

Rapidity and helicity distributions of W bosons at the LHC

Elisabetta Manca

Scuola Normale Superiore & INFN Pisa EW precision measurements workshop LAL Orsay, 5-6th October 2017

based on

arXiv:1707.09344

About the rapidity and helicity distributions of the W bosons produced at LHC E.M., O.Cerri, N.Foppiani, G.Rolandi

The "PDFs uncertainty" is currently one of the dominant systematics in the W mass measurement

So far two possible approaches to reduce this uncertainty:

- Refine the PDFs fit adding measurements sensitive to PDFs as a constraint (Z rapidity and p_T, W charge asymmetry....)
- Devise new fit procedures that smartly reduce the uncertainty (binning in eta, fitting W+ and W- simultaneously, PDFs profiling...)

where does "PDF uncertainty" come from?

in addition, W polarisation...

... now look at it in this way

helicity = spin
component along
direction of motion

the W decay has a strong spin analysing power

this observation opens the possibility of measuring the W rapidity spectrum for each helicity

we tried to do this exercise with a sample generated with Pythia8, with NNPDF2.3 QCD+QED LO

we performed an analytic chi2 fit using 2*23 templates (2 helicities * 23 bin in rapidity)

1 GeV bins in p_T (25 to 50 GeV) and 50 bins in η_{LAB}

same rapidity, opposite helicity

for a given helicity, templates at opposite rapidities are mirror image of themselves

opposite rapidity, same helicity

correlation matrix of the fit

fit result

~ 1 M events used for the pseudo data reduced chi2 of the fit very close to 1

error bars show the result of the full propagation of the correlation via diagonalisation of the covariance matrix

comparison with PDFs prediction

 $\sim 1\sigma$ compatibility data/truth

systematic uncertainties

- bias induced by W mass variations
- lepton trigger and id efficiencies as function of η_{LAB}
- variation of average W p_T as a function of rapidity
- variation of W p_T spectrum independently of rapidity

all the variations are negligible wrt PDFs prediction band

other systematics (i.e. background subtraction can only be assessed with a tailored analysis

W p_T spectrum reweighting

systematics due to *W* p_T reweighting

arXiv:1507.06937

a bunch of conclusions

due to a simple symmetry of the W production and decay at LHC, p_T vs η_{LAB} distributions of leptons from W decay offer the possibility to measure precisely the W rapidity distribution for each helicity state

this measurement depends much less on the correct modelling of the W p_T wrt W mass measurement

this is interesting for constraining the W mass "PDFs uncertainty" and also per se, since such a measurement has never been done