Transverse-momentum resummation for vector boson production

Giancarlo Ferrera

Milan University & INFN Milan

M_W working Workshop – Paris – October 2 2017

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \bigg[c_{12}L_{q_{T}}^{2} + c_{11}L_{q_{T}} + \cdots \bigg]$$
$$+ \alpha_{S}^{2} \bigg[c_{24}L_{q_{T}}^{4} + \cdots + c_{21}L_{q_{T}} + \cdots \bigg] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$

Resummation of logarithmic corrections needed.

 q_T resummation for vector boson production

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \left[c_{12} \mathcal{L}_{q_{T}}^{2} + c_{11} \mathcal{L}_{q_{T}} + \cdots \right] \\ + \alpha_{S}^{2} \left[c_{24} \mathcal{L}_{q_{T}}^{4} + \cdots + c_{21} \mathcal{L}_{q_{T}} + \cdots \right] + \mathcal{O}(\alpha_{S}^{3})$$

with
$$\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m(M^2/q_T^2) \gg 1$$
.

Resummation of logarithmic corrections needed.

on production

NNLO QCD predictions at large q_T

 \rightarrow see A. Huss talk

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_5^3)$) QCD predictions [G.-De Ridder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \ GeV$

NNLO QCD predictions at large q_T

Normalized Z q_T spectrum ($q_T > 20 \text{ GeV}$).

\rightarrow see A. Huss talk

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_{\rm S}^3)$) QCD predictions [G.-DeRidder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

NNLO QCD predictions at large q_T

Normalized Z q_T spectrum ($q_T > 20$ GeV).

\rightarrow see A. Huss talk

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_{S}^{3})$) QCD predictions [G.-DeRidder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^{2} + q_{T}^{2}}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

$$rac{d\hat{\sigma}}{d^2\mathbf{q_T}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}
ight] + \left[d\hat{\sigma}^{(fin)}
ight];$$

$$\int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fn)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2\mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\tau} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}}\,dM^{2}\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(\mathsf{res})}\right] + \left[d\hat{\sigma}^{(\mathsf{fin})}\right]; \qquad \begin{array}{l} \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\mathsf{res})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n}\log^{m}\frac{M^{2}}{Q_{\mathsf{T}}^{2}} \\ \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\mathsf{fin})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} 0 \end{array}$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\mathbf{T}} \mathcal{W}(\mathbf{b}, \mathbf{M}, \hat{\mathbf{y}}, \hat{\mathbf{s}}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{\mathcal{S}},\widetilde{L}) = \widetilde{L} g^{(1)}(\alpha_{\mathcal{S}}\widetilde{L}) + g^{(2)}(\alpha_{\mathcal{S}}\widetilde{L}) + \frac{\alpha_{\mathcal{S}}}{\pi} g^{(3)}(\alpha_{\mathcal{S}}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi} \mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^2 \mathcal{H}^{(2)} + \cdots$$

LL $(\sim \alpha_{S}^{n} \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n})$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_s(\alpha_r^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n+1}): \ g^{(1)}, \ (\widehat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{\mathcal{L}}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; \mathsf{NNL} \;$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n} \log^{m} \frac{M^{2}}{Q_{\mathsf{T}}^{2}} \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\mathbf{T}} \mathcal{W}(\mathbf{b}, \mathbf{M}, \hat{\mathbf{y}}, \hat{\mathbf{s}}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$
$$\mathsf{LL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \quad \mathsf{NLL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n}): \ g^{(2)}, \ \mathcal{H}^{(1)}; \quad \mathsf{NNLL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_S^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\begin{split} g^{(1)}(\alpha_{S}L) &= \frac{A^{(1)}}{\beta_{0}} \frac{\lambda + \ln(1-\lambda)}{\lambda} \ , \\ g^{(2)}_{N} \left(\alpha_{S}L; \frac{M^{2}}{\mu_{R}^{2}}, \frac{M^{2}}{Q^{2}} \right) &= \frac{\overline{B}^{(1)}_{N}}{\beta_{0}} \ln(1-\lambda) - \frac{A^{(2)}}{\beta_{0}^{2}} \left(\frac{\lambda}{1-\lambda} + \ln(1-\lambda) \right) \\ &\quad + \frac{A^{(1)}}{\beta_{0}} \left(\frac{\lambda}{1-\lambda} + \ln(1-\lambda) \right) \ln \frac{Q^{2}}{M^{2}} \\ &\quad + \frac{A^{(1)}\beta_{1}}{\beta_{0}^{3}} \left(\frac{1}{2} \ln^{2}(1-\lambda) + \frac{\ln(1-\lambda)}{1-\lambda} + \frac{\lambda}{1-\lambda} \right) \ , \\ g^{(3)}_{N} \left(\alpha_{S}L; \frac{M^{2}}{\mu_{R}^{2}}, \frac{M^{2}}{Q^{2}} \right) &= -\frac{A^{(3)}}{2\beta_{0}^{2}} \frac{\lambda^{2}}{(1-\lambda)^{2}} - \frac{\overline{B}^{(2)}_{N}}{\beta_{0}} \frac{\lambda}{1-\lambda} + \frac{A^{(2)}\beta_{1}}{\beta_{0}^{3}} \left(\frac{\lambda(3\lambda-2)}{(2(1-\lambda)^{2}} - \frac{(1-2\lambda)\ln(1-\lambda)}{(1-\lambda)^{2}} \right) \\ &\quad + \frac{\overline{B}^{(1)}_{N}\beta_{1}}{\beta_{0}^{2}} \left(\frac{\lambda}{1-\lambda} + \frac{\ln(1-\lambda)}{1-\lambda} \right) - \frac{A^{(1)}}{\beta_{0}^{3}} \frac{\lambda^{2}}{(1-\lambda)^{2}} \ln^{2} \frac{Q^{2}}{M^{2}} \\ &\quad + \ln \frac{Q^{2}}{M^{2}} \left(\overline{B}^{(1)}_{N} \frac{\lambda}{1-\lambda} + \frac{A^{(2)}}{\beta_{0}} \frac{\lambda^{2}}{(1-\lambda)^{2}} + A^{(1)} \frac{\beta_{1}}{\beta_{0}^{2}} \left(\frac{\lambda}{1-\lambda} + \frac{1-2\lambda}{(1-\lambda)^{2}} \ln(1-\lambda) \right) \right) \right) \\ &\quad + A^{(1)} \left(\frac{\beta_{1}^{2}}{2\beta_{0}^{4}} \frac{1-2\lambda}{(1-\lambda)^{2}} \ln^{2}(1-\lambda) + \ln(1-\lambda) \left[\frac{\beta_{0}\beta_{2} - \beta_{1}^{2}}{\beta_{0}^{4}} + \frac{\beta_{1}^{2}}{\beta_{0}^{4}(1-\lambda)} \right] \\ &\quad + \frac{\lambda}{2\beta_{0}^{4}(1-\lambda)^{2}} (\beta_{0}\beta_{2}(2-3\lambda) + \beta_{1}^{2}\lambda) \right) , \end{split}$$

Giancarlo Ferrera – Milan University & INFN

 M_W working WS – Paris – 2/10/2017 5/10

 q_T resummation for vector boson production

$$\begin{split} g^{(1)}(\alpha_{S}L) &= \frac{A^{(1)}}{\beta_{0}} \frac{\lambda + \ln(1-\lambda)}{\lambda} \quad , \\ g^{(2)}_{N}\left(\alpha_{S}L; \frac{M^{2}}{\mu_{R}^{2}}, \frac{M^{2}}{Q^{2}}\right) &= \frac{\overline{B}^{(1)}_{N}}{\beta_{0}} \ln(1-\lambda) - \frac{A^{(2)}}{\beta_{0}^{2}} \left(\frac{\lambda}{1-\lambda} + \ln(1-\lambda)\right) \\ &\quad + \frac{A^{(1)}}{\beta_{0}} \left(\frac{\lambda}{1-\lambda} + \ln(1-\lambda)\right) \ln \frac{Q^{2}}{M^{2}} \\ &\quad + \frac{A^{(1)}\beta_{1}}{\beta_{0}^{3}} \left(\frac{1}{2}\ln^{2}(1-\lambda) + \frac{\ln(1-\lambda)}{1-\lambda} + \frac{\lambda}{1-\lambda}\right) \end{split}$$

Giancarlo Ferrera – Milan University & INFN q_T resummation for vector boson production

q_T spectrum of the Z boson

NLL+NLO and NNLL+NNLO Z q_T spectrum at the LHC at $\sqrt{s} = 7/8$ TeV.

 q_T resummation for vector boson production

q_T spectrum of Z boson: theory vs ATLAS data

Left: NLL+NLO and NNLL+NNLO bands for $Z/\gamma^* q_T$ spectrum compared with and ATLAS data (7 TeV).

Right Top: Ratios between ResBos predictions and ATLAS data.

Right Bottom: Ratios between various MC generators results and ATLAS data.

q_T spectrum of Z boson: theory vs ATLAS data

Results from W. Bizon, P. Monni, E. Re, L. Rottoli, P. Torrielli

NNLO,NLL+NNLO and N3LL+NNLO bands for $Z/\gamma^* q_T$ spectrum compared with and ATLAS data (7 TeV). Matching with $\mathcal{O}(\alpha_s^3)$ at large q_T .

ϕ^* spectrum of Z boson: theory vs ATLAS data

NLL+NLO and NNLL+NNLO bands for $Z/\gamma^* \phi^*$ spectrum compared with ATLAS data.

MC generators results and ATLAS data ratio to ResBos.

q_T spectrum of W: theory vs ATLAS data

NLL+NLO and NNLL+NNLO bands for W^{\pm} q_{T} spectrum compared with ATLAS data.

MC generators results and ATLAS data ratio to ResBos.

Lepton p_T distributions from W decay

Ratios of the lepton p_T normalised distribution obtained using Powheg+Pythia 8 AZNLO, DYRES and Powheg MiNLO+Pythia 8 to the distribution obtained using PYTHIA 8 AZ.

Giancarlo Ferrera – Milan University & INFN q_T resummation for vector boson production

Transverse-mass distributions from W decay

Ratios of the m_T normalised distribution obtained using Powheg+Pythia 8 AZNLO, DYRES and Powheg MiNLO+Pythia 8 to the distribution obtained using PYTHIA 8 AZ.

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \ S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \; \underline{S_{NP}}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects normalized to central NNLL+NNLO prediction.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \ S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

Ratio of NNLL+NNLO and NLL+NLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated (μ^W/M_W = μ^Z/M_Z) scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for q_T > 3 GeV).
- PDF uncertainty dominates at very small ($q_T q_T \lesssim 5 \text{ GeV}$).
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO and NLL+NLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small ($q_T q_T \lesssim 5 \text{ GeV}$).
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO results for $W/Z q_T$ spectra at the LHC. PDF uncertainties and impact of NP effects.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small (q_T $q_T \lesssim 5 \ GeV$).
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small $(q_T q_T \lesssim 5 \text{ GeV})$.
- Non trivial interplay of perturbative and NP effects.

W/Z ratio q_T spectrum: perturbative scale uncertainty

DYqT resummed predictions for the ratio of W/Z normalized q_T spectra. Uncorrelated perturbative scale variation band.

DYqT resummed predictions for the ratio of W/Z normalized q_T spectra. Correlated perturbative scale variation band.

Left: Ratio of NNLL results for $W/Z q_T$ spectra at the LHC, effect of PDFs evolution. Right: Ratios of the normalised $W/Z q_T$ spectra predicted by Pythia 8 and several resummation programs for W^+ and W^- .

Back up slides

Giancarlo Ferrera – Milan University & INFN q_T resummation for vector boson production

Idea of (analytic) resummation

Idea of large logs (Sudakov) resummation: reorganize the perturbative expansion by all-order summation.

$\alpha_{S}L^{2}$	$\alpha_{s}L$			 $\mathcal{O}(\alpha_{S})$
$\alpha_s^2 L^4$	$\alpha_S^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	 $\mathcal{O}(\alpha_{S}^{2})$
	•••	•••		
$\alpha_{S}^{n}L^{2n}$	$\alpha_{S}^{n}L^{2n-1}$	$\alpha_{S}^{n}L^{2n-2}$		 $\mathcal{O}(\alpha_{S}^{n})$
dominant logs	next-to-dominant logs	•••		

- Ratio of two successive rows $\mathcal{O}(\alpha_{S}L^{2})$: fixed order expansion valid when $\alpha_{S}L^{2} \ll 1$.
- Ratio of two successive columns $\mathcal{O}(1/L)$: resummed expansion valid when $1/L \ll 1$.

Soft gluon exponentiation

Sudakov resummation feasible when: dynamics AND kinematics factorize \Rightarrow exponentiation.

 Dynamics factorization: general propriety of QCD matrix element for soft emissions.
 1 n

$$dw_n(q_1,\ldots,q_n)\simeq \frac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

 Kinematics factorization: not valid in general. For q_T distribution of DY process it holds in the impact parameter space (Fourier transform).

$$\int d^2 \mathbf{q}_{\mathsf{T}} \, \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}}) \, \delta \left(\mathbf{q}_{\mathsf{T}} - \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j} \right) = \exp(-i\mathbf{b} \cdot \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}) = \prod_{j=1}^n \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}_j}) \, .$$

• Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space.

q_T resummation at NNLL+NNLO

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to O(α²₅)) at large q_T;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- Analytic resummation implemented in publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani, de Florian, G.F., Grazzini ('15)]

q_T resummation at NNLL+NNLO

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- Analytic resummation implemented in publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani, de Florian, G.F., Grazzini ('15)]

q_T resummation at NNLL+NNLO

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- Analytic resummation implemented in publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani, de Florian, G.F., Grazzini('15)]