

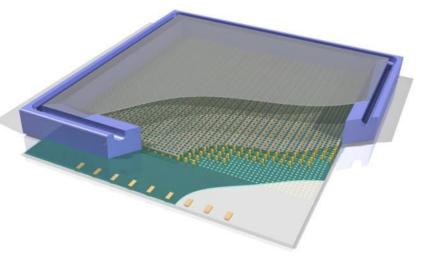
Different way of gas supply for small volume MPGDs

Harry van der Graaf, Fred Hartjes and Marcel Vervoort

RD51 Mini workshop CERN, 24 September 2009

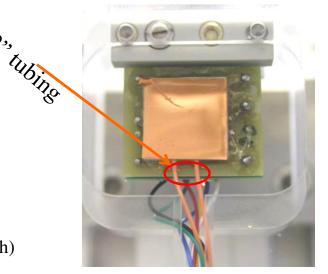
What is different for single chip MPGDs?

• Very small detector volumes


• 1 Gossip detector \approx **0.2 ml** (15 x 15 x 1 mm³)

=> very small gas flows may be used

- 10 volume changes/hour
- => 33 μl/min (2 ml/h)
- Commercial mass flow controllers go down to ~ 2 ml/min FS
 - => permit flows down to $100 \,\mu$ l/min
- For practical reasons we normally use bit larger flows
 - 2 5 ml/min (**0.12 0.3 l/h**)


2

Advantages of small flows (0.12 – 0.3 l/h)

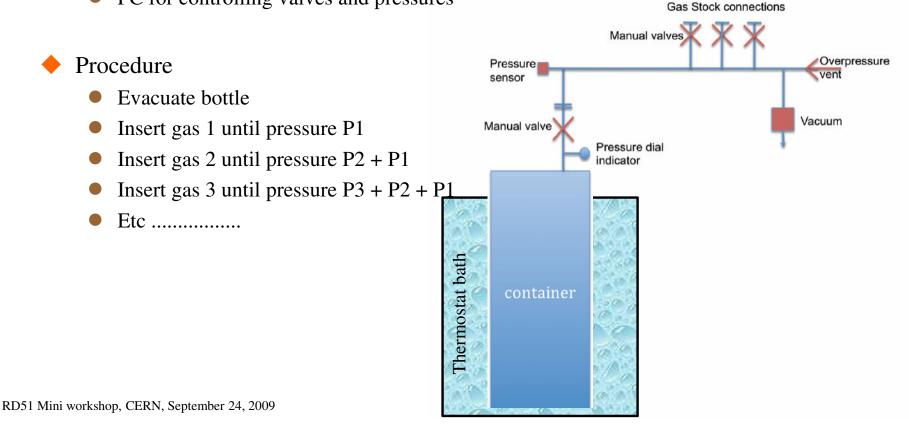
1/32,

- Permitting very thin gas lines
 - Gas lines 1/32" ($\approx 0.8 \text{ mm OD}$) well feasible
 - **3** m tubing **0.5 mm ID** with CO_2 and 0.12 0.3 l/h
 - => Back pressure 10 24 mbar
 - Gas line of 1/64" ($\approx 0.4 \text{ mm OD}$) not excluded
 - **3** m tubing **0.25 mm ID** with CO_2 and 0.12 0.3 l/h
 - **=** \Rightarrow Back pressure 0.15 0.4 bar

- (Using normal size gas pipes (6 mm OD or larger) would lead to very long reaction times)
- On site mixing of small flows hard
 - Long flow measurement times
 - (almost) out of range of commercial mass flow controllers
- ♦ => use premixed gas bottles

How to get premixed gas bottles?

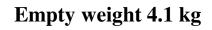
• Custom specified mixtures from commercial gas suppliers not attractive


- Expensive
- Long delivery time (~5 6 weeks)

+ => We are considering gas mixing in house (Nikhef)

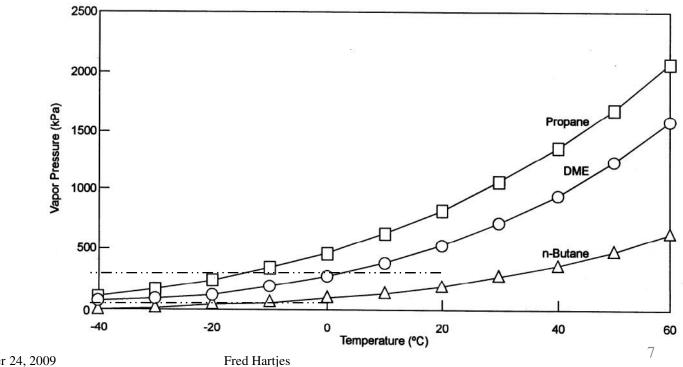
Planned mixing station at Nikhef

• Equipment


- Gas bottle
- Vacuum pump
- Accurate absolute pressure sensor(s)
- Thermostat bath
- PC for controlling valves and pressures

Gas bottle

- Apply light weight bottle
 - Originally intended for butane, propane
 - Volume: 12.31
 - (also bigger available (26.5 l))
 - Material: AISI 304 (stainless steel)
 - Test pressure: 30 bar
 - Burst pressure: 120 bar
 - Identification label on bottle



Vapour pressures vs temperature

Maximum bottle pressure often determined by condensation point

- Isobutane 2.6 bar @ 15 °C
 - => Ar/iC_4H_{10} 50/50 can be no more than 5.2 bar abs or 4.2 bar gauge
- DME 5.1 bar @ 20 °C
 - Boiling point 24.8 °C

Security measures for the gas mixing station at Nikhef

• Creating mixtures with flammable gases at Nikhef allowed if

- Done in well vented space
- Explosion detection available
- Proper grounding of equipment
- Only accessible for limited number of persons
- These persons are well trained
- Additional fire extinguisher is present
- Risk analysis has been made
- Flammable gas indication is outside
- Security staff has been informed and instructed

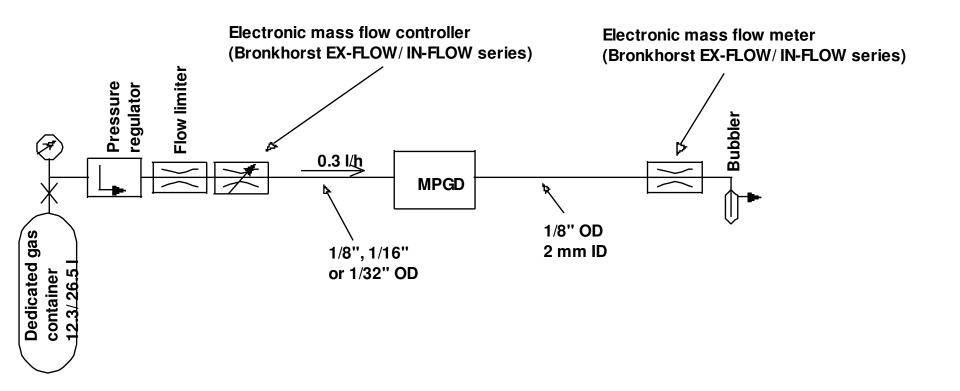
Using flammable gas mixtures at a CERN test beam

- We can load up to 234 l into the 12.3 l bottle
 - Sufficient for beam test using 0.3 l/h (1 month)
- But pressure of DME and isobutane mixtures limited by vapour pressure

Mixture	P1 (bar abs)	P2 (bar abs)	P _{tot} (bar gauge)	Net content (l)	H ₂ eq. mass(g)	Running time (days) at 0.3 l/h
Ar/CH ₄ 90/10	27	3	19	234	6.7	32.5
CO ₂ /DME 50/50	4	4	7	86	25.4	12
Ar/iC ₄ H ₁₀ 80/20	8.8	2.2	10	123	26.0	17

Limited hydrogen weight (<< 0.4 kg)

- risk class 1 of CERN flammable gas safety manual
- One regular (50 1) bottle with iC₄H₁₀ contains 6.75 kg/of H₂ > premix bottle possibly allowed in experimental area
- => short pipe lenghts =>low dead pipe volumes
- Easy test beam set-up


equivalent mass

=> Risk class 2

(JSP

Test beam gas system with premixed bottles

- Assume small flow (≤ 0.3 l/h)
- Flow regulated by electronic mass flow controller (explosion proof)
- Flow check (electronic mass flow sensor) at exhaust
 - > verifying leaks
- Upstream: thin pipes may be used (1/8", 1/16", 1/32")
- Downstream: thicker pipes (1/8")

Conclusions

- ◆ Using low gas flows (≤ 0.3 l/h) has many advantages for lab and test beam experiments
 - Thin gas pipes (1/8")
 - Premix gas bottles in lab/ test beam area
 - Simple, non critical (1 channel) gas regulation
 - Easy and cheap experimental set-up
- Producing premixed bottles at Nikhef looks feasible