
A quick introduction to shell basics

Martin L. Purschke

1

Later in my RCDAQ presentation I will show you this

You will see that we are using commands typed in a terminal application ALL THE TIME.

A terminal application is what runs the shell

A shell is taking your commands and acts on them (it’s by far not the only program that does

that)

I consider myself a master of the shell (and yet, I still learn things from others all the time)

The shell makes many repetitive tasks a breeze

And it is a lot faster to work with than a graphical environment

2

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

Why you need to know the shell.

• You usually spend a lot of time using the shell

• If not so far, then you will during the exercises!

• The shell is the “face” of any Unix system, all attempts to make it like Windows aside

• You can do magic with a few lines of script that would take hours otherwise

• You can automate complex tasks with ease

• You can even automate your job to a large extent

• Let me show you in a few minutes.

If you are a physicist, an engineer, a professional in a technical field and do not use

the shell, you are missing out!

3

You need to accomplish some really complex task on the

computer…

… is there a ready-made tool that does exactly that?

Probably not!

But each task breaks down into small steps.

You already have a myriad of “small” tools available that do a particular thing really, really

well.

Think: You want to build a table. Do you have a tool that makes a table? No. But you have a

hammer, a saw, screwdrivers, a drill… You use those generic tools to make your table

You use them one by one and end up with something that does exactly what you

wanted/needed

Sounds too abstract? Here is an example…

4

“I want to tag my pictures with the date they were taken!”

Figure out when a picture was taken and add some text on the right lower end:

5

That’s easy to do.

Right? Right?

Wait…

2018-07-07 08:01

Is it easy? You decide…

6

That’s a lot of steps (I left

several steps out)

But, yes, it gets the job

done.

But wait! Now I have 1000

such pictures!

Does this really scale?

I’m going to be at it all

week!

I’ll get (or buy) a program

to do just that!

No shortage of programs you can get buy to do that…

7

It adds some information to the picture

Formats the appearance in 20 or so different styles to choose from

And it costs you $30!!!

And what happens if you want a different style?

A different font?

Maybe you want the text on the left side?

A date formatted in a particular way? US/European/???

Maybe you want to add something completely different?

No monolithic tool can foresee all possible use cases the user might

want

Even the most advanced program is limited in the end (and the really

good ones cost money!)

And that’s we are getting to the shell and the tools.

In the shell you are stringing together small tools…

• No single “tool” needs to do all you want all on its own

• Each small tool is really, really good at a particular thing, such as:

• You have a tool to extract any information from a picture (data, geotags, lens info, ….)

• You have a tool to format the information in whatever format you need

• You have a tool to superimpose a ready-made string on a picture in whatever way you like (

position, size, color, transparency, font, background, ….)

• You string together small individual tools that are great at one particular thing

• No one utility needs to excel at all required tasks

• And this buys you the ultimate flexibility to accomplish the most esoteric tasks

• And not just what the designer of an all-integrated tool envisioned!

• And most important: you can apply the same operation to thousands of images easily

8

We are getting way ahead of ourselves but I want to show

you…

9

$ exiftool IMG_20180707_080137.jpg

ExifTool Version Number : 10.94

File Name : IMG_20180707_080137.jpg

Directory : .

File Size : 2.2 MB

File Modification Date/Time : 2018:07:07 03:06:05-04:00

File Type : JPEG

File Type Extension : jpg

MIME Type : image/jpeg

JFIF Version : 1.01

Exif Byte Order : Big-endian (Motorola, MM)

Make : LGE

Camera Model Name : Nexus 5

Orientation : Horizontal (normal)

. . .

Date/Time Original : 2018:07:07 08:01:37

Create Date : 2018:07:07 08:01:37

Shutter Speed Value : 59.7

Aperture Value : 2.4

Flash : No Flash

Focal Length : 4.0 mm

. . .

GPS Latitude : 34 deg 1' 29.08" S

GPS Longitude : 18 deg 42' 59.24" E

GPS Position : 34 deg 1' 29.08" S, 18 deg 42' 59.24" E

This is what we actually want!

By the way: If you upload such a

picture from your camera to, say,

Facebook, you give away all this

information!

Strip this out!

$ exiftool -DateTimeOriginal -d "%Y-%m-%d %H:%M" -S IMG_20180707_080137.jpg | sed 's/DateTimeOriginal: //'

2018-07-07 08:01

This is what saved me $30 

10

#! /bin/sh

PIC="$1"

[-z "$PIC"] && exit

DEST="$2"

[-z "$DEST"] && exit

DATE=$(exiftool -DateTimeOriginal -d "%Y-%m-%d %H:%M" -S "$PIC" | sed 's/DateTimeOriginal: //')

NAME=$(basename $PIC)

NAME="$DEST/$NAME"

echo "new image = $NAME"

convert $PIC -fill yellow -pointsize 80 -undercolor '#00000080' -annotate +2200+2200 "$DATE" $NAME

This was just to get you into the right mindset…

You don’t need to become a master at image

processing, that was not the point…

I just wanted to show you that those tools act just

like your hammer, saw, screwdriver, drill…

We will now do simple things with and in the shell.

11

What the shell looks like

Prompt Cursor (and here you can type things)
12

Normally you see a shell within a terminal window

In my younger days, a terminal was a big piece of hardware

Directories and files

Directories == known as “folders” on other operating systems

We call them directories, sometimes also called “path”

Just a way to organize your work

Like “private” and “work”

Use cd to navigate directories (“change directory”)

Use pwd to show where you are (“print work directory”)

13

Certain commands only make

sense if we stick with “directory”

Directories and files

Use pwd to show where you are (“print work directory”)

Most shell users picture the “pwd” as a physical place (“I am in the so-and-so directory”)

The current directory acts like it is prepended to a file path

I only typed “myfile”

The default directory acts as if it is prepended to the file name

myfile -> /home/pi/tree + myfile -> /home/pi/tree/myfile

It is an easy way to save a lot of typing

But you can still refer to the file by its full name /home/pi/tree/myfile

14

Commands Utilities Programs

On a Unix system, they all mean pretty much the same

For everything you do, you execute a new program that does what you tell the shell to do

All the shell does is to call up those programs based on what command you type

We have seen the pwd command – print work directory

We can use the which command to find out what happens

So if you type “pwd”, the shell executes a program /bin/pwd that prints the current directory

15

Navigating

The primary tool to “go to” a particular place in the directory structure is “cd”

“change directory”

You have absolute moves and relative moves

Being able to navigate the directories with ease saves lot of time

After working on a Linux / Unix system for a while you develop some sort of a “map” for that

In the rare occasions I work on Windows machines, I still try to visualize such a map

16

A directory tree

17

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

“up”

“down”

Navigating

18

./

work

cd work

We start out here

Navigating a directory tree

19

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

We are here

And want to go here

Navigating

20

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

cd work

cd customers

cd customer4

cd offers

We start out here

Navigating: . and ..

21

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

“.” is a shorthand for “here”

“..” is “one level up”

You are here… and want to go here: cd ..

Navigating: combining “up” and “down”

22

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

You are here… and want to go here:

Navigating: combining “up” and “down”

23

./

work
private

pictures

2014 2015 2016

letterscontracts customers

customer3 customer4 customer5

customer1 customer2

invoices offers invoices offers

You are here… and want to go here:

You must think that this is really

complicated, counting the number of

“..” required. The shell makes this easy

The tab key is your best friend

When you type something, the tab key will expand this as

much as possible

It saves you tons of typing! And saves mistakes!

You will see seasoned shell users hit tab all the time

Let’s say you have a file called

Invoice_March27_2016_work_done_inFebruary_by_Martin_version7

24

Here I hit tab

ls –l

“ls” lists the files in a directory

ls –l adds more information “ls dash ell”

25

mlpmac:tree purschke$ ls

private work

mlpmac:tree purschke$ ls -l

total 0

drwxr-xr-x 3 purschke staff 102 Jul 17 22:49 private

drwxr-xr-x 5 purschke staff 170 Jul 17 23:24 work

Command options

Many commands have a large number of options that modify the behavior

As we have seen with ls –l

Commands can have “short” (one-letter) options and “long options”

For example ls –group-directories-first

Long options should start with two dashes, but many utilities don’t adhere to that

26

Scripts

We have so far executed each of our commands by typing it

Now I put those exact commands in a file, one line after the

other. I call this file my_script.sh

The file can have any name, but the .sh extension is a good

convention

Now I can execute those commands in one fell swoop:

27

pwd

cd work

pwd

cd ..

pwd
#! /bin/sh

pwd

cd work

pwd

cd ..

pwd

We add one more line

Before we go on – “the other kind of text processing”

On the following slides I will show you some concepts and commands that give you a jump-start with

the shell.

This may not be obvious, but pretty much every command does some kind of text manipulation

Think of the Unix shell and the utilities as the

Most powerful text processor you can find

And a lot of work you do is text manipulation whether you realize this or not – that includes numbers

So this is orders of magnitude more powerful than any monolithic “text processor”.

Keep that in mind as we go along…

28

Some useful programs “wc” – “word count”

wc counts lines, words, and characters in a file

5 lines, 8 words, 41 characters

“Please explain what you liked about your experience (not more than 200 words)”

Useful to know home many words you actually used….

Just count the lines:

29

$ wc script.sh

5 8 41 script.sh

$ wc -l script.sh

5 script.sh

Shell variables

You can store values in “environmental variables”

You can then retrieve the stored value by $VARIABLE

They can have any name and case, but usually one writes then in all-uppercase

30

$ VARIABLE=value

$ printenv

TERM_PROGRAM=iTerm.app

TERM=xterm-256color

SHELL=/bin/bash

TMPDIR=/var/folders/7j/91pk1g_144b5y9vgy3gfy4gw0000gq/T/

Apple_PubSub_Socket_Render=/private/tmp/com.apple.launchd.s6dk

LBBPc2/Render

TERM_PROGRAM_VERSION=3.1.6

OLDPWD=/Users/purschke/presentations/RealTimeSchool/2018/photo

editing/copy1

TERM_SESSION_ID=w11t0p0:FFEA3644-74C7-4BEA-BB8E-C583B6227C06

USER=purschke

Echo! Echo!

The echo command simply prints the arguments to “stdout”

Ok, that’s pretty lame… we knew the answer beforehand!

But not always! This is a convenient way to see the value of a variable.

31

$ echo Martin

Martin

$ VARIABLE=Martin

$ echo $VARIABLE

Martin

Pipes

Whatever one command “prints to the screen” can be “piped” to another program with the | symbol

So, how many files/directories do I have here? As many as I have lines (ok, one less):

This is a fantastically powerful concept
32

$ ls -l

total 26184

-rw-r--r--@ 1 purschke staff 12092605 Jul 17 21:11 RCDAQ.pptx

drwxr-xr-x 16 purschke staff 544 Jul 17 21:57 pictures

drwxr-xr-x 21 purschke staff 714 Jul 17 22:18 pictures2

-rwxr-xr-x 1 purschke staff 41 Jul 17 20:57 script.sh

-rwxr-xr-x 1 purschke staff 154 Jul 17 21:00 script2.sh

-rw-r--r-- 1 purschke staff 41 Jul 17 20:58 script2.sh~

-rw-r--r--@ 1 purschke staff 1297508 Jul 17 23:57 shell.pptx

drwxr-xr-x 4 purschke staff 136 Jul 18 00:13 tree

$ ls -l | wc -l

9

Wildcards

Wildcards allow you to select files with common parts in their name (and may other things)

Here: Show me the PowerPoint files in this directory

It is important to understand that it is not “ls” that expands the wildcards but the shell – it gives the

two names to ls, and ls does its thing

I can have more than one wildcard:

33

$ ls –l *.pptx

total 1231

-rw-r--r--@ 1 purschke staff 12092605 Jul 17 21:11 RCDAQ.pptx

-rw-r--r--@ 1 purschke staff 1297508 Jul 17 23:57 shell.pptx

$ ls –l *e*.pptx

total 988

-rw-r--r--@ 1 purschke staff 1297508 Jul 17 23:57 shell.pptx

“Pipe into”

Different people call it by different names – I like “pipe into” - the “bar” symbol |

So I would tell you to type

“ eles dash el pipe into wc dash el”

34

$ ls -l | wc -l

9

Standard in and standard out

You have already seen this with the “pipe into” –

Many programs have a concept of “stdin” and “stdout”

They take some input from “stdin” (usually from your terminal)

and write something out (usually to your terminal)

Here: the “cat” program (concatenate) – it can take its stdin (has other uses, hence my careful

wording ) and puts stuff out to stdout. Here:

Ok, that’s a silly example, but you get the idea

You can think of such a program as a filter (ok, “cat” doesn’t actually do anything to the input, but just

wait)

If a program doesn’t “do” stdout naturally, you can usually force it – we’ll see an example later 35

$ cat

1234

1234

I type

It prints out

Keep on piping …

“sed” is the “streamline editor”

It is an enormously powerful editor that takes the input, does something to it, outputs – that’s an

actual filter! (you would not use it for editing some big thing….)

Remember echo? It takes the argument and prints it to stdout:

Here we go – we tell sed to substitute “a” for an “u”:

But sed again prints its output to stdout, so we can go on:

And we can go on like this – “tr” translates one group or characters to another one (here: make

everything uppercase)

36

$ echo Martin

Martin

$ echo Martin | sed 's/a/u/'

Murtin

$ echo Martin | sed 's/a/u/' | sed 's/i/e/'

Murten

$ echo Martin | sed 's/a/u/' | sed 's/i/e/' | tr a-z A-Z

MURTEN

A super-useful program: “awk” – but what does that even

mean?

It is a utility named after the initials of the authors - Alfred Aho, Peter Weinberger, and Brian

Kernighan

It is a swiss army knife for text parsing.

My full desktop at BNL is called “mlp.rhic.bnl.gov”. What if I want just the “mlp” name?

Sum something per-line up:

37

$ hostname

mlp.rhic.bnl.gov

$ hostname | awk -F. '{print $1}’

mlp

$ ls -l | awk '{sum+=$5} END {print sum}'

13391743

sort

38

$ ls -l | sort -n -k 5

total 26184

-rw-r--r-- 1 purschke staff 41 Jul 17 20:58 script2.sh~

-rwxr-xr-x 1 purschke staff 41 Jul 17 20:57 script.sh

drwxr-xr-x 4 purschke staff 136 Jul 18 00:13 tree

-rwxr-xr-x 1 purschke staff 154 Jul 17 21:00 script2.sh

drwxr-xr-x 16 purschke staff 544 Jul 17 21:57 pictures

drwxr-xr-x 21 purschke staff 714 Jul 17 22:18 pictures2

-rw-r--r--@ 1 purschke staff 1297508 Jul 17 23:57 shell.pptx

-rw-r--r--@ 1 purschke staff 12092605 Jul 17 21:11 RCDAQ.pptx

We list our files sorted by file size (numerically sort by the 5th column):

bc

39

$ bc -lq

1.234 * 2812894

3471111.196

3.78532 * 1276 / 9 * 15

8050.11386666666666666655

$ echo "1.234 * 2812894" | bc -lq

3471111.196

Each computer and smartphone has a virtual pocket

calculator these days

There is no slower way to calculate something… IMHO

Throw in “bc” - “binary calculator”

Arbitrary precision, text input, easy, takes stdin/out,….

Where did I put that???? -- find is your friend

40

Let’s say I remember that I had at some point written a program in C++ and I vaguely

remember its name (but not fully)

It was reading out a device called an Xbee. I would llke to copy–paste some code from it

But I have no idea where I put that. I have more then 1800 directories on my Mac…

Am I looking through 1800+ directories?

It is a good guess that the program had the word “xbee” in its name… so I go

See? I found not only one but 3… They are likely copies of the same file that I worked on

$ find . -name "*xbee*.cc"

./muell/heatserver/software/read_xbee.cc

./muell/software/read_xbee.cc

./softwarerepo/software/read_xbee.cc

$

find all files that were modified in the last day

41

Let’s see how busy I have been (ok, not all file modification represent work by me, there are

mail files, web browser cache, etc etc)

You can see that I have been working on my presentations here. But how many files are that,

total?

$ find . –type f –mtime -1

. . . Many lines deleted . . .

./presentations/RealTimeSchool/2018/photoediting/IMG_20180707_080137-6.jpg

./presentations/RealTimeSchool/2018/photoediting/IMG_20180707_080137-7.jpg

./presentations/RealTimeSchool/2018/photoediting/IMG_20180707_080137-8.jpg

./presentations/RealTimeSchool/2018/photoediting/IMG_20180707_080137-9.jpg

./presentations/RealTimeSchool/2018/raspberryPi_instructions.pptx

./presentations/RealTimeSchool/2018/RCDAQ.pptx

./presentations/RealTimeSchool/2018/scaledowns.pptx

$

$ find . -type f -mtime -1 | wc -l

1218

find all files that contain a certain string

42

Let’s say that I worry about files where I have inadvertently stored a password. Just making

sure that I’m in the clear… My password is “secret1234” (no it is not )

So I go through ALL files and look for the presence of that string. grep –l … prints the name of

the string.

That was easy!

$ find . -type f -exec grep -l secret1234 {} \;

./muell/mypassword.txt

$

We look for all actual files

(e.g. not directories)

-exec executes the

command for each entry

The {} is replaced with

each file

The ; (semicolon)

terminates the command

bc - arbitrary precision. Printing 1000 digits of pi

43

$ bc -lq

4*a(1)

3.14159265358979323844

scale=1000

4*a(1)

3.141592653589793238462643383279502884197169399375105820974944592307\

81640628620899862803482534211706798214808651328230664709384460955058\

22317253594081284811174502841027019385211055596446229489549303819644\

28810975665933446128475648233786783165271201909145648566923460348610\

45432664821339360726024914127372458700660631558817488152092096282925\

40917153643678925903600113305305488204665213841469519415116094330572\

70365759591953092186117381932611793105118548074462379962749567351885\

75272489122793818301194912983367336244065664308602139494639522473719\

07021798609437027705392171762931767523846748184676694051320005681271\

45263560827785771342757789609173637178721468440901224953430146549585\

37105079227968925892354201995611212902196086403441815981362977477130\

99605187072113499999983729780499510597317328160963185950244594553469\

08302642522308253344685035261931188171010003137838752886587533208381\

42061717766914730359825349042875546873115956286388235378759375195778\

18577805321712268066130019278766111959092164201988

Arctan(1) = pi/4

Shamelessly Showing off!

44

This came up in the context of a super-sized physics simulation project

In the end, I ran a half-million jobs on the Computing Grid over the course of ~7 weeks

Every Friday, the OSG admins wanted a status report – “how much CPU time did you use”?

For each job on the grid you get a log file with the relevant CPU usage numbers – but how

to extract them? Pocket calculator? Nah. Excel? Nah. But what is the most powerful text

processing tool?

So in the end I had 500,000 log files that look like this:

… lines deleted

005 (4972.000.000) 08/05 14:07:27 Job terminated.

(1) Normal termination (return value 1)

Usr 0 18:27:09, Sys 0 00:09:11 - Run Remote Usage

Usr 0 00:04:27, Sys 0 00:01:18 - Run Local Usage

Usr 0 18:27:09, Sys 0 00:09:11 - Total Remote Usage

Usr 0 00:04:27, Sys 0 00:01:18 - Total Local Usage

0 - Run Bytes Sent By Job

… lines deleted

So this job used

18h 27m 09s

But we have ~500,000

such files!

Can we do the calculation

on one line?

Text processing…

45

First, find all log files (I copied only 2 over here – remember we had 500,000)

Find the one line per file that we need by executing “grep” on each file:

We remove the commas (that would get in the way later) with sed:

find . -name "*.log"

./condor_171878.log

./condor_171879.log

find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

Usr 0 22:11:04, Sys 0 00:11:11 - Total Remote Usage

Usr 0 18:27:09, Sys 0 00:09:11 - Total Remote Usage

find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//'

Usr 0 22:11:04 Sys 0 00:11:11 - Total Remote Usage

Usr 0 18:27:09 Sys 0 00:09:11 - Total Remote Usage

Text processing…

46

Now we extract the 3rd parameter which is the CPU time:

Now we are using awk again to get hours, minutes, seconds (we just print them here):

find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//’

| awk '{print $3}'

22:11:04

18:27:09

find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//’

| awk '{print $3}’

| find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//' | awk '{print $3}’

| awk -F: '{print "hours:", $1, " Minutes:", $2, " seconds: ", $3}'

hours: 22 Minutes: 11 seconds: 04

hours: 18 Minutes: 27 seconds: 09

And finally we add it all up …

47

find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//’

| awk '{print $3}’

| find . -name "*.log" -exec grep 'Total Remote Usage' {} \;

| sed 's/,//' | awk '{print $3}’

| awk -F: '{X += ($1 *3600 + $2*60 + $3)/3600} END {print X}’

40.6369

$ find log/ -name ``*.log'' -exec grep 'Total Remote Usage' {} \; | \

sed -e 's/,//g' | awk '{print $3}' | \

awk -F: '{X += ($1 *3600 + $2*60 + $3)/3600} END {print X}'

1.34523e06

$ bc -l

bc 1.06

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type `warranty'.

1345230 / 24

56051.25000000000000000000

1345230 / 24/365

153.56506849315068493150

1345230 hours

56051 days

153 years

One last thing:

48

We will use the wget utility to download and unpack a

file from my web server

wget is like a command-line web browser: It downloads the content of a URL to your

computer

But we don’t want to fire up the web browser

and we don’t want to store the file first but use pipes to extract the info right away

would download and store the file on your disk (but we don‘t want that!)

So we force wget to operate silently, AND force it to print out the contents to stdout (don’t do

that, you’ll see a lot of gibberish – we don’t want that typed to the terminal!)

And we process the data from a pipe (this is one line):

wget http://www.phenix.bnl.gov/~purschke/addons.tar.gz

wget –q –O - http://www.phenix.bnl.gov/~purschke/addons.tar.gz

wget –q –O - http://www.phenix.bnl.gov/~purschke/addons.tar.gz

| tar xvz

49

The End

