LHCb precision EW physics

Olli Lupton, with input from Mika Vesterinen and other LHCb colleagues

CERN

5 October 2017

First...a look at $\sin^2 \theta_{\rm eff}^{\rm lept}$

- In 2015 LHCb produced the most precise LHC determination of $\sin^2 \theta_{eff}^{\text{lept } 1}$
- Recently beaten by CMS, which [I assume] the previous talk told us about²
- LHCb has less lumi...but we are more sensitive per $\, \mathrm{fb}^{-1} \,$

¹LHCb collaboration, "Measurement of the forward-backward asymmetry in $Z/\gamma^* \rightarrow \mu^+\mu^-$ decays and determination of the effective weak mixing angle", JHEP 11, 190 (2015), arXiv:1509.07645

 $^{^2}$ CMS collaboration, "Measurement of the weak mixing angle with the forward-backward asymmetry of Drell-Yan events at 8 TeV", CDS (2017)

Reminder...why is this a good measurement for LHCb

At high Z^0 rapidity the assumed q direction is more likely to be accurate \implies less dilution

Larger asymmetries in LHCb acceptance

What's the outlook for $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ at LHCb?

- The full Run 1 + 2 LHCb dataset should have $\sim 5 \times$ the Run 1 statistics
- \sqrt{N} scaling for the statistical uncertainty $\implies \sim 0.00033$ with these data
- For reference, this is $\mathcal{O}(20\%)$ lower than each Tevatron measurement
- LHCb upgrade in LS2 \implies $\sim 20 \times$ Run 1 statistics by the end of Run 3 (2023)
- \sqrt{N} gives a statistical uncertainty of < 0.00020 at this point, competitive with LEP

What's the outlook for $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ at LHCb?

- The full Run 1 + 2 LHCb dataset should have $\sim 5 \times$ the Run 1 statistics
- \sqrt{N} scaling for the statistical uncertainty $\implies \sim 0.00033$ with these data
- For reference, this is $\mathcal{O}(20\%)$ lower than each Tevatron measurement
- LHCb upgrade in LS2 $\implies \sim 20 \times \text{Run 1 statistics by the end of Run 3 (2023)}$
- \sqrt{N} gives a statistical uncertainty of < 0.00020 at this point, competitive with LEP

So LHCb has/will have interesting statistical sensitivity

(and that's before we consider any improved statistical techniques)

How can we beat that...? (experimental)

Previous slide: just statistical, just scaling with expected yields

- Use the event weighting technique¹ $\implies 20\%$ reduction in σ_{stat} ?
- Bin in \mathbb{Z}^0 rapidity as well as $m_{\Pi^+\Pi^-}$
- Expect experimental systematics, e.g. momentum scale to also come down as we integrate more luminosity

Source of uncertainty	$\sqrt{s} = 7 \text{TeV}$	$\sqrt{s} = 8 \text{TeV}$
curvature/momentum scale	0.0102	0.0050
data/simulation mass resolution	0.0032	0.0025
unfolding parameter	0.0033	0.0009
unfolding bias	0.0025	0.0025

Experimental systematics (LHCb Run 1)

 $^{^1}$ A. Bodek. "A simple event weighting technique for optimizing the measurement of the forward-backward asymmetry of Drell-Yan dilepton pairs at hadron colliders", Eur. Phys. J. C67, 321-334 (2010), arXiv:0911.2850

How can we beat that...? (systematic)

What about the theoretical uncertainties?

- The Run 1 result used NNPDF23, now NNPDF31 is available
- This includes **much** more LHCb data...which has a big impact¹

Uncertainty	average $\Delta A_{\rm FB}^{\rm pred} $
PDF	0.0062
scale	0.0040
α_s	0.0030
FSR	0.0016

Theory uncertainties (LHCb Run 1)

- Use NNLO codes if scale uncertainties are a problem
- We can also explore PDF weighting techniques

¹NNPDF collaboration, "Parton distributions from high-precision collider data", (2017), arXiv:1706.00428

- LHCb should have interesting sensitivity to $\sin^2\theta_{\rm eff}^{\rm lept}$ with the dataset collected up to 2018, statistics competitive with LEP by 2023 or so
- Experimental systematics shouldn't be a showstopper, though plenty of work needed...
- If the theoretical uncertainties were trivial we wouldn't all be here!
- I'll come back to what supporting measurements LHCb can/should make at the end
- First...on to $m_{\rm W}$

 m_{W} @ LHCb

8/19

Why measure $m_{\rm W}$ at LHCb?

- Is it even possible..? Restricted acceptance, no missing $p_{\rm T}$, worse purity, low luminosity, ...
- Even so, why bother..?
 Unique forward acceptance **complements** GPDs, probes different physics
- You may remember Mika's talk at the last $m_{\rm W}$ workshop [link]

Getting close to 4π AKA complementarity...

Getting close to 4π AKA complementarity...

How does that help us?

Has been shown that (assuming a μ^{\pm} $p_{\rm T}$ based measurement) the PDF uncertainties are anti-correlated between central and forward $m_{\rm W}$ measurements

¹G. Bozzi, L. Citelli, M. Vesterinen, and A. Vicini, "Prospects for improving the LHC W boson mass measurement with forward muons". Eur. Phys. J. C75, 601 (2015), arXiv:1508.06954

What does that mean?

LHCb could improve the LHC average uncertainty by $\mathcal{O}(30\%)$

What does that mean?

- LHCb could improve the LHC average uncertainty by $\mathcal{O}(30\%)$
- The cited study assumed the GPDs could veto $p_{\rm T} \, ({\rm W}^{\pm}) > 15 \, {\rm GeV}/c$, and (pessimistically?) that LHCb had no such power

What does that mean?

- LHCb could improve the LHC average uncertainty by $\mathcal{O}\left(30\,\%\right)$
- The cited study assumed the GPDs could veto $p_{\rm T}$ (W[±]) > 15 GeV/c, and (pessimistically?) that LHCb had no such power
- Clear that we need to carefully coordinate the different LHC experiments to exploit our complementarity

$m_{\rm W}$ plans @ LHCb

- Only muons, only $p_{\rm T}$
 - Aim to go straight to the full Run 1 + 2 dataset \implies simultaneously analyse $\sqrt{s} = 7, 8, 13 \text{ TeV}$
- LHCb's luminosity levelling means these data are rather homogeneous. The largest dataset (13 TeV) has the lowest pile-up
- Limited "LHCb visible" recoil information?

What kind of purity can we achieve?

CERN

- Expect to have $\mathcal{O}(10M)$ W[±] decays in Run 1 + Run 2 dataset
- Expect $\mathcal{O}(10 \,\text{MeV}/c^2)$ statistical uncertainty on m_{W} using this sample
- Purity seen here is **without** recoil information →
- "LHCb visible" recoil may help

LHCb W $\rightarrow \mu$ cross-section¹

¹LHCb collaboration, "Measurement of forward W and Z boson production in pp collisions at $\sqrt{s} = 8$ TeV ", JHEP 01, 155 (2015), arXiv:1511.08039

$\overline{\mathrm{W}^{\pm}\ p_{\mathrm{T}}\ \mathrm{spectrum}\ \mathrm{modelling}}$

• We will produce whatever measurements of our $\mathcal{O}(1M)$ $Z^0/\gamma^* \to \mu^+\mu^-$ are needed...but translation from Z^0 to W^{\pm} is still non-trivial. e.g. heavy flavour effects¹

 $^{^{1}}$ ATLAS collaboration, "Studies of theoretical uncertainties on the measurement of the mass of the W boson at the LHC", CDS (2014)

W^{\pm} p_{T} spectrum modelling – forward has its advantages?

- Powheg+Pythia
- GPD acceptance

Fraction

0.5

0.2

W^{\pm} p_{T} spectrum modelling – forward has its advantages?

- LHCb acceptance
- Valence-enhanced
- Heavy flavour suppressed
- Not shown, but p_T spectrum is also a bit softer

Light qq Light qg Charm Beauty

Gauge boson kinematic modelling at high rapidity

- Clear that for both $m_{\rm W}$ and $\sin^2 \theta_{\rm eff}^{\rm lept}$ we will need the theory tools to describe our Z^0/γ^* data very well
- Important to validate all state-of-the-art MC codes (shower, NLO-matched-shower, NNLL analytic resummed) in our unique acceptance...expect surprises!
- We also need input from our theory friends:

How can we tailor our Z^0/γ^* measurements to help with tuning/development?

- Some data are already published at $\sqrt{s}=7,\,8,\,13$ TeV. We'll try to add $\sqrt{s}=5$ TeV
- Plan to produce at least $\frac{1}{\sigma} \frac{d\sigma}{dp_T}$ and/or $\frac{1}{\sigma} \frac{d\sigma}{d\phi^*}$ for Z^0/γ^* in bins of $m_{\mu^+\mu^-}$ and rapidity, and measure Z^0 angular coefficients
- Theorists' input here is valuable. What should we do **now** to reduce theory and PDF uncertainties in our $m_{\rm W}$ and $\sin^2 \theta_{\rm eff}^{\rm lept}$ measurements?
- Everything with our full Z⁰ sample, finest binning we can manage

Conclusions

- We've already made plenty of precision EW measurements, more are in the pipeline...
- Our unique kinematic coverage and running conditions have their advantages
- LHCb is definitely not "just" a flavour physics experiment
- Highly complementary to ATLAS and CMS, particlularly important when trying to improve systematics...

Backup

Table 5 The uncertainties on different LHC averages for m_W . The separate experimental and PDF uncertainties are

		omw (wev)		: v)	
Scenario	Experiments	Tot	Exp	PDF	α
Default Default Default	$\begin{array}{c} 2 \times \text{GPD} + \text{LHCb} \\ 1 \times \text{GPD} + \text{LHCb} \\ 2 \times \text{GPD} \end{array}$	9.0 10.1 12.0	4.7 6.5 5.8	7.7 7.7 10.5	$ \begin{array}{c} (0.30, 0.44, 0.22, 0.04) \\ (0.31, 0.40, 0.25, 0.04) \\ (0.28, 0.72, 0, 0) \end{array} $
PDF4LHC(3-sets) PDF4LHC(3-sets) PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$ $1 \times \text{GPD} + \text{LHCb}$ $2 \times \text{GPD}$	13.6 14.6 17.7	4.8 7.3 5.5	12.7 12.7 16.9	(0.43, 0.41, 0.12, 0.04) (0.43, 0.40, 0.12, 0.04) (0.50, 0.50, 0, 0)
$egin{array}{l} \delta^{\mathrm{LHCb}}_{\mathrm{exp}} = 0 \ \delta^{\mathrm{LHCb}}_{\mathrm{exp}} = 0 \ \delta^{\mathrm{LHCb}}_{\mathrm{exp}} = 0 \end{array}$	$2 \times \text{GPD} + \text{LHCb}$ $1 \times \text{GPD} + \text{LHCb}$ $2 \times \text{GPD}$	8.7 9.8 12.0	4.0 5.9 5.8	7.7 7.9 10.5	(0.31, 0.41, 0.24, 0.04) (0.31, 0.37, 0.28, 0.04) (0.28, 0.72, 0, 0)
$egin{array}{l} \delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0 \ \delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0 \ \delta_{\mathrm{exp}}^{\mathrm{GPD}} = 0 \end{array}$	$\begin{array}{c} 2{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 1{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 2{\times}\mathrm{GPD} \end{array}$	7.9 7.9 10.5	1.9 1.9 0.1	7.7 7.7 10.5	(0.29, 0.48, 0.19, 0.04) (0.29, 0.48, 0.19, 0.04) (0.26, 0.74, 0, 0)
$egin{aligned} \delta_{ ext{PDF}} &= 0 \ \delta_{ ext{PDF}} &= 0 \ \delta_{ ext{PDF}} &= 0 \end{aligned}$	$\begin{array}{c} 2{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 1{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 2{\times}\mathrm{GPD} \end{array}$	4.6 5.8 5.5	4.6 5.8 5.5	0.0 0.0 0.0	(0.34, 0.34, 0.22, 0.10) (0.23, 0.23, 0.37, 0.17) (0.50, 0.50, 0, 0)
$\delta_{\mathrm{exp}}^{\mathrm{LHCb}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{LHCb}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{LHCb}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{LHCb}} imes 2$	$\begin{array}{c} 2{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 1{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 2{\times}\mathrm{GPD} \end{array}$	9.6 10.8 12.0	5.6 7.6 5.8	7.7 7.7 10.5	(0.29, 0.50, 0.17, 0.04) (0.30, 0.46, 0.20, 0.05) (0.28, 0.72, 0, 0)
$\delta_{\mathrm{exp}}^{\mathrm{GPD}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{GPD}} imes 2 \ \delta_{\mathrm{exp}}^{\mathrm{GPD}} imes 2 \$	$\begin{array}{c} 2{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 1{\times}\mathrm{GPD} + \mathrm{LHCb} \\ 2{\times}\mathrm{GPD} \end{array}$	11.2 13.9 15.6	7.9 10.5 11.5	8.0 9.0 10.6	$ \begin{array}{l} (0.32, 0.35, 0.29, 0.04) \\ (0.31, 0.26, 0.37, 0.05) \\ (0.32, 0.68, 0, 0) \end{array} $
$\delta_{ ext{PDF}} imes 2$	$2 \times \text{GPD} + \text{LHCb}$	16.0	4.7	15.3	(0.30, 0.45, 0.21, 0.04)

 $1 \times GPD + LHCb$

 $2 \times \text{GPD}$

16.7 6.7

21.7 5.9

15.3

20.9

(0.30, 0.44, 0.22, 0.04)

(0.27, 0.73, 0, 0)

 $\delta_{\mathrm{PDF}} \times 2$

 $\delta_{PDF} \times 2$