Thoughts on V p_T Spectrum and W/Z Ratio.

Frank Tackmann

Deutsches Elektronen-Synchrotron

W Boson Mass Workshop LAL, October 2-6, 2017

< 67 >

Extrapolating from Z to W.

Goal: Use measurement for Z to get an improved prediction for W

One way to think about it

$$\frac{\mathrm{d}\sigma(W)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(W)/\mathrm{d}p_T}{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

- Requires theory prediction for W/Z ratio to be more precise than for individual processes, which is equivalent to theory uncertainties being strongly correlated between processes
- More general: Use common theory framework and fit to Z data
 - Tuning Pythia on Z data is one example
 - Requires explicit information on correlations between processes
- \Rightarrow Either way, extrapolation hinges entirely on correlations of theory uncertainties between $d\sigma(Z)$ and $d\sigma(W)$
 - Correlations, hm? Often we don't even know what our theory uncertainties really mean ...

\Rightarrow At sub-% level many things matter

Dominant and well-understood parts (mostly) drop out in W/Z ratio, exposing all the things we normally like to sweep under the rug

Frank Tackmann (DESY)

2017-10-02 1 / 16

< 🗗 >

Outline and Summary.

	Uncertainty or size	Analytic resummation	Pythia	Leftover effect on W/Z
Leading-power resummation	5-10%	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	\checkmark	$\lesssim\%$ (?)
Power corrections	few $\%$	(×)	(√)?	?
Nonperturbative	few %	(√)	(√)	?
Massive quarks	few % (?)	× (√)	(√)?	few % (?)
QED	$\lesssim\%$ (?)	×	√ (?)	$\lesssim\%$ (?)
PDFs	2%	\checkmark	\checkmark	\checkmark
$lpha_s(m_Z)$	up to 5%??	\checkmark	\checkmark	\checkmark

- Most ? could be addressed (and some just mean that I don't know ...)
- Though it is a bit unsettling it is not unbelievable that plain Pythia currently seems to describe the W/Z ratio better
 - We should of course try to get beyond that
 - Question of the uncertainty when used as prediction for W remains

Frank Tackmann (DESY)

2017-10-02 2 / 16

Perturbative Structure - Singular vs. Nonsingular.

Consider both differential and cumulative distribution

• Define scaling variable $au\equiv p_T^2/Q^2$ and $\sigma(au^{
m cut})=\int^{ au=t}{
m d} aurac{{
m d}\sigma}{{
m d} au}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{k} \alpha_{s}^{k} \left\{ c_{k,-1}\delta(\tau) + \sum_{n=0}^{2k-1} c_{kn} \left[\frac{\mathrm{ln}^{n}\tau}{\tau} \right]_{+} + f_{k}^{\mathrm{nons}}(\tau) \right\}$$
$$\tau(\tau^{\mathrm{cut}}) = \sum_{k} \alpha_{s}^{k} \left\{ c_{k,-1} + \sum_{n=0}^{2k-1} c_{kn} \frac{\mathrm{ln}^{n+1}\tau^{\mathrm{cut}}}{n+1} + F_{k}^{\mathrm{nons}}(\tau^{\mathrm{cut}}) \right\}$$
""singular" "nonsingular"

singular: leading-power terms

- to be resummed
- $c_{k,-1}$ contains k-loop virtuals (i.e. finite remainder after real-virtual cancellation)

nonsingular: power corrections

- suppressed by relative $\mathcal{O}(\tau)$
- $au f_k^{\mathrm{nons}}(au)$ and $F_k^{\mathrm{nons}}(au^{\mathrm{cut}})$ vanish for $au^{(\mathrm{cut})} o 0$

Frank Tackmann (DESY)

< 🗗 >

Different Perturbative Regions.

Resummation region

- Spectrum at low $p_T \ll Q$ and cross section with cut $p_T^{
 m cut} \ll Q$
 - Singular dominate and must be resummed (nonsingular are power-suppressed)
 - Fixed-order by itself becomes meaningless here
 - In MC: Parton shower regime

Different Perturbative Regions.

Fixed-order region

- Spectrum at high $p_T \sim Q$
 - Fixed-order calculation for inclusive V+1-jet process
 - In MC: Fixed-order matrix elements
 - Power expansion breaks down and resummation must be turned off

Different Perturbative Regions.

Transition region

- Anything in between (there are no fixed boundaries)
- Resummation still makes sense, fixed-order expansion also still works
 - Most precise predictions are obtained from consistent combination of resummation and fixed-order
 - ▶ In MC: This is where ME+PS matching/merging comes in

Resummation.

All-order structure of leading-power terms is fully determined by coupled system of differential equations (including their boundary conditions)

in virtuality scale µ

$$\mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} = \gamma_H(Q,\mu) H(Q,\mu)$$
$$\mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_B(\mu,\nu) B(\vec{p}_T,\mu,\nu)$$
$$\mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} = \gamma_S(\mu,\nu) S(\vec{p}_T,\mu,\nu)$$

< 67 →

Resummation.

All-order structure of leading-power terms is fully determined by coupled system of differential equations (including their boundary conditions)

• and rapidity scale ν (or ζ)

$$\begin{split} \nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= \int \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) = -4\Gamma_{\mathrm{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T) \end{split}$$

Resummation Orders.

Analytic resummation amounts to solving this system of differential equations

- Formal resummation accuracy is fundamentally defined by perturbative input used for anomalous dimensions and boundary conditions
 - In Fourier space (as in standard CSS) solution is a pure exponential and resummation orders map onto common counting of logs in the exponent
- Current perturbative uncertainties at NNLL'+NNLO at 5-10% level
 - ▶ N^3LL is available but not full $N^3LL' + N^3LO$, hard to see it can go below 2%
 - ► Compare: Thrust spectrum in $e^+e^- \rightarrow q\bar{q}$ at $Q = m_Z$ has $\simeq 2\%$ precision at N³LL'+N³LO

	Boundary conditions	Anomalous dimensions		FO matching
	(singular)	$\gamma_{H,B,S, u}$	$\Gamma_{ ext{cusp}},oldsymbol{eta}$	(nonsingular)
NLL	1	1-loop	2-loop	-
NLL ^(/) +NLO	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL+NLO	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL ^(/) +NNLO	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
N ³ LL+NNLO	$lpha_s^2$	3-loop	4-loop	$lpha_s^2$
$N^{3}LL^{(\prime)}+N^{3}LO$	$lpha_s^3$	3-loop	4-loop	$lpha_s^3$,
Frank Tackmann (DES)	() Thoughts on V pr	Spectrum and W/Z Rat	io.	2017-10-02 6

Variety of Resummation Approaches/Implementations.

[Collins, Soper, Sterman (CSS); Balazs, Berge, Isaacson, Nadolsky, Olness, Su, C-P Yuan, F Yuan (ResBos); Bozzi, Catani, de Florian, Ferrera, Grazzini (DYRes); Becher, Luebbert, Neubert, Wilhelm (CuTe); Neill, Rothstein, Vaidya; D'Alesio, Echevarria, Idilbi, Kang, Melis, Scimemi, Vladimirov, Vitev; Monni, Re, Torrielli; Ebert, Stewart, FT, Zhu; ...]

- Differences in precise choices (and/or additional approximations)
 - Boundary conditions to the solution (starting point of the evolution)
 - How resummation is turned off (endpoint of the evolution)
 - Treatment of power corrections (matching to full fixed order)
 - Treatment of nonperturbative corrections
- Choices are (mostly) beyond formal accuracy, but can matter for numerical results and perturbative uncertainties/precision
 - In the end, precision is given by the size of the perturbative uncertainties, but only if they are estimated to that purpose (i.e. to cover all-order result)

Known Unknowns.

< 67 ►

Resummation for W/Z Ratio.

$$R(p_T) = rac{\mathrm{d}\sigma(W)/\mathrm{d}p_T}{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}$$

- There is no direct resummation formula for $R(p_T)$
 - $R(p_T)$ is always derived from individual resummed spectra
 - Need to know correlations anyway
 - ► There is no real advantage of using *R*(*p*_{*T*}) over more general common theory framework that is not restricted to this specific combination

Intrinsic differences that already exist at leading power

- Vector and axial currents differ by singlet terms starting at NNLL'
 - Often neglected since they are tiny in inclusive cross section
- Different flavor mix for W and Z
- Different Q ranges
 - $m_W \neq m_Z$, nonnegligible photon contribution at low Q
 - $R(p_T)$ is actually not ideal, $R(p_T/Q)$ would already be better
 - In principle, common theory framework takes care of this

Power Corrections.

- Resummation only captures O(1) leading-power
- $\mathcal{O}(\tau)$ power corrections are only known and included at fixed order

Usually small at small p_T , but there are some caveats

- Could get enhanced in W/Z ratio when leading-power terms cancel
- They also contain large logs

$$au rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d} au} \sim ig[lpha_s au (1 + \ln au) + lpha_s^2 au (-1) + \ln au + \ln^2 au + \ln^3 au) + \cdots ig] + \mathcal{O}(au^2)$$

e.g. for $au = 0.01$ $\sim lpha_s^2 (0.01 + 0.05 + 0.21) + 0.98)$

- They are only $\mathcal{O}(\tau)$ power-suppressed if they are being resummed as well
- *p_T* resummation at subleading power is much more complicated and currently not available even at LL

Power Corrections.

- New contributions appear at subleading power already at LL that have no leading-power analog (e.g. soft quarks)
 - gq channels contribute at LL, can be as large as $q\bar{q}$ channels
 - Different color structure at LL: C_F^2 vs. $T_F(C_F + C_A)$
 - Multiplying nonsingular by leading-power Sudakov exponent is not correct even at LL
- Numerically important type of contribution are "kinematic" power corrections that depend on PDF derivatives $xf'_a(x)$
 - Describe the effect that PDFs also need to provide small momentum components for p_T recoil
 - Might in fact be captured reasonably well in Pythia due to it enforcing momentum conservation at each splitting
 - Less likely to cancel in W/Z ratio

Nonperturbative Effects.

Nonperturbative corrections can be treated in field theory based on singular factorization theorem

- In principle there are flavor-independent and flavor-dependent effects (though the latter are often neglected)
 - Cause few-% uncertainty at $p_T = 5 \text{ GeV}$, quickly increase below that
 - Should at least partially cancel in W/Z ratio
- For $\Lambda^2_{
 m QCD} \ll p_T^2$ (peak and above)
 - ► Can be expanded in powers of $\Lambda^2_{QCD}/p_T^2 \sim \Lambda^2_{QCD}b^2$ and parametrized by nonperturbative coefficients of first correction
 - For Typically done in b space, but equivalently possible in physical p_T space
 - Parameters can be fitted from DY data, including low-energy data [see e.g. Echevarria, Idilbi, Kang, Vitev '14; Su, Isaacson, C-P Yuan, F Yuan '14; D'Alesio, Echevarria, Melis, Scimemi '14; ...]
- For $\Lambda^2_{
 m QCD} \sim p_T^2$ (below peak)
 - Requires full shape of nonperturbative TMDPDF
- In Pythia modelled primarily through primordial/intrinsic k_T (flavor-blind)
 - Also nontrivial interplay with ISR shower parameters (cutoff, $\alpha_s^{\rm ISR}$)
- \Rightarrow More work needed to draw firm conclusions for W/Z ratio

Massive Quark Effects.

"Primary" mass effects at fixed order

[Pietrulewicz, Samitz, Spiering, FT; arXiv:1703.09702] "Secondary" mass effects at fixed order

Multi-scale problem with several possible scale hierarchies

- *p_T* distribution goes through different regimes
 - $\Lambda_{
 m QCD} \ll p_T \ll m_b \ll Q$: heavy quark decouples (4FS for $m_b \sim Q$)
 - $\Lambda_{\rm QCD} \ll p_T \sim m_b \ll Q$: quark mass changes resummation structure (including nonperturbative effects)
 - $\Lambda_{
 m QCD} \ll m_b \ll p_T \ll Q$: massless limit (usual 5FS)
- ullet Formally enter at NNLL' for $bar{b} o Z$ and at NLL' for $car{s} o W$
- → Few-% level effects, primary mass effects do not cancel in W/Z ratio

Massive Quark Effects.

Multi-scale problem with several possible scale hierarchies

- *p_T* distribution goes through different regimes
 - $\blacktriangleright \Lambda_{
 m QCD} \ll p_T \ll m_b \ll Q$: heavy quark decouples (4FS for $m_b \sim Q$)
 - $\Lambda_{\rm QCD} \ll p_T \sim m_b \ll Q : \text{quark mass changes resummation structure}$ (including nonperturbative effects)
 - $\Lambda_{
 m QCD} \ll m_b \ll p_T \ll Q$: massless limit (usual 5FS)
- ullet Formally enter at NNLL' for $bar{b} o Z$ and at NLL' for $car{s} o W$
- ⇒ Few-% level effects, primary mass effects do not cancel in W/Z ratio

 Frank Tackmann (DESY)
 Thoughts on V pr Spectrum and W/Z Ratio
 2017-10-02
 12/11

Many studies on QED/EW and mixed QCD-QED/EW effects

I'm not actually aware of a dedicated study of QED effects in the context of analytic resummed calculations (could just be my own ignorance)

- All resummation ingredients (boundary conditions, anomalous dimensions) receive corrections from soft and collinear photon radiation
 - Relative parametric size of $\mathcal{O}(\alpha_{\rm em}/\alpha_s) \sim \mathcal{O}(\%)$
 - Effects will clearly not drop out of W/Z ratio
- Combined QCD+QED shower in Pythia should captures the dominant effect from this
- ⇒ Should be straightforward to evaluate/incorporate (at least when one ignores initial-final-state interference)

Theory Uncertainties.

< 67 >

It is an easy way to obtain (slightly) different expansions for the same quantity

$$\epsilon = \alpha_s(\mu) \quad \rightarrow \quad \sigma = c_0 + \epsilon c_1 + \epsilon^2 c_2 + \cdots$$

 $\tilde{\epsilon} = \alpha_s(\tilde{\mu}) \quad \rightarrow \quad \sigma = c_0 + \tilde{\epsilon} \tilde{c}_1 + \tilde{\epsilon}^2 \tilde{c}_2 + \cdots$

- The full result is the same and independent of the choice of ϵ vs. $\tilde{\epsilon}$
 - We only know the first few orders, which do depend on the choice
 - Comparing both expansions *might* provide a way to estimate the typical size of the missing $\epsilon^3 c_3 + \cdots$ terms
 - It also might not, because it only knows about the structures present in c1 and c2 and so cannot estimate the effect of possible new structures appearing in c3 and beyond
- Differential spectra complicate things further
 - Resummation scales often have quadratic dependence from double logs
 - Scale variations typically cross each other or the central result at some point in the spectrum

Correlations.

 $\mathrm{d}\sigma(W)/\mathrm{d}p_T = c_0(p_T) + \epsilon c_1(p_T) + (\epsilon^2 c_2(p_T) + \cdots)$

 $\mathrm{d}\sigma(Z)/\mathrm{d}p_T = d_0(p_T) + \epsilon \, d_1(p_T) + (\epsilon^2 \, d_2(p_T) + \cdots)$

QCD corrections for W and Z are *largely* the same but also *not entirely*

- Using correlated scale variations for both processes
 - Scale dependence will largely cancel in their ratio (easily factor 10 or more)
 - Possible differences between processes at higher order are precisely not probed by scale variations
 - ⇒ Left-over scale dependence has little to no meaning in terms of uncertainties

Correlations only come from common sources of uncertainties

- QCD scales are not physical parameters
 - They do not have an uncertainty that can be propagated
 - They also cannot be regarded as the fundamental sources of uncertainties, i.e. they cannot be used as nuisance parameters to imply correlations
 - A priori, they do not imply anything about correlations among different processes or different kinematic regions

\Rightarrow In short, scale variations are intrinsically ill-suited for this

< A >

[Disclaimer: very much work in progress ...]

Imagine we had actual nuisance parameters for perturbative uncertainties

- Would provide immediate solution to the two key problems
 - Provide true correlations between different processes
 - Can be constrained by data, and therefore allows one to fully consistently use Z measurements to reduce theory uncertainties in W predictions
- I think this is possible with a small number of unambiguous parameters (at least for resummed leading-power contributions)
- Disadvantages and open issues
 - Going to be much more involved to implement
 - Feasibility for fitting (flat directions, ...)
 - Must be thoroughly tested/validated

 \Rightarrow I'd be happy to discuss this and get your feedback during next days

Backup Slides

< 🗗 >

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\begin{aligned} \frac{\sigma(\tau^{\text{cut}})}{\sigma_B} &= 1 & \text{LL NLL NLL' NNLL} \\ &+ \alpha_s \left[\begin{array}{c} \frac{c_{11}}{2} L_{\text{cut}}^2 + c_{10} L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \right] & \text{NLO} \\ &+ \alpha_s^2 \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \vdots &+ \vdots &+ \vdots &+ \vdots \\ \end{array} \right] \\ \frac{1}{\sigma_B} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \alpha_s / \tau \left[\begin{array}{c} c_{11} L + c_{10} &+ & \tau f_1^{\text{nons}}(\tau) \right] & \text{LO}_1 \\ &+ \alpha_s^2 / \tau \left[\begin{array}{c} c_{23} L^3 + c_{22} L^2 + c_{21} L + c_{20} + \tau f_2^{\text{nons}}(\tau) \right] & \text{NLO}_1 \\ &+ \alpha_s^3 / \tau \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \end{array} \right] \end{aligned}$$

Lowest perturbative accuracy at all p_T requires (N)LL+LO₁

- Provided by LO ME+PS, also plain Pythia (has full ME for first emission)
- LO is naturally part of LL and so automatically included

Frank Tackmann (DESY)

2017-10-02 17 / 16

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\begin{aligned} \frac{\sigma(\tau^{\text{cut}})}{\sigma_B} &= 1 & \text{LL NLL NLL' NNLL} \\ &+ \alpha_s \begin{bmatrix} \frac{c_{11}}{2}L_{\text{cut}}^2 + c_{10}L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \end{bmatrix} & \text{NLO} \\ &+ \alpha_s^2 \begin{bmatrix} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \vdots &+ \vdots &+ \vdots &+ \vdots \\ \frac{1}{\sigma_B} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \alpha_s / \tau \begin{bmatrix} c_{11}L + c_{10} + \tau f_1^{\text{nons}}(\tau) \end{bmatrix} & \text{LO}_1 \\ &+ \alpha_s^2 / \tau \begin{bmatrix} c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + \tau f_2^{\text{nons}}(\tau) \end{bmatrix} & \text{NLO}_1 \\ &+ \alpha_s^3 / \tau \begin{bmatrix} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \vdots &+ \vdots &+ \vdots &+ \end{bmatrix} \end{aligned}$$

• NLO+PS matching (MC@NLO, POWHEG) adds full NLO to $\sigma(\tau^{cut})$

- Improves accuracy for $\sigma(\tau^{\rm cut} \sim 1)$ (incl. cross section) to NLO
- Does not automatically improve formal accuracy of spectrum beyond ME+PS

Frank Tackmann (DESY)

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau = p_T^2/Q^2$, $L = \ln \tau$, $L_{\rm cut} = \ln \tau^{\rm cut}$

$$\begin{aligned} \frac{\sigma(\tau^{\text{cut}})}{\sigma_B} &= 1 & \text{LL NLL NLL' NNLL} \\ &+ \alpha_s \left[\begin{array}{c} \frac{c_{11}}{2} L_{\text{cut}}^2 + c_{10} L_{\text{cut}} + c_{1,-1} + F_1^{\text{nons}}(\tau^{\text{cut}}) \right] & \text{NLO} \\ &+ \alpha_s^2 \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \vdots &+ \vdots &+ \vdots &+ \vdots \\ \end{array} \right] \\ \frac{1}{\sigma_B} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \alpha_s / \tau \left[\begin{array}{c} c_{11} L + c_{10} &+ & \tau f_1^{\text{nons}}(\tau) \right] & \text{LO}_1 \\ &+ \alpha_s^2 / \tau \left[\begin{array}{c} c_{23} L^3 + c_{22} L^2 + c_{21} L + c_{20} + \tau f_2^{\text{nons}}(\tau) \right] & \text{NLO}_1 \\ &+ \alpha_s^3 / \tau \left[\begin{array}{c} \vdots &+ \vdots &+ \vdots &+ \vdots \\ \end{array} \right] \end{aligned}$$

- NLL' and NNLL fully incorporate 1-loop virtuals (c_{1,-1}) into resummation and therefore naturally match to NLO
- Similarly NNLL' and N³LL incorporate 2-loop virtuals and match to NNLQ

Frank Tackmann (DESY)

Thoughts on V pT Spectrum and W/Z Ratio

2017-10-02 17 / 16

PDFs

- $\sim 2\%$ uncertainty at low p_T , mostly affect normalization and not shape
- \Rightarrow Physical parameters so in principle straightforward to take into account correlations for W/Z ratio

To be aware of: $lpha_s(m_Z)$

- p_T tail is $\sim \alpha_s$ and α_s also appears in resummation
- Various extractions clearly favor much lower values than PDG average
 - In particular thrust in e⁺e⁻ with high resummation
- Changing $lpha_s(m_Z) = 0.118
 ightarrow 0.114$ has $\sim 5\%$ effect on p_T spectrum
- \Rightarrow Should drop out of W/Z ratio (and also easy to propagate through)

