

Gossip Simulations and Testbeam Data Analysis

Wilco Koppert 25-09-2009

Contents

- Introduction
- MC: Configuration
- MC: XY Resolutions
- MC: Other Results
- Testbeam results
- To Do

Introduction

Configuration

- GARFIELD for Drift Gap
- HEED (gas parameters)
- CO2 (50%), DME (50%), T= 293K, P= 1atm
- Drift Gap 1 mm, Avalanche Gap 50 µm
- Diffusion 98.5 μ m/ \sqrt{cm} (L), 114.5 μ m/ \sqrt{cm} (T)
- Sample: 1000 muons (1 GeV Garfield)
- Drift voltage -1300 V
- Grid -400 V
- Chip ground
- No Chip MC used (yet)
- Drift velocity: 55,6 µm/ns

XY-Resolutions

Fit through points (minuit) \rightarrow X0, Y0, ϕ and θ

New definition of resolution:

-Before: the resolution was defined as the deviation of the fitted X0, Y0 value from real track in the Z=0 plane (the chip)

-Now: the same but now Z=300 um

Why? Because extrapolating fit to X0,Y0 gives rise to larger errors.

XY-Resolutions

- Why 300 um? The optimum plane differs for different time resolutions, pitch sizes and angles (due to pixelizing, and weights applied that are z dependent)
- 300 um is more or less the average for the different angles @ pitch=55 um and timebin =10 ns.

Effect on Resolutions

2 7

Effect on Resolutions

- Resolutions improves with new definition
- The new definition does not affect angle resolutions or the distributions from fits with fixed angles
- Angle dependency of the optimum plane makes things less clear.

Other Results (showed before)

0.8

0.7 0.6 0.5

0.4

0.3

0.2

Electron Efficiency, timeRes 0.1 ns

pitch 1µm

pitch 20µm pitch 40µm

pitch 55µm

- Track Efficiency ~99 _
- Angular resolution 1-2 degrees
- Electron efficiency:

Testbeam Setup

Goal: verify MC simulation results

- Differences: Ar Isobutane 80/20 iso CO2-DME 50/50, Diffusion is ~3 times larger
- Only perpendicular tracks 100 GeV iso 1 GeV
- Timebins 12.5 ns iso 1.8 ns

Testbeam setup: 3 x gossip (~1mm) 1 x DICE (2 cm)

Testbeam Results

100

200

300

400

11/14

500

Testbeam Results

- In Argon Isobutane (80/20) ~ 114 electrons/cm = 11.4 electrons/mm
- Three gossips have ~5-6 electrons/evt
- Efficiency roughly 50%>30% from MC # electrons CO2-DME 12 electrons/mm. Due to

Testbeam Results Not enough time info → resolution from CoG The diffusion is ~ 3x larger in Testbeam compared with MCsim, resolution must be 12 *3 ~ 36 um.

Very rough resolution calculation: If $\sigma_{gos1} = \sigma_{gos2} = \sigma_{gos3} \rightarrow 1.5 * \sigma_{gossip1}^2 = \sigma_{res}^2$ Residual: x2 - (x1 + x3)/2 Xb/Nb 30 ∣ fhX0ResGossip2 Entries 180 25 6.707 Mean σ_{gossip} ~40 +/- 5 um RMS 68.23 χ^2 / ndf 17.87 / 17 20 Constant 23.09 ± 2.76 Mean -1.782 ± 4.396 15 Sigma 51.24 ± 4.70 10 5 0 -300 -100 100 -200 0 200 300 position X in µm 29-04-09 13/14 Wilco Koppert

To Do

- Testbeam with CO2 DME done last week with several angles, data must be analyzed.
- The simulation must be completed with all ingredients using Garfield (NEBEM incl)
- Reduce timeslewing problem

Backup

