Status of $p_T(W)$ Modelling.

Frank Tackmann

Deutsches Elektronen-Synchrotron

W Boson Mass Workshop LAL, October 2-6, 2017

Summary of last few days' discussion Thanks to everybody, in particular to Alessandro, Giancarlo, Ludovica, Maarten, Stefano for all the plots

Extrapolating from Z to W.

Focus on low $p_T^W \lesssim 30\,{ m GeV}$ relevant for m_W $\stackrel{\circ}{ begin{subarray}{c}}$ 1.03

- $ho \simeq 2\%$ uncertainties in p_T^W translate into $\simeq 10 \, {
 m MeV}$ uncertainty in m_W
- \Rightarrow Use precise Z measurement to get best possible prediction for W
 - One way to think about it

$$\frac{\mathrm{d}\sigma(W)}{\mathrm{d}p_T} = \left[\frac{\mathrm{d}\sigma(W)/\mathrm{d}p_T}{\mathrm{d}\sigma(Z)/\mathrm{d}p_T}\right]_{\mathrm{theory}} \times \left[\frac{\mathrm{d}\sigma(Z)}{\mathrm{d}p_T}\right]_{\mathrm{measured}}$$

0.97

- ► There is no direct resummation for ratio, it is always a derived quantity
- Relies on ratio being more precise than individual processes, which relies on theory uncertainties being strongly correlated between processes
- More general: Use common theory framework and fit to Z data
 - Not restricted to a specific combination (like ratio)
 - ► Tuning Pythia on Z data is one example of this
 - ▶ Requires explicit information on correlations between processes

ATLAS Simulation

 $\sqrt{s}=7 \text{ TeV. pp} \rightarrow W^{\pm}+X. pp \rightarrow Z+X$

Extrapolating from Z to W.

Extrapolation hinges on two ingredients

- Precise cancellation of dominant common terms
 - Residual uncertainties entirely depend on precisely knowing correlations of theory uncertainties between $d\sigma(Z)/dp_T$ and $d\sigma(W)/dp_T$
- Precise understanding of (normally irrelevant) subdominant effects
 - At sub-% level many things can matter
- \Rightarrow Currently plain Pythia tuned to Z data works best

Overview.

	Uncertainty or size	Analytic resummation	Pythia	Leftover effect on W/Z
Leading-power resummation	5-10%	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	√	~ % ?
Power corrections	few %	(×)	(√)?	?
Nonperturbative	few %	(√)	(√)	≲ % ?
Massive quarks	few %	× (√)	(√)	few % (?)
QED (ISR)	$\lesssim \%$	×	√ (?)	sub % (?)
PDFs	2%	√	√	√
$lpha_s(m_Z)$	up to 5%??	\checkmark	\checkmark	\checkmark

- Though it is a bit unsettling it is not unbelievable that plain Pythia currently describes the W/Z ratio best
 - Trying to understand and go beyond that
 - lacktriangle Still need to provide a robust uncertainty when used as prediction for $oldsymbol{W}$

Power Corrections.

Scaling variable $au=p_T^2/Q^2$

$$au rac{\mathrm{d}\sigma}{\mathrm{d} au} = au rac{\mathrm{d}\sigma^{\mathrm{resum}}}{\mathrm{d} au} \, + \, au rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d} au} \ \sim \mathcal{O}(1) \qquad \sim \mathcal{O}(au)$$

- ullet Resummation only captures $\mathcal{O}(1)$ leading-power corrections
- $m{\circ}$ $\mathcal{O}(au)$ power corrections are only known and included at fixed order
 - In principle possible up to $\mathcal{O}(\alpha_s^3)$ using NNLO V+j

Important caveat: They also contain large logs

$$aurac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d} au}\simig[lpha_s au(1+\ln au)+lpha_s^2 au(1+\ln au+\ln^2 au+\ln^3 au)+\cdotsig]+\mathcal{O}(au^2)$$
 e.g. for $au=0.01\simlpha_s^2(0.01+0.05+0.21+0.98)$

- lacktriangle They are only $\mathcal{O}(au)$ power-suppressed if they are being resummed as well
- p_T resummation at subleading power is much more complicated and currently not available even at LL

Structure of Power Corrections.

- New contributions appear at subleading power already at LL that have no leading-power analog (e.g. soft quarks)
 - ▶ gq channels contribute at LL, can be as large as $q\bar{q}$ channels
 - ▶ Different color structure at LL: C_F^2 vs. $T_F(C_F + C_A)$
 - Multiplying nonsingular by leading-power Sudakov exponent is not correct even at LL
- Numerically important type of contribution are "kinematic" power corrections that depend on PDF derivatives $xf'_q(x)$
 - Describe the effect that PDFs also need to provide small momentum components for p_T recoil
 - Might in fact be captured reasonably well in Pythia due to it enforcing momentum conservation at each splitting
 - Less likely to cancel in W/Z ratio

Nonperturbative Effects.

Formal scaling: $\Lambda_{\rm QCD}^2/p_T^2\!\sim\!\Lambda_{\rm QCD}^2b^2$ (perhaps only $\Lambda_{\rm QCD}/p_T\!\sim\!\Lambda_{\rm QCD}b$)

- Flavor-independent pieces
 - ightharpoonup Pythia: modelled via primordial/intrinsic k_T
 - lacktriangle DYRes: nonpert. form factor $S_{
 m NP} = \exp(-g_{
 m NP}b^2)$ with $0 < g_{
 m NP} < 1.2~{
 m GeV}^2$
- → In both cases cancel to sub-%

Nonperturbative Effects.

Formal scaling: $\Lambda_{\rm QCD}^2/p_T^2 \sim \Lambda_{\rm QCD}^2 b^2$ (perhaps only $\Lambda_{\rm QCD}/p_T \sim \Lambda_{\rm QCD} b$)

- TODO: Need to investigate flavor-dependent effects (TMDPDFs)
 - lacktriangle Even small differences could leave noticeable remnant for $p_T \lesssim 5\,\mathrm{GeV}$
 - Even collinear PDFs already reach several %

Massive Quark Effects.

"Primary" mass effects at fixed order

Multi-scale problem with several possible scale hierarchies

- p_T distribution goes through different regimes
 - $lacksquare \Lambda_{
 m QCD} \ll p_T \ll m_b \ll Q$: heavy quark decouples (4FS for $m_b \sim Q$)
 - $m \Lambda_{
 m QCD} \ll p_T \sim m_b \ll Q$: quark mass changes resummation structure (including nonperturbative effects)
 - lacksquare $\Lambda_{
 m QCD} \ll m_b \ll p_T \ll Q$: massless limit (usual 5FS)
- ullet Few-% level effects, primary mass effects do not cancel in W/Z ratio

Massive Quark Effects.

Multi-scale problem with several possible scale hierarchies

- p_T distribution goes through different regimes
 - $lack \Lambda_{
 m QCD} \ll p_T \ll m_b \ll Q$: heavy quark decouples (4FS for $m_b \sim Q$)
 - $\Lambda_{\rm QCD} \ll p_T \sim m_b \ll Q$: quark mass changes resummation structure (including nonperturbative effects)
 - $\Lambda_{\rm QCD} \ll m_b \ll p_T \ll Q$: massless limit (usual 5FS)
- Few-\% level effects, primary mass effects do not cancel in W/Z ratio

bar b o Z in DYRes and Pythia.

- ullet VFS and Pythia only turn on b-PDF above matching scale $\mu_b \equiv m_b$
 - $f_b(\mu = 1/b_T < m_b) = 0$ leads to smooth turn off for $p_T < m_b$
 - lackbox Pythia models g o bar b splitting kinematics in p_T space with finite m_b
- ullet TODO: Use PDF evolution allowing for general μ_b and its variation
- TODO: Perform full finite-mass multi-scale resummation

Impact on W/Z Ratio.

Combined 4FS/5FS at Hadron Level.

Combine NLO+PS 4FS for $pp o \ell^+\ell^-b\bar{b}$ with NLO+PS 5FS for non-b

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T}^{\text{combined}} = \frac{\mathrm{d}\sigma}{\mathrm{d}p_T}^{5\mathrm{FS}} (\mathrm{B-veto}) + \frac{\mathrm{d}\sigma}{\mathrm{d}p_T}^{4\mathrm{FS}} (\ell^+\ell^-b\bar{b})$$

Combined 4FS/5FS at Hadron Level: Impact on m_W .

To evaluate possible impact on m_W compare templates in plain 5FS (brown) with distributions reweighted to combined results

- Provides a qualitative statement, realistic estimate more involved
- Estimate up to $\mathcal{O}(5~\mathrm{MeV})$ shift (fit range $p_T^\ell \in [32,45]~\mathrm{GeV})$

QED (ISR) in Pythia.

- ullet At most %-level effects, cancel to sub-% in W/Z ratio
 - Agrees with expected parametric size of $\mathcal{O}(\alpha_{\rm em}/\alpha_s) \sim \mathcal{O}(\%)$
 - Effects cancel better than perhaps expected
- TODO: Should be possible to double-check in analytic resummation

Theory Uncertainty Correlations.

$$d\sigma(W)/dp_T = c_0(p_T) + \epsilon c_1(p_T) + (\epsilon^2 c_2(p_T) + \cdots)$$
$$d\sigma(Z)/dp_T = d_0(p_T) + \epsilon d_1(p_T) + (\epsilon^2 d_2(p_T) + \cdots)$$

QCD corrections for W and Z are largely the same but also not entirely

- Using correlated scale variations for both processes
 - Scale dependence largely cancels in their ratio
 - Possible differences between processes at higher order are precisely not probed by scale variations

Theory Uncertainty Correlations.

$$d\sigma(W)/dp_T = c_0(p_T) + \epsilon c_1(p_T) + (\epsilon^2 c_2(p_T) + \cdots)$$
$$d\sigma(Z)/dp_T = d_0(p_T) + \epsilon d_1(p_T) + (\epsilon^2 d_2(p_T) + \cdots)$$

QCD corrections for W and Z are largely the same but also not entirely

- Using correlated scale variations for both processes
 - Scale dependence largely cancels in their ratio
 - Possible differences between processes at higher order are precisely not probed by scale variations

Correlations only come from common sources of uncertainties

- QCD scales are not physical parameters
 - ► They do not have an uncertainty that can be propagated
 - They also cannot be regarded as the fundamental sources of uncertainties, i.e. they cannot be used as nuisance parameters to imply correlations
 - A priori, they do not imply anything about correlations among different processes or different kinematic regions
- ⇒ Scale variations are intrinsically ill-suited for this

Beyond Scales: Parametric Theory Uncertainties.

[Disclaimer: very much work in progress ...]

Idea: Identify actual nuisance parameters for perturbative uncertainties

- Provides immediate solution to the two key problems
 - ightharpoonup Provide true correlations between different processes and p_T values
 - Can be constrained by data, and therefore allows one to fully consistently use Z measurements to reduce theory uncertainties in W predictions
- For resummed leading-power contributions
 - Scale and p_T dependence is fully determined in terms of RGE ingredients (anomalous dimensions and boundary conditions)
 - Nuisance parameters can be unambigously identified with missing perturbative ingredients at the next higher resummed order (i.e. full N⁴LL)
- TODOs and open questions to address
 - Must ensure that leftover scale dependence at higher order is small compared to parametric theory uncertainty at current order
 - Possible degeneracy between perturbative and nonperturbative parameters
 - Treatment of power corrections
 - Validation and feasibility study at known lower order

2017-10-05

Summary and Outlook.

	Uncertainty or size	Analytic resummation	Pythia	Leftover effect on W/Z
Leading-power resummation	5-10%	√√√	√	~ % ?
Power corrections	few %	(×)	(√)?	?
Nonperturbative	few %	(√)	(√)	≲ % ?
Massive quarks	few %	× (√)	(√)	few % (?)
QED (ISR)	$\lesssim\%$	×	√(?)	sub % (?)
PDFs	2%	√	√	√
$lpha_s(m_Z)$	up to 5%??	\checkmark	\checkmark	✓

- Progress on all fronts
- Seems to me that all ? can in principle be addressed
 - Need robust uncertainties (small is not enough ...)
 - Requires nontrivial effort

Backup Slides

Different Perturbative Regions.

Resummation region

- ullet Spectrum at low $p_T \ll Q$ and cross section with cut $p_T^{
 m cut} \ll Q$
 - Singular dominate and must be resummed (nonsingular are power-suppressed)
 - Fixed-order by itself becomes meaningless here
 - In MC: Parton shower regime

Different Perturbative Regions.

Fixed-order region

- ullet Spectrum at high $p_T \sim Q$
 - ightharpoonup Fixed-order calculation for inclusive V+1-jet process
 - In MC: Fixed-order matrix elements
 - Power expansion breaks down and resummation must be turned off

Different Perturbative Regions.

Transition region

- Anything in between (there are no fixed boundaries)
- Resummation still makes sense, fixed-order expansion also still works
 - Most precise predictions are obtained from consistent combination of resummation and fixed-order
 - ▶ In MC: This is where ME+PS matching/merging comes in

Leading-Power Resummation.

Leading-power p_T spectrum factorizes into hard, collinear, and soft contributions

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\vec{p}_{T}} = \sigma_{0} H(Q, \mu) \int \mathrm{d}^{2}\vec{k}_{a} \, \mathrm{d}^{2}\vec{k}_{b} \, \mathrm{d}^{2}\vec{k}_{s}$$

$$\times B_{a}(\vec{k}_{a}, \mu, \nu) \, B_{b}(\vec{k}_{b}, \mu, \nu)$$

$$\times S(\vec{k}_{s}, \mu, \nu) \, \delta(\vec{p}_{T} - \vec{k}_{a} - \vec{k}_{b} - \vec{k}_{s})$$

$$\downarrow \mu_{J} \sim p_{T}$$

$$\nu_{S} \sim p_{T}$$

$$\nu_{S} \sim p_{T}$$

All-order structure of leading-power terms is fully determined by coupled system of differential equations (including their boundary conditions)

in virtuality scale μ

$$\begin{split} \mu \frac{\mathrm{d}H(Q,\mu)}{\mathrm{d}\mu} &= \gamma_H(Q,\mu) \, H(Q,\mu) \\ \mu \frac{\mathrm{d}B(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} &= \gamma_B(\mu,\nu) \, B(\vec{p}_T,\mu,\nu) \\ \mu \frac{\mathrm{d}S(\vec{p}_T,\mu,\nu)}{\mathrm{d}\mu} &= \gamma_S(\mu,\nu) \, S(\vec{p}_T,\mu,\nu) \end{split}$$

Leading-Power Resummation.

Leading-power p_T spectrum factorizes into hard, collinear, and soft contributions

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\vec{p}_{T}} = \sigma_{0} H(Q, \mu) \int \mathrm{d}^{2}\vec{k}_{a} \, \mathrm{d}^{2}\vec{k}_{b} \, \mathrm{d}^{2}\vec{k}_{s}$$

$$\times B_{a}(\vec{k}_{a}, \mu, \nu) B_{b}(\vec{k}_{b}, \mu, \nu)$$

$$\times S(\vec{k}_{s}, \mu, \nu) \delta(\vec{p}_{T} - \vec{k}_{a} - \vec{k}_{b} - \vec{k}_{s})$$

$$\downarrow \mu_{J} \sim p_{T}$$

$$\downarrow \mu_{S} \sim p_{T}$$

$$\downarrow \nu_{S} \sim p_{T}$$

$$\downarrow \nu_{J} \sim Q$$

All-order structure of leading-power terms is fully determined by coupled system of differential equations (including their boundary conditions)

and rapidity scale ν (or ζ)

$$\begin{split} \nu \frac{\mathrm{d}B(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= -\frac{1}{2} \int \! \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, B(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \nu \frac{\mathrm{d}S(\vec{p}_T, \mu, \nu)}{\mathrm{d}\nu} &= \int \! \mathrm{d}^2 \vec{k}_T \, \gamma_\nu(\vec{k}_T, \mu) \, S(\vec{p}_T - \vec{k}_T, \mu, \nu) \\ \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \gamma_\nu(\vec{k}_T, \mu) &= \nu \frac{\mathrm{d}}{\mathrm{d}\nu} \gamma_S(\mu, \nu) \delta(\vec{k}_T) &= -4\Gamma_{\mathrm{cusp}}[\alpha_s(\mu)] \delta(\vec{k}_T) \end{split}$$

Resummation Orders.

Analytic resummation amounts to solving this system of differential equations

- Formal resummation accuracy is fundamentally defined by perturbative input used for anomalous dimensions and boundary conditions
 - ▶ In Fourier space (as in standard CSS) solution is a pure exponential and resummation orders map onto common counting of logs in the exponent
- Current perturbative uncertainties at NNLL'+NNLO at 5-10% level
 - ▶ N³LL is available but not full N³LL'+N³LO, hard to see it can go below 2%
 - lacktriangle Compare: Thrust spectrum in $e^+e^-\! o\! qar q$ at $Q=m_Z$ has $\simeq 2\%$ precision at N³LL'+N³LO

	Boundary conditions	Anomalous dimensions		FO matching
	(singular)	$\gamma_{H,B,S,\nu}$	$\Gamma_{\mathrm{cusp}}, \boldsymbol{\beta}$	(nonsingular)
NLL	1	1-loop	2-loop	-
NLL(')+NLO	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL+NLO	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL ^(') +NNLO	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
N ³ LL+NNLO	$lpha_s^2$	3-loop	4-loop	$lpha_s^2$
$N^3LL^{(\prime)}+N^3LO$	$lpha_s^3$	3-loop	4-loop	$lpha_s^3$

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau=p_T^2/Q^2$, $L=\ln \tau$, $L_{\rm cut}=\ln \tau^{\rm cut}$

$$egin{aligned} rac{\sigma(au^{ ext{cut}})}{\sigma_B} &= 1 & ext{LO} \ &+ \; lpha_s ig[\; rac{c_{11}}{2} L_{ ext{cut}}^2 + c_{10} L_{ ext{cut}} + c_{1,-1} + & F_1^{ ext{nons}}(au^{ ext{cut}}) ig] & ext{NLO} \ &+ \; lpha_s^2 ig[\; dots \; + \; dots \; + \; dots \; + \; dots \ &+ \;$$

- Lowest perturbative accuracy at all p_T requires (N)LL+LO₁
 - ▶ Provided by LO ME+PS, also plain Pythia (has full ME for first emission)
 - ▶ LO is naturally part of LL and so automatically included

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau=p_T^2/Q^2$, $L=\ln \tau$, $L_{\rm cut}=\ln \tau^{\rm cut}$

NNLL

LL NLL NLL'

$$egin{aligned} rac{\sigma(au^{ ext{cut}})}{\sigma_B} &= 1 & ext{LO} \ &+ & lpha_s ig[& rac{c_{11}}{2} L_{ ext{cut}}^2 + c_{10} L_{ ext{cut}} + c_{1,-1} + & F_1^{ ext{nons}}(au^{ ext{cut}}) ig] & ext{NLO} \ &+ & lpha_s^2 ig[& dots & + & dots & + & dots & + & dots \ rac{1}{\sigma_B} rac{ ext{d}\sigma}{ ext{d} au} &= lpha_s/ au ig[& c_{11} L + c_{10} & + & au f_1^{ ext{nons}}(au) ig] & ext{LO}_1 \ &+ & lpha_s^2/ au ig[& c_{23} L^3 + c_{22} L^2 + c_{21} L + c_{20} + au f_2^{ ext{nons}}(au) ig] & ext{NLO}_1 \ &+ & lpha_s^3/ au ig[& dots & + & dots & + & dots & + & dots \ \end{pmatrix}$$

- NLO+PS matching (MC@NLO, POWHEG) adds full NLO to $\sigma(\tau^{\text{cut}})$
 - lacktriangle Improves accuracy for $\sigma(au^{
 m cut}\sim 1)$ (incl. cross section) to NLO
 - Does not automatically improve formal accuracy of spectrum beyond ME+PS

Perturbative Accuracy (Oversimplified).

Terms in the cross section that are reproduced at some resummation order (not the definition of the order) with $\tau=p_T^2/Q^2$, $L=\ln \tau$, $L_{\rm cut}=\ln \tau^{\rm cut}$

$$egin{aligned} rac{\sigma(au^{ ext{cut}})}{\sigma_B} = & 1 & ext{LL} & ext{NLL}' & ext{NNLL} \ & + & lpha_s ig[& rac{c_{11}}{2} L_{ ext{cut}}^2 + c_{10} L_{ ext{cut}} + c_{1,-1} + & F_1^{ ext{nons}}(au^{ ext{cut}}) ig] & ext{NLO} \ & + & lpha_s^2 ig[& dots & + & dots & + & dots & + & dots \ & rac{1}{\sigma_B} rac{ ext{d} \sigma}{ ext{d} au} = lpha_s / au ig[& c_{11} L + c_{10} & + & au f_1^{ ext{nons}}(au) ig] & ext{LO}_1 \ & + & lpha_s^2 / au ig[& c_{23} L^3 + c_{22} L^2 + c_{21} L + c_{20} + au f_2^{ ext{nons}}(au) ig] & ext{NLO}_1 \ & + & lpha_s^3 / au ig[& dots & + & dots & + & dots & + & dots \ \end{pmatrix}$$

- ullet NLL' and NNLL fully incorporate 1-loop virtuals $(c_{1,-1})$ into resummation and therefore naturally match to NLO
- Similarly NNLL' and N³LL incorporate 2-loop virtuals and match to NNLQ