GEM ARGON CO2 90-10

RATE PHOTONS/mm²

proto-CMS-MM-01

0

0

۲

9

0

0

Drift

.

MESH

2)

0

6

THE DART JACK BOS

0

0

(8)

1

.

۲

0

9.4nF 200kOhr

(2)

GAIN STUDIES WITH MICROMEGAS ARGON CO2 80-20 CURRENT WITH Cu X-Rays

EFFICIENCY STUDIES WITH CMS-MM-01 ARGON CO2 80-20

Counts/10s

🔟 🔄 MM-Alpha-Studeis	Name	Туре	View	Size	Modified	Created	Dependents	Label			
	ALFA1	Worksheet	Normal	47KB	9/3/2009 15:58	9/3/2009 15:58	0	A:\ALFA			
	ALFA2	Worksheet	Normal	47KB	9/3/2009 15:58	9/3/2009 15:58	1	A:\ALFA			
	Data1	Worksheet	Normal	6KB	9/3/2009 15:57	9/3/2009 15:57	0				
	🚝 Graph1	Graph	Maximized	27KB	9/3/2009 15:58	9/3/2009 15:58	0				

TEST Beam Plan:

Oct 09

- 1. Gas Studies (two separate lines for premix)
- 2. Tests with Front End electronics for mips
- 3. Measure Efficiency for perpendicular tracks
- 4. Measure Efficiency for inclined tracks with tracking

Next Year

- 1. Time resolution
- 2. Space resolution with present strip size
- 3. Magnetic Field Operation
- 4. Large Prototype

PROTOTYPE Plan:

- 1. Detail mechanical design
- 2. Definition of the readout electronics and it's mechanical support
- 3. Services
- 4. Mockup realization of the detector
- 5. Production of the prototype

F

Meeting 02

Friday 04 September 2009

Next Meeting 20th November 2009

- 14:30 🔏 🖻 Introduction and discussion (20)
- 14:50 🖉 🖻 New Physics Potential and Detector Requirements Albert (de Roeck) (40)
- 15:30 🔏 🖻 MPGD Experience and Expression of Interest from Frascati Stefano Bianco / Benussi / Fabbri (20)
- 15:50 Current MPGD studies, CSC alignment work within CMS and interest in the high-eta MPGD upgrade from Florida (20) (Slides Slides)
- 16:10 Current Experience, Expression of interest and (preliminary preparation for Simulations of Trigger Efficiency) Arun K
 Slides Slides Slides (Slides Slides Sli
- 16:30 🖉 🖻 Update on small prototype tests at CERN Archana (20)
- 16:50 🔏 🖻 Preparation towards large prototype(s) Andrey / Serguei /Serge (20) ဲ Slides 🖾 🔛)

17:10 🖉 🖻 Update on Front End Readout - Nicola Turini (20) (📚 VFAT - Details 🚺 🛄)

Next Steps..

- 1. Participate in beam test
- 2. Build large size mock up to understand services
- 3. Build large size prototype to understand performance
- 4. Calculate rates as a function of eta-phi
- 5. Background simulations, measurements and calculations
- 6. Study muon road ~10 GeV, as a function of trigger sectors
- 7. Stagger / Layer the detector for avoiding fake hits
- 8. Engineering Design up to eta 2.4
- 9. Evaluate the improvement in

trigger and tracking efficiency

SPARE SLIDES

Muons at LHC • Issue is p_T measurement of real muons

L1 Muon Trigger Overview

- 1. Measure Efficiency for perpendicular tracks
- 1. Measure Efficiency for inclined tracks with tracking
- 2. Time resolution
- 3. Tests with Front End electronics for mips
- 4. Space resolution with present strip size
- 5. Gas Studies
- 6. Magnetic Field Operation
- 7. Large Prototype preparation

Preparing for Test beam Oct 21-Nov 2

