LHeC: detector specifications and the application of gaseous tracker

Alessandro Polini (INFN Bologna) (for the LHeC detector WG)

Outline

- Short LHeC Introduction
 - Experiment requirements and boundaries
 - (Physics, Machine, Interaction Region and Detector)
- Present Detector Design
- Interest in Silicon-Gas Tracker and in a collaboration with Rd51
- Outlook and Plans

LHeC context

The LHeC is not the first proposal for higher energy DIS, but it is the first with the potential for significantly higher luminosity than HERA ...

Lepton-Proton Scattering Facilities

[JINST 1 (2006) P10001]

Deep Inelastic Electron-Nucleon Scattering at the LHC^{*}

J. B. Dainton¹, M. Klein², P. Newman³, E. Perez⁴, F. Willeke²

 ¹ Cockcroft Institute of Accelerator Science and Technology, Daresbury International Science Park, UK
 ² DESY, Hamburg and Zeuthen, Germany
 ³ School of Physics and Astronomy, University of Birmingham, UK
 ⁴ CE Saclay, DSM/DAPNIA/Spp, Gif-sur-Yvette, France

- *ECFA*: European Committee for Future Accelerators
- NuPECC: Nuclear Physics European Collaboration Committee
- Accelerating facility: Two possibilities being pursued:

LHeC

- Ring-Ring
- Linac-Ring

LHeC Working Groups:

- Accelerator Design
- Interaction Region and Forward/Backward Detectors
- Detector Design
- New Physics at Large Scales
- Precision Investigations of QCD and Electroweak Interactions
- Physics at High Parton Densities (ep and eA)

Aim at a CDR in 2010

A. Polini LHeC - RD51 workshop September 25th 2009

http://www.ep.ph.bham.ac.uk/exp/LHeC/

Machine Considerations and Studies

high E_{e,p,A}, e[±] polarised, high Luminosity

generalities

simultaneous ep and pp

power limit set to 100MW

IR at 2 or 8

p/A:

SLHC - high intensity p (LPA/50ns or ESP/25ns)

lons: via PS2 new source for deuterons

e Ring:

bypasses: 1 and 5 [use also for rf]

injector: SPL, or dedicated

e LINAC:

limited to ~6km (Rhone) for IP2, longer for IP8 CLIC/ILC tunnel.?

Kinematics & Motivation (70 GeV x 7 TeV ep)

5

•High x and high Q²: few TeV HFS scattered forward:

→ Need forward calorimeter of few TeV energy range down to 10° and below. Mandatory for charged currents where the outgoing electron is missing. Strong variations of cross section at high x demand hadronic energy calibration as good as 1%

• Scattered electron:

 \rightarrow Need very bwd angle acceptance for accessing the low Q² and high y region \square .

Detector Acceptance

RAPGAP-3.2 (H.Jung et.al.- http://www.desy.de/~jung/rapgap.html) HzTooL-4.2 (H.Jung et.al. - http://projects.hepforge.org/hztool/) selection: q².gt.5.

 \rightarrow Highest acceptance - if possible

Beam Optics and Detector Acceptance

Current design: strong-focusing magnets at 120 cm from IP
 Could think of two detector options
 Low Lumi, Low x → high acceptance detector 1⁰

• High Lumi, High $Q^2 \rightarrow Main$ detector 10^o aperture

A. Polini LHeC - RD51 workshop September 25th 2009

Beam Pipe Considerations

Pipe dimensions – very essential choice: to large extent it determines the

size of the detector. Strong implications in terms of costs and acceptance

Present design: elliptical Be beam pipe from SLHC for now: r_y=2.50 cm (radius of SLHC design) and r_x=3.07 cm (scaled from HERA experience)
 → Dedicate simulation of Interaction region needed (synchr. background)

Requirements from Physics

High resolution tracking system

- excellent primary vertex resolution
- resolution of secondary vertices down to small angles in forward direction for high x heavy flavour physics and searches
- precise pt measurement matching to calorimeter signals, calibrated and aligned to 1 mrad accuracy

The calorimeters - Energy flow

 electron energy to about 10%/ V E calibrated using the kinematic peak and double angle method, to permille level

Tagging of γ 's and backward scattered electrons - precise measurement of luminosity and photo-production physics

• hadronic part $30\%/\sqrt{E}$ calibrated with pT_e/pT_h to 1% accuracy

Tagging of forward scattered proton, neutron and deuteron - diffractive and deuteron physics

Muon system, very forward detectors, luminosity measurements

Tracking Requirements

- lowest mass tracker essential for γ/e[±] ident (specifically bwd)
- early π° ident vertex detector/trigger
- Large acceptance toward small forward/rear angles
 Placement as close as possible to the beam pipe
- Radiation tolerant
- Low budget material
- High gain (more hits per tracks → track segments)
- high resolution track definition in front of forward calo
- tracking trigger in front of fwd/bwd calo, pt trigger there too?

Precision Tracking: Si-Gas Tracker – GOSSIP

Gas on Slimmed Silicon Pixels

- Gas for charge creation, Si-pixel/strips/pads for signal collection
- Lightweight detector (including mechanics, cooling infrastructure...)
- More than one hit per track defines track segments
- Si radiation hard standard CMOS (90 nm process)
- Trigger capable: 25ns, Gossipo 3|4 readout chip ~O(1) ns time resolution.
- Large volume detector affordable, industrial production
- Time measurement 3D tracking
- Gas choice: radiator : Transition Radiation Tracker - e/π identification
- Diffusion and drift velocity limits position measurement currently to ~<<20µm

Ideal option for LHeC

A. Polini LHeC - RD51 workshop September 20.

GridPix and Gas On Slimmed Sllicon Pixels Gossip: replacement of Si tracker

Essential: thin gas layer (1.2 mm)

Gossip Presentations:

- E. Koffeman (Divonne 2008)
- H. VanDerGraaf (Divonne 2009)

Other Detector Requirements

Calorimeter

- Minimize longitudinal and lateral energy leakage
- Fwd/bwd Particle Flow Detector to achieve desired mass resolution ; γ/e^{\pm} ; π° ; ...
 - This technique combines the tracking/calorimetry information in an optimal way in order to get the best possible jet-energy resolution. Or Dream (dual readout) - event to event correction
- Both electromagnetic and hadron calorimetry inside the solenoid coil; minimum material inside EmCal;
- Prototyping, test at high energy!
- Conventional technologies LAr (ATLAS, H1) especially in in barrel/rear region, possibly problematic for infrastructure and modularity boundaries

Magnetic Field

3.5 Tesla solenoidal field (track resolution etc.)

... the detector

... a first draft

Elliptical pixel detector:

2.9–4.6/3.47-6.05

LowQ²-Detector

Elliptical pixel detector: Barrel layer 1-5: Radius [cm] 2.9–4.6/3.47-6.05 7.5–61

LowQ²-Detector

	Radius [cm]
Elliptical pixel detector:	2.9–4.6/3.47-6.05
Barrel layer 1-5:	7.5–61
Barrel cone 1-4:	5–61

Full Tracking (down to 1 degree)

(to be optimised)

One option: GAS-Si Tracker - GOSSIP Type NIKHEF

Container Model

LowQ²-Detector

LowQ²-Detector

Remove fwd/bwd tracking and some fwd/bwd calorimeter inserts to make space for....

-289

High Q² configuration

1833

... for the strong focusing magnets.
 → HighQ² Running

69 E

89

2.55

The Detector - Low Q² Setup

(to be optimised)

- Solenoid surrounding the HAC modules
- Outer detectors (HAC tailcatcher/muon detectors not shown)
 Not discussed either: very forward detector setup very essential but postponed

A. Polini LHeC - RD51 workshop September 25th 2009

The High Q² Setup

(to be optimised)

L1 Low Q² SetUp \rightarrow High Q² SetUp

- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed

-Calo-Inserts in position

A. Polini LHeC - RD5 workshop September 25 2009

28

Calorimeter

Present choice: Energy Flow Calorimetry: For the geometry given:

- Electromagnetic Calorimeter:
 ~30 x X0 Pb/W & different det./R/O
- Hadronic Calorimeter:
 6 10 x λ₁ Fe/Cu & different det./R/O

- Presently the fwd/bwd calorimeter asymmetry more in functionality/detector response rather then in geometry
- A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio λ_l/Xo large, is optimal for E-Flow measurement \rightarrow 3-D shower reconstruction

Example Fe, W

Material	Nuclear interaction	Density	Moliere	Radiation length	$\lambda/\mathbf{X_0}$
	length λ [cm]	$[g/cm^3]$	radius [cm]	<i>X</i> ₀ [cm]	
Fe	16.98	7.87	1.66	1.77	9.59
W	10.31	19.3	0.92	0.35	29.46

brass (Cu) an option also (CMS), $\lambda_1 = 15.1$ cm - denser than Fe (adding λ_1)

Solenoid

Modular structure: assembly on surface level or in the experimental area depending on time constraints and access shaft opening

Solenoid dimensions:

- 480~594 cm half length
- 291 cm inner radius
- B field = 3.5 T

Geometry constraints:

- Current beam pipe dimensions
- Requirement of 1° tracking coverage
- Homogeneous B field in the tracking area

Simulation Framework

Use a homogeneous, powerful and widespread environment

Frameworks come to our attention:

- 4th concept ICRoot ILC evolved from: AliRoot Alice LHC
- Based on CERN software root with Virtual Monte Carlo
- Pandora-Pythia, Whizard, Sherpa, CompHEP etc. - generators
- root using Geant3/4 and Fluka -(transport in matter)
- Several simulations, detector geometries etc. already exists
- 4 experiments using AliRoot based framework: Ali - Ilc - Fair - MPD -Root

- Import of our contained model-detector geometry in the environments
- Dedicated manpower for software implementation needed

LHeC simulation

Root TGeom model + Geant 4

First promising steps towards GEANT4 detector simulation for physics

- LHeC is an attractive physics project complementary to LHC and ILC enterprises
- The detector requirements and the realization time scale allow the LHeC to make use of the experience and the R&D done for SLHC and ILC/CLIC
- This is an opportunity for promising new detector technologies
- Si-Gas detectors appear to be an ideal option for the LHeC tracker
- LHeC Physics and Detector working groups are extremely interested in pushing forward the collaboration with detector R&D projects
- 1st step is to define a common framework and a detector module to be used in benchmark simulations of physics processes.
- Both the LHeC project and the detector R&D groups would profit from this exchange
- Synergy and collaboration essential

backup slides

Magnet Essentials

- Present option: Conservative Solenoid with B field =3.5 T
- Attractive design with a 2 solenoid solution, tracking: +5T and -1.5T in the muon area if 4th concept design followed.
- Decide after detailed machine/physics studies and cost considerations

From discussion with experts (H. Ten Kate, A. Dudarev) any design feasible.

The High Lumi detector setup requires strong focusing magnet at ~120 cm from IP. Severe acceptance limitations. Dimensions of strong focusing magnets (Ø = 30cm now)
 Instrumentation of strong focusing magnets - tracking/ calorimeter device *)
 *) T.Greenshaw, see LHeC Divonne 2008+ 2009

Instrumented Magnets

Tim Greenshaw Divonne 2009

Superconducting magcal – take one

- Helium cooled SC magnet.
- Coils in He bath.

Space for calorimeter using He as active component? Could add stainless steel plates as absorber with readout pads:

Geant 4 studies Birmingham

Tim Greenshaw Divonne 2009

Resolution, expect:

$$\frac{\sigma}{\mu} = \frac{\text{const.}}{\sqrt{E}}.$$

Extract const. from slope of graph of σ/μ against 1/√E.

- Highest luminosity at collider requires magnets close to IP.
- These limit experimental acceptance unless they can provide (calorimetric) measurements.
- Stainless steel/LHe scintillation sandwich calorimeters look to be able to provide an energy resolution of ~ 10%/VE...
- ...but the showers in the calorimeters are broad and so they have to be reasonably large.

Exercise Track Resolution

• i.e. assuming / using (Glückstern relation):

 $\frac{\sigma(p_{\perp})}{p_{\perp}} = \frac{\sigma(x)}{aBL^2} \sqrt{\frac{720}{N+4}} \cdot p_{\perp} \quad \text{with} \quad a = 0.3 \text{ T}^{-1}\text{m}^{-1}\text{GeV}$

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$

- B = 3.5 T N_{min}= 56 track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits)
 - si-gas cone modul ~10° inclined more track points for inclined tracks - extended track segments
- Δpt/pt² = 0.03%
- track accuracy = 15μm -> track length 42 cm tracker layout: 54 cm (90^o track)
- track accuracy = 25μm
 -> track length 53.7 cm
- track accuracy = $15\mu m \& \theta = 5^{\circ} \& N_{min} = 90 \rightarrow length \sim 39 cm \rightarrow \Delta p_T/p_T^2 = 0.025$ for $p_T = 10 GeV$
- track accuracy = $25\mu m \& \theta = 3^{\circ} \& N_{min} = 60 \rightarrow \text{length} \sim 20 \text{ cm} \rightarrow \Delta p_T/p_T^2 = 0.194$ for $p_T = 10 \text{ GeV}$
- track accuracy = 15µm & θ = 3° & N_{min} = 60 -> length ~20cm -> $\Delta p_T/p_T^2$ = 0.12 for p_T = 10GeV
- track accuracy = $15\mu m \& \theta = 3^{\circ} \& N_{min} = 110 \rightarrow length \sim 20 cm \rightarrow \Delta p_T/p_T^2 = 0.086$ for $p_T = 10 \text{ GeV}$

Calorimeter Technologies

Particle Flow and high granularity devices:

- promising at ILC energies(E_{CMS}<500GeV)
- need a transition to "normal" calorimetry if to be used at higher energies
- Rely heavily on <u>software</u>, <u>microelectronics</u> and <u>SiPM</u> (or Gas chambers ?)

rms90	PandoraPFA v03-β	
EJET	$\sigma_{\rm E}/{\rm E} = \frac{\alpha}{\sqrt{E_{\rm jj}}}$ cos θ <0.7	$\sigma_{\rm E}/E_{\rm j}$
45 GeV	23.8 %	3.5 %
100 GeV	29.1 %	2.9 %
180 GeV	37.7 %	2.8 %
250 GeV	45.6 %	2.9 %
500 GeV	84.1 %	3.7 %
500 GeV	64.3 %	3.0 %

Dual Readout:

Attractive idea: reading independently (in a non-compensating cal.)

- 1) a Cerenkov response only sensitive to relativistic shower components (mostly e[±])
- a Scintillation response sensitive to all dE/dx and correcting event by event and cell by cell the main (scintillation) response.
- Usable up to highest energies
- Require <u>hardware developments</u>, some of them still at the "generic" level.
- Need to be demonstrated with large prototypes (DREAM Collaboration)

Conventional technologies:

• LAr (ATLAS, H1) especially in in barrel/rear region. Possibly problematic for infrastructure and modularity boundaries

- Use tracking information to improve jet energy reconstruction
- Need to associate tracks with clusters
- Ideally only neutral cluster energy is taken from calorimeter

- "Confusion" is main source of errors
 - Need to separate neutral and charged clusters (B + radius)
 - Need highly granular calorimeter to see cluster structure

Confusion $\propto B^{-0.3}R^{-1.0}$

2nd September 2009, Christian Grefe

A hardware and software challenge

A. Polini LHeC - HUSICISTICS SCIENCE SCIENCE SCIENCIA HUSICISTIC SCIENCIA RADIUS

Page 19

Christian Grefe

Divonne 2009

PFA Performance

- Comparing PFA and pure calorimetry:
 - PFA "wins" for E_{jet} < 400 GeV
 - There is room for improvement of the algorithm
 - Can chose reconstruction depending on event
- http://indico.cem.ch/contributionDisplay.py?contribld=268&ses sionId=2&confld=30383
- http://indico.cern.ch/materialDisplay.py?contribld=1&materialId =slides&confld=56735

Barrel Region

Mark Thomson

Default ILD: B = 3.5 T, 6 λHCal

C _{JET}	σ _F /E = α/√E _{jj} cosθ <0.7	σ _E /E _j
45 GeV	25.2 %	3.7 %
100 GeV	29.2 %	2.9 %
180 GeV	40.3 %	3.0 %
250 GeV	49.3 %	3.1 %
375 GeV	81.4 %	3.6 %
500 GeV	91.6 %	4.1 %

- Good option for barrel HCAL
 - need input from physics groups about mass and/or energy resolution
- PFA performance in fwd region unproven
- •=> consider conventional or "DREAM" fwd calorimeter

Overview - Core Detector

Radius (cm)	Subdetector	Comment
2.9–4.6/3.47-6.05	2 layer ellipt. V _{pix}	δ(IP) < 10 μm
7.5–61	5 layer Si-Gas barrel	
5–61	4 cone Si-Gas barrel	
5–60 (z₁/2≈110)	fwd/bwd TPC	field cage - material?
5–60	fwd/bwd × 3 × 2 planes Si	-Gas
70–110	ECAL	25-30 X0
112-289	HCAL	6-10 λ _Ι
300–330	Coil	3.5 T - tracking
340-700	Fe/muon,	

Not covered:

very forward detectors, lumi measurement ... may be important for e-nucleon running: TOF system, Zero Degree Calo ...

Infrastructure

ALICE

Round access shaft of 23m diameter, cavern about 50m along the beamline

LHCb

 Shaft: 100m depth, 10.10m diameter, very slightly non vertical; experiment: length 19.90m from IP, max width at the muon station 12m; cavern: 50m x 20m

Point 2 (Alice)

Point 8 (LHCb)

- eRHIC solution: hard bend of electron beam outside of detector sync rad fan bypasses active areas

####