RD51- CERN 23-09-2009

Resistive spark protection and large MPGD production status

Summary

Resistive spark protection (PRC)

- Process
- Prototype in progress
- Large size Bulk Micromegas
 - Prototype in progress
 - Sectorizing tests
- Large single side GEM
 - Prototype in progress
- Conclusion

MICROMEGAS BULK resistive spark protection

Production steps

Resistive paste from ELECTRA

For 10Mohms vertical Resistor: 80% 100k +20 % 10k

We have also added 50% In weight of alumina powder To reduce Z shrink during polymerization dots

Pads

Strips

Values

For 1 mm2: -C= 1pF (calculated) -R= 10 Mohms (measured) -RC=10us -22us for C discharge -Max rate before pileup :50Khz/mm2

Trying to explain the effects

Spark signal [Figure 1. IEC 801-2 ESD Curent Waveform]

"Fast signal" 10nS (electrons) In the range of 100 Mhz

"Slow signal" 100ns (lons) In the range of 10 Mhz

Capacitor impedance

Typical Capacitor impedance at High frequencies For 1pF AT 100Mhz Impedance = 1.5 Kohms At 10 Mhz impedance = 15 Kohms

Murata capacitor catalog

Filtering

After filtering a big part of the energy should be removed but the resistor and capacitor should handle this local power, creating a heat point

Summary

Theory

- The available energy during a spark should be reduced by pixelizing the input capacitors
- Most of the signal should be clamped by the capacitor if the value is properly define
- The max rate is define by the RC network
- The resistive material should have a high DC breakdown voltage and good thermal properties to evacuate the heat created by the spark

Reality

- Some good effects have been seen but we are still trying to understand the behaviour of these detectors
- BUT !Already 2 problems after first tests !!!
- And also lots of questions are still opened!
 - Behaviour of the capacitor at these frequencies? Inductive effects?
 - Value of the capacitor?
 - voltage breakdown of the capacitor?
 - Heat spread of the resistor material compatible with smaller sparks?

Bits of resistive material have been pulled away

Problem 2 HV breakdown

HV breakdown in the material Creating channels of a few kohms

23/09/2009

Large Micromegas situation

Atlas Muons detector upgrade project 1.5m x 0.5m processed area

HV distribution

Signal output

the Biggest prot

Biggest problem: laminator pressure uniformity over the 50cm

The detector is completed all the sectors have been tested at production Level. Similar results compared to smaller ones

New sectorizing method

Bulk detector not segmented

Applying a plate covered with a pressure adhesive tape

Conventional milling The detecting area is protected

After removing protection

Sectorizing example

33 sectors , 12cm diameter detector2.5mm dead space for sectorizing1mm hole for HV connection

Bottom high voltage distribution and HV read out

Before milling

After milling

No dust

But still need some Improvement to avoid any metal hair

LARGE GEM

Rui De Oliveira

Single mask process

Chemical Polyimide etching Sharper than std process

Etching of bottom electrode by active corrosion protection

Stripping

Post Polyimide etching

Large size single mask GEM in production

-99cm x 33cm active area
-105cm x 45cm foil
-5um copper both sides
-Prototype for test

Tooling

2m x 0.45m Possible size

1m GEM on the pictures

Large GEM production status

- 2 large foils are ready for Polyimide etch
- Large bath are filled with new chemistries
- Test on 10cm x 10cm have been performed
- After characterisation we have seen a small difference on spark voltage compared to std GEMs
- We have adjusted again the chemistry to remove this last imperfection.

GEM without metal

Last tests

Previous productions

Better definition of the hole edge at a micron level and better uniformity Randomly distributed small Imperfections probably causing the lower sparking voltage

Conclusions

- Resistive protection
 - 2 new detectors are in production with last improvements
 - The 2 existing ones could probably be repared
- Large Bulk
 - The process seems to be under control (but only one piece produced!)
- Large GEM
 - Process and equipments ready for first trial of large size