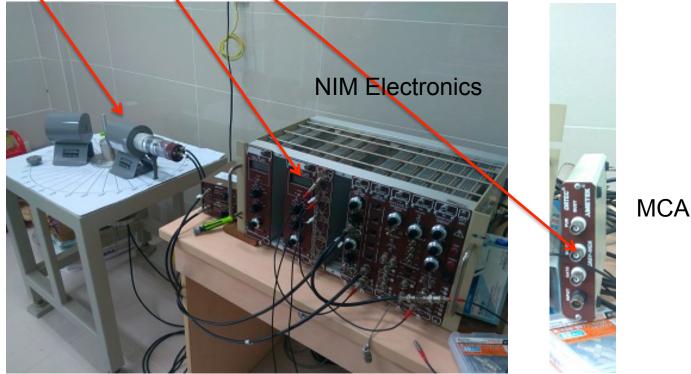
Signal levels and bus standards past, present and future

Zhen-An LIU TrigLab/IHEP Beijing, China

IEEE NPSS International School for Real Time Systems in Particle Physics 2018

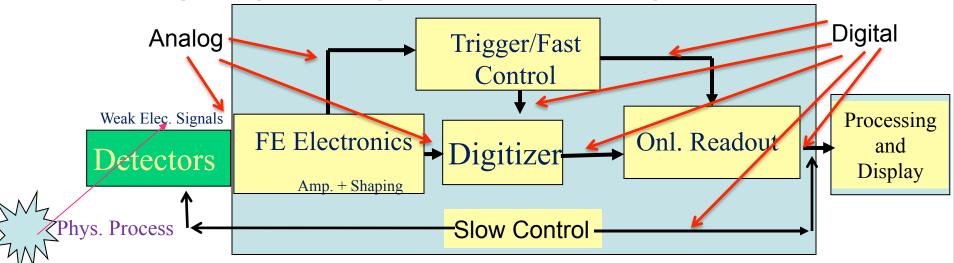

7-17 July 2018 iThemba, Cape Town, SA

Outline

- Overview in a physics experiment
 - Standardization is a must
- Standard in signal levels
 - Only those in instrumentation(not those in FPGA)
- BUS Standards in instrumentation
 - NIM,CAMAC,VME
 - New standard
 - xTCA for Physics, AMC, ATCA, MTCA
 - Some examples
- Summary

Instrumentation

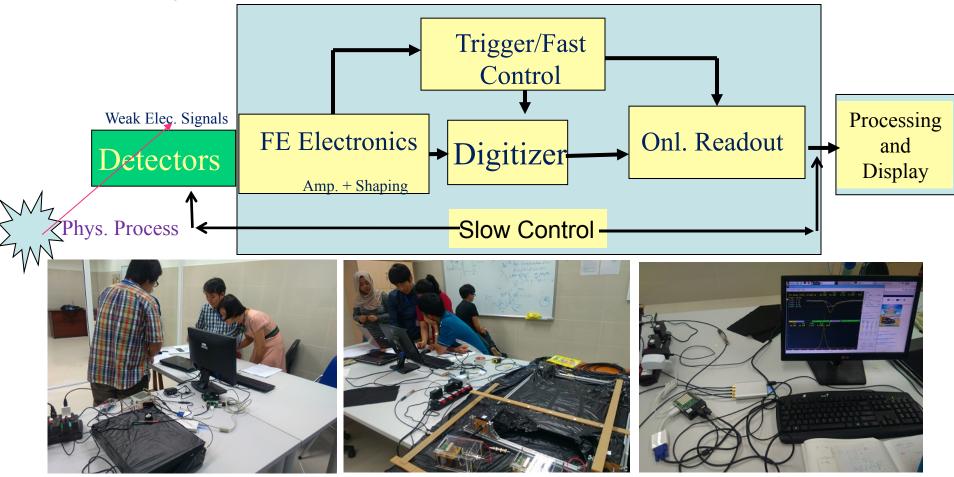
- Detector: for signal detection
- Electronics: signal processing
- Processor: data processing and display


Compton Scattering Setup in NTLab VNU-HCMUS, School on RT System 2016

Jul 7-17 2018,iThemba

Signal Processing and Control

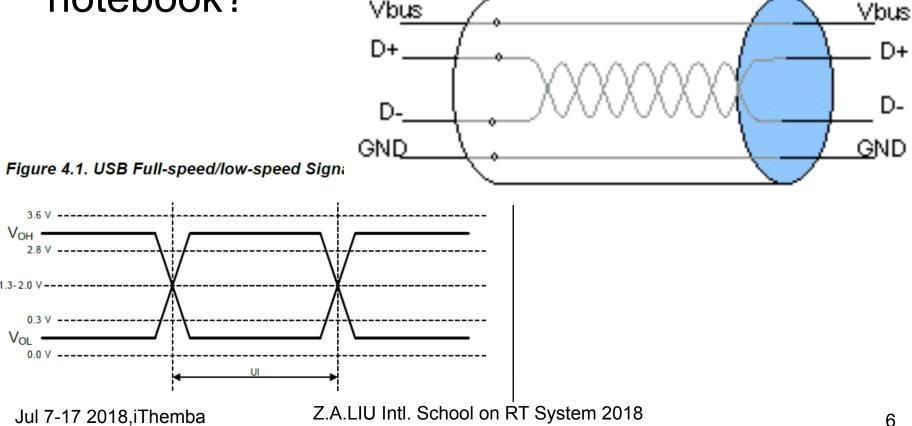
Analog/Digital signal processing



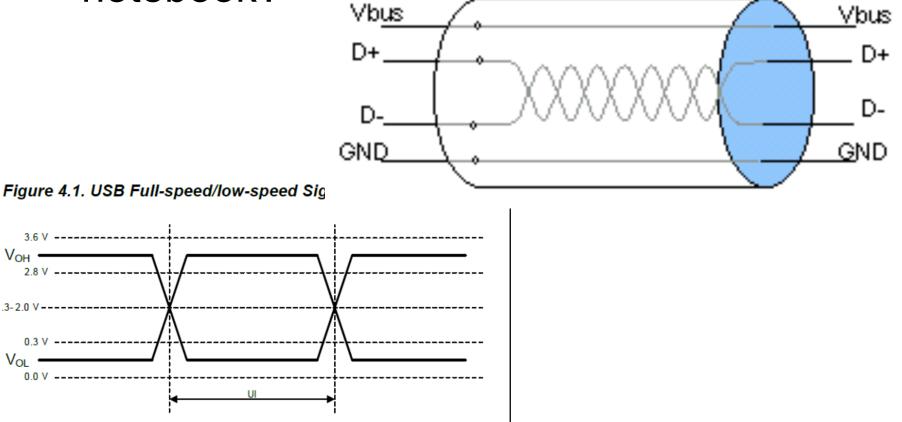
- Pre-Amplifier: amplify weak signal
- Main Amplifier: amplify small signal
- Digitizer: convert analog to digital
- Readout: collect data
- Processor: data analysis and display

Digital signal standardization

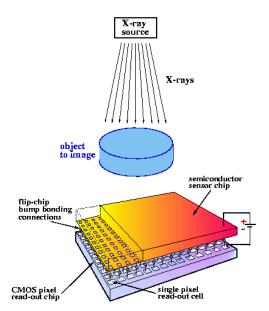
Trend direction 1: Instrumentations minimization: Lower signal level and Faster data link

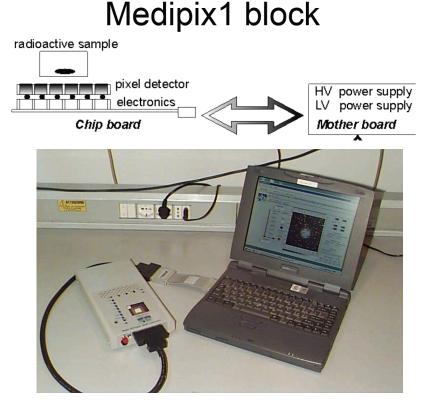

• Full system into small box

PMT(left),TOF(middle, right) exercise setup for RT School 2016Jul 7-17 2018,iThembaZ.A.LIU Intl. School on RT System 2018


Question

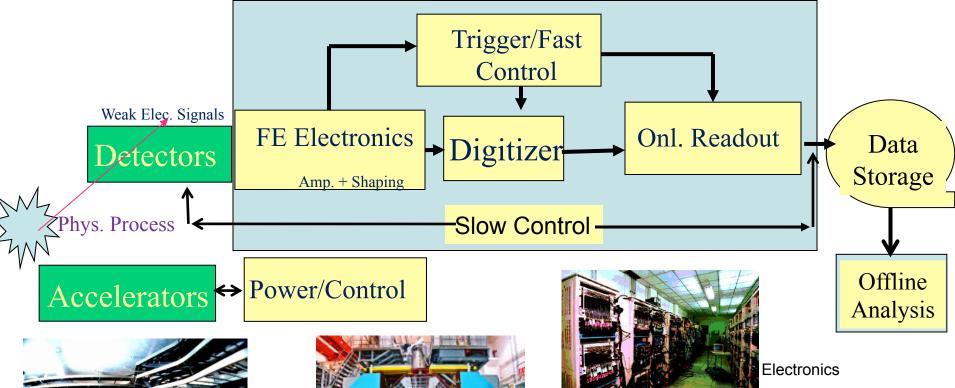
- What can be used as Digitizer?
- Why you can borrow a USB line to connect your Mobile Phone to your notebook?


USB standard


 Why you can borrow a USB line to connect your Mobile Phone to your notebook?

Trend direction 1: Compact Instrumentations: Lower signal level and Faster data link

- Or even handy meters
 - ASICs: Application Specific Integrate Circuits
 - FPGA: Field Programmable Gate Array
 - System on Chip
 - Experiment on Chip



Jul 7-17 2018,iThemba

Trend direction 2: Experiment needs Instrumentations for Signal Processing and Control in Larger scale

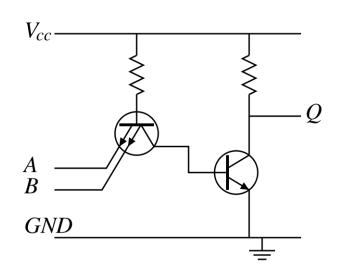
Huge amount of different instruments

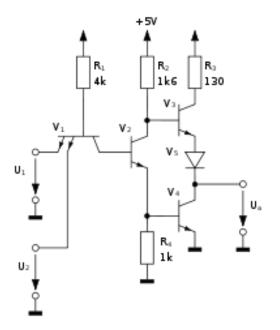
Accelerators

Jul 7-17 2018,iThemba

Detectors

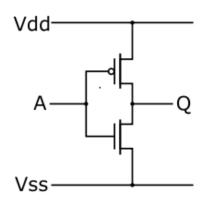
•Control and Data Readout •Standardized Signal levels •Standardized Crates •Standardized Modules

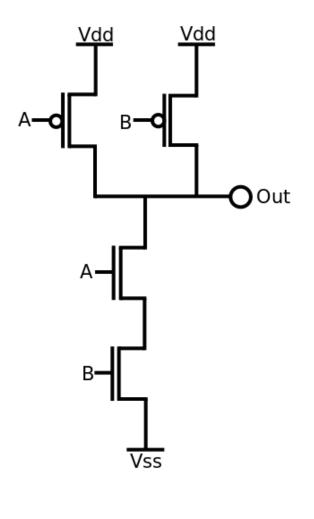

Questions


- In digital world, what is the logic 1? And Logic 0?
- What are the names representing different digital levels? Their voltages of level 1? And level 0?
- You know USB line already, what else?
 Mini-USB, Micro-USB
 - Boundary Scan/JTAG

.

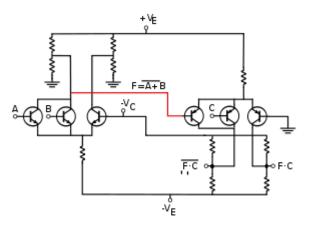
TTL Logic


- TTL: Transistor-Transistor Logic
 - invented in 1961 by James L. Buie of <u>TRW</u>
 Company
 - Logic 1(high): >2V
 - Logic 0(low): < 0.8V</p>



CMOS Logic

- CMOS (Complementary metal –oxide–semiconductor) is a technology for constructing integrated circuits.
- Frank Wanlass patented CMOS in 1963
- high noise immunity and low static power consumption
- V_{DD} = supply voltage
- VSS=Ground



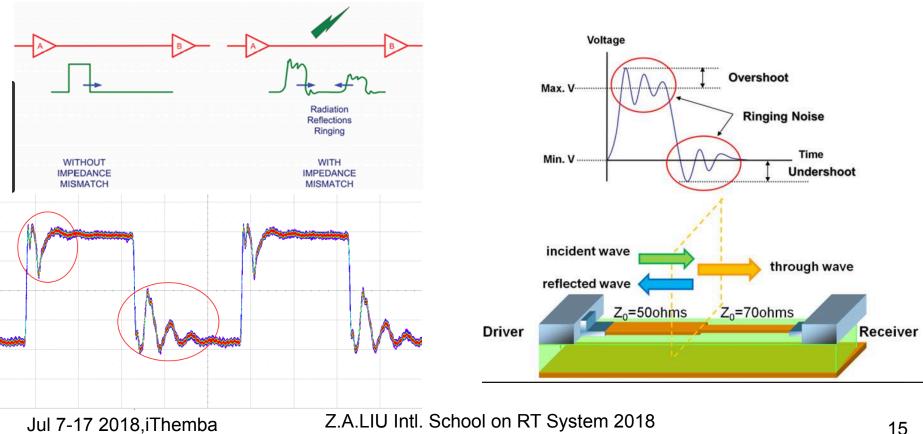
ECL/PECL/LVPECL Logic

- ECL (emitter-coupled logic) is a high-speed integrated circuit bipolar transistor logic family
- ECL was invented in August 1956 at IBM by Hannon S. Yourke
- PECL: Positive powered.
- LVPECL: 3.3V PECL

Differential-amplifier input and logic section	Internal temperature and voltage compensated bias network section (one supplies several differential amplifiers)	Emitter-follower output section
220 245	V _{CC2} 0 V 907 ≹	
	04 -1.29 V at 25°C 6.1 k 4.98	(A+B) ~(A+B) MECL 10K series 2-input OR/NOR

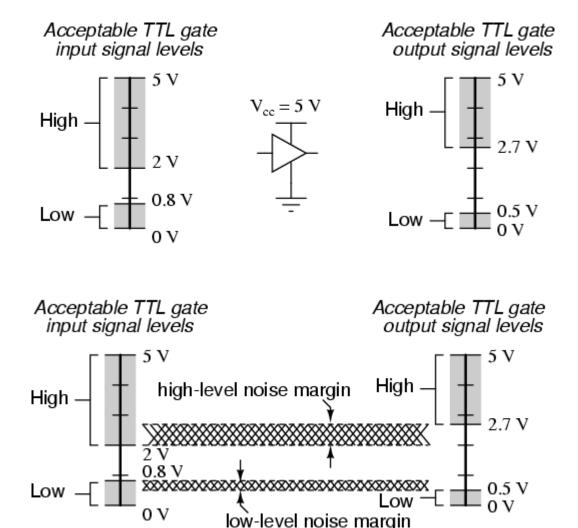
Туре	V _{ee}	V _{low}	V_{high}	V _{cc}	V _{cm}
PECL	GND	3.4 V	4.2 V	5.0 V	
LVPECL	GND	1.6 V	2.4 V	3.3 V	2.0 V

Examples of binary logic levels

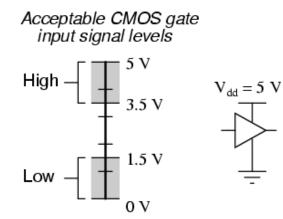

Technology	L voltage	H voltage	Notes
<u>CMOS</u>	0 V to V _{DD} /2-a	$V_{DD}/2+a$ to V_{DD}	V _{DD} = <u>supply voltage</u> , a=1,2,3.5V for VDD=5,10,15V
TTL	0 V to 0.8 V	2 V to V_{cc}	V _{CC} is 4.75 V to 5.25 V
<u>ECL</u>	-1.175 V to V_{EE}	0.75 V to 0 V	V_{EE} is about -5.2 V. V_{CC} =Ground
NIM	-0.8V	0V	V_{EE} is about -5.2 V. V_{CC} =Ground

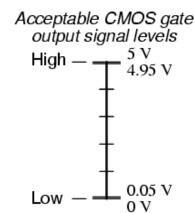
NIM logic: levels are defined by current ranges on 50 ohm input/out impedances, correspond to voltages of 0 V and -0.8 V for logic 0 and 1 respectively

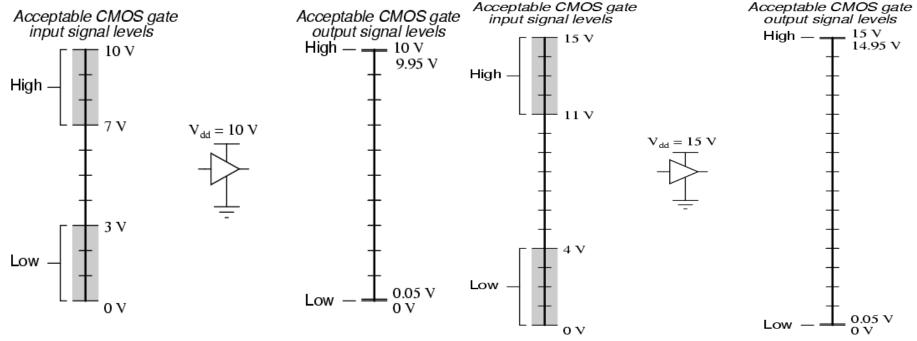
Jul 7-17 2018,iThemba


Signal Integration

- Termination
- Twix Pair lines
- Shielding

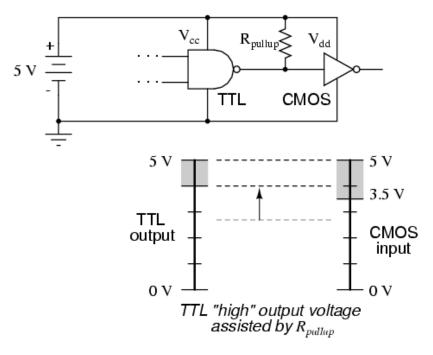

What standard means

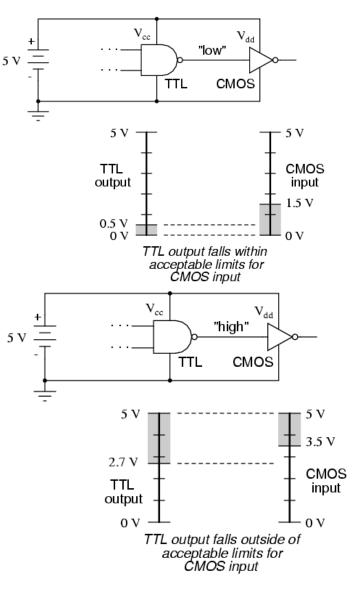

- Forbidden Range
- Range different for input and output for noise tolerance
- Limited noise margin



What standard means(2)

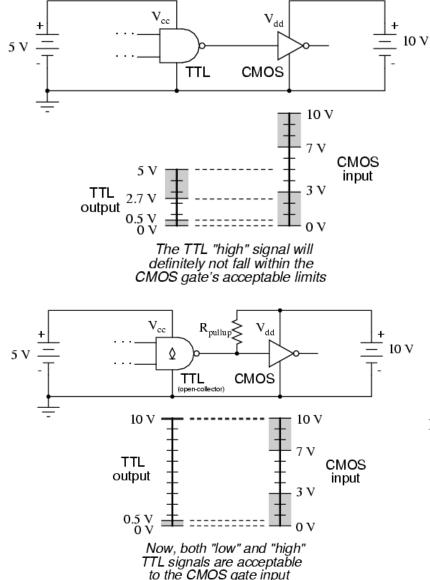
- Good noise margin
- High power comsumption

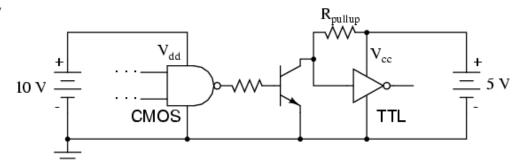




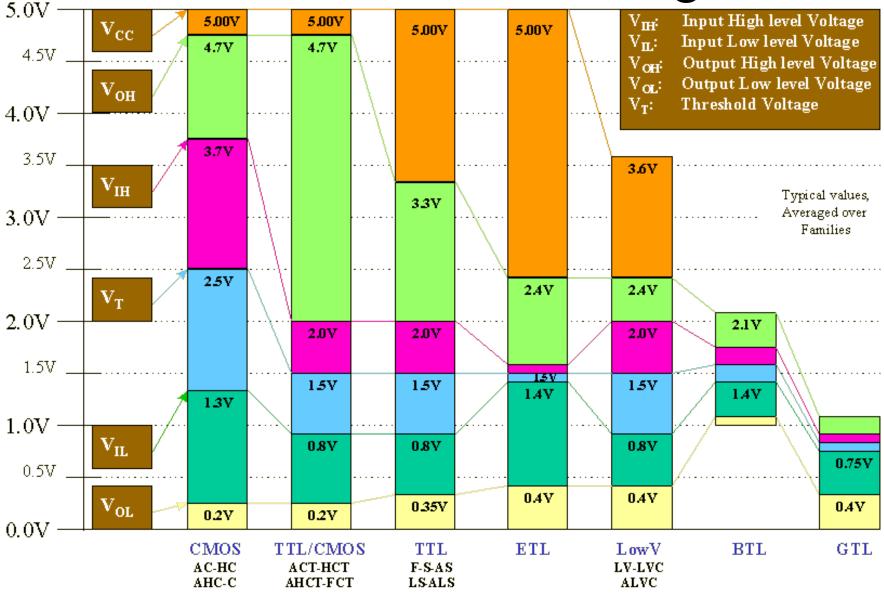
Jul 7-17 2018,iThemba

What standard means(3)


- No direct connection btw devices of different standards
- Level shifting necessary
 - By circuit between, or
 - By commercial device


Jul 7-17 2018,iThemba

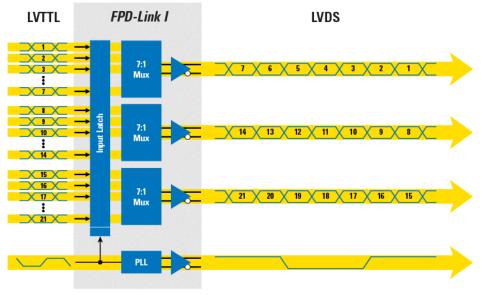
What standard means(4)



Jul 7-17 2018, iThemba

- In 10V CMOS case
- No direct inter-usage
- Level shifting necessary

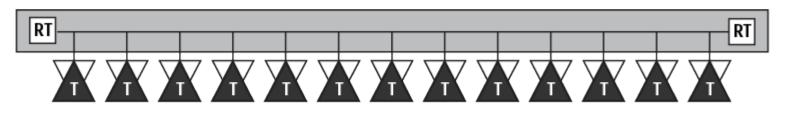
Some of the level ranges


Jul 7-17 2018, iThemba

LVDS

- LVDS(Low-voltage differential signaling)/ TIA /EIA-644, a technical standard that specifies electrical characteristics of a differential, serial communication protocol

 - low power, very high speeds with inexpensive twisted-pair copper cables
- was introduced in 1994
- Point to point

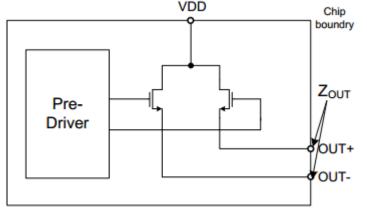

V _{ee}	V _{OL}	V _{OH}	V _{cc}	V _{CMO}
GND	1.0 V	1.4 V	2.5– 3.3 V	1.2 V

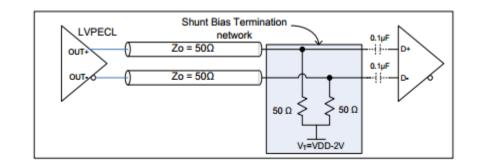
Jul 7-17 2018,iThemba

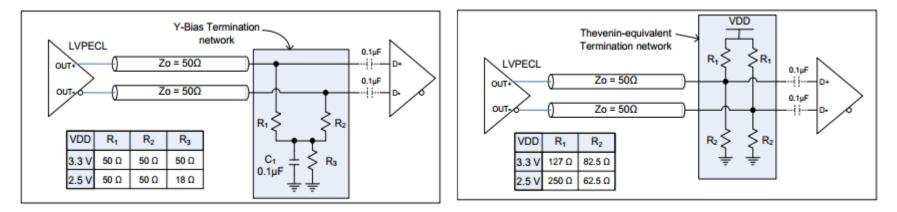
Multipoint LVDS/MLVDS/BLVDS

- Bus LVDS and LVDM (by TI) are <u>de facto</u> multipoint LVDS standards
- Multipoint LVDS (MLVDS) is the <u>TIA</u> standard (TIA-899). The <u>AdvancedTCA</u> standard specified MLVDS for clock distribution across the backplane to each of the computing module boards in the system

Note - the receivers shown must not have internal terminations.

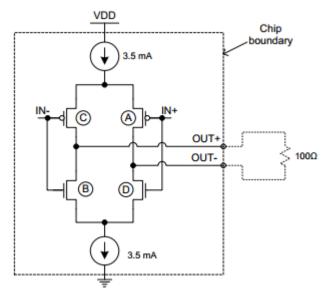

	Ou	Input		
	Common mode	Common mode Amplitude		
Min.	0.3 V	0.480 V	-1.4 V	
Max.	2.1 V	0.650 V	3.8 V	

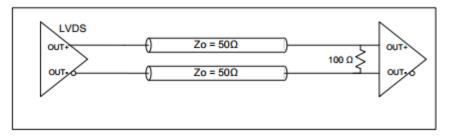

Jul 7-17 2018, iThemba

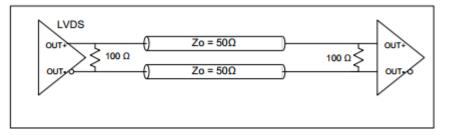

Termination, Reflection, Signal Integration

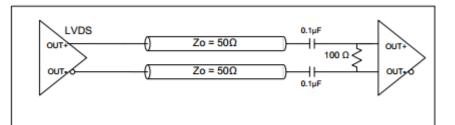
Coupling

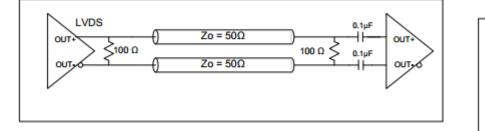
- DC coupled in low speed
- AC coupled in high speed
- ECL/LVPECL

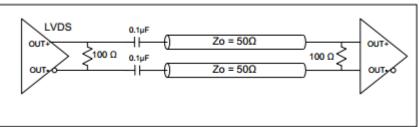


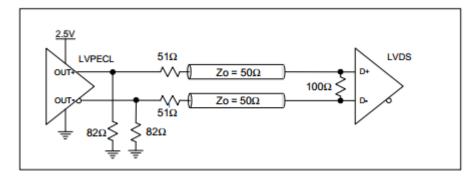


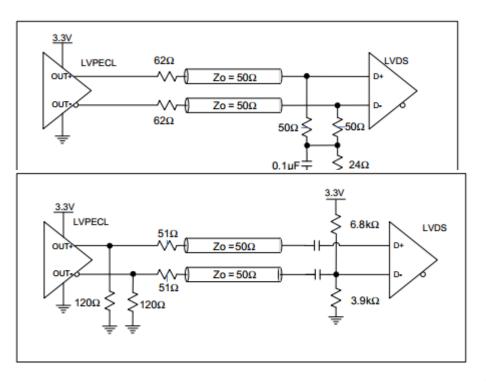

Jul 7-17 2018,iThemba


Termination 2


• LVDS

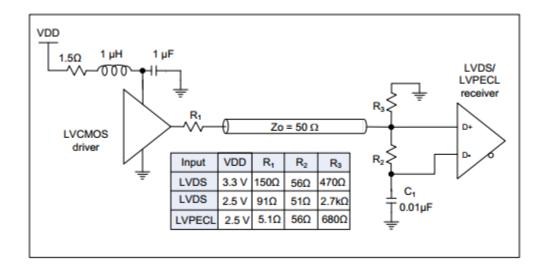


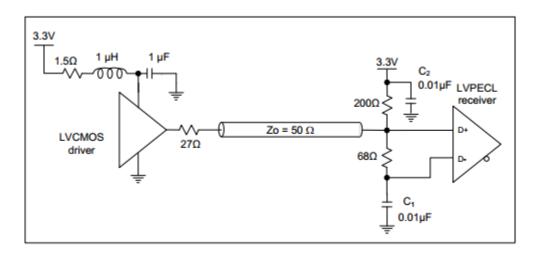




Jul 7-17 2018,iThemba

LVPECL-LVDS Level shift

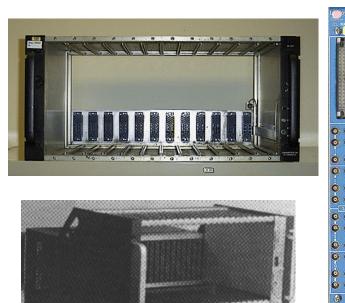



Jul 7-17 2018,iThemba

Z.A.LIU Intl. School on RT System 2018

25

LVCMOS-LVPECL/LVDS Level shift


Jul 7-17 2018,iThemba

BUS Standards for Nuclear Instrumentation

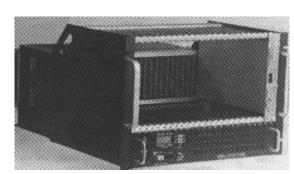
- 1960's
 - Nuclear Electronics Standard in British Rutherford Lab
 - Same time also in CERN and American Labs
 - NIM: American Standard Beurea and NIM Module Committee
- 70-80's CAMAC, FASTBUS, widely used
 - Nuclear Spectrum Measurement, Particle Physics, Medical Physics, Accelerator Instrument, Accelerator Control, Aerospace, Industrial control.
- 90's VME from Industry
- 2000 CPCI

Still in use, BUT limited

Jul 7-17 2018,iThemba

NIM

- **NIM**(Nuclear Instrumentation Module) standard defines
 - mechanical and electrical specifications
 - for electronics modules
 - used in experimental particle and nuclear physics
- Crate
 - Power: ± 6/±12/±24V DC from 220/110V
 - No data BUS
 - 12 Modules



NIM standard module connector pin assignments (required by DOE/ER-0457T)

Pin #	Function	Pin #	Function
1	Reserved [+3 V]	2	Reserved [-3 V]
3	Spare Bus	4	Reserved Bus
5	Coaxial	6	Coaxial
7	Coaxial	8	200 V DC
9	Spare	10	+6 V
11	-6 V	12	Reserved Bus
13	Spare	14	Spare
15	Reserved	16	+12 V
17	-12 V	18	Spare Bus
19	Reserved Bus	20	Spare
21	Spare	22	Reserved
23	Reserved	24	Reserved
25	Reserved	26	Spare
27	Spare	28	+24 V
29	-24 V	30	Spare Bus
31	Spare	32	Spare
33	117 V AC (hot)	34	Power Return Gnd
35	Reset (scaler)	36	Gate
37	Reset (aux)	38	Coaxial
39	Coaxial	40	Coaxial
41	117 V AC (neutral)	42	High Quality Gnd
G	Gnd Guide Pin		

CAMAC

 CAMAC: Computer Automated Measurement And Control

MAXIMUM CURRENT LOADS							
SUPPLY Voltage	VOLTAGE Tolerance	IN THE PLUG-IN (PER UNIT WIDTH)*	IN THE CRATE **				
Mandatory							
+24 V DC +6 V DC -6 V DC -24 V DC	±0.5% ±2.5% ±2.5% ±0.5%	1 A 2 A 2 A 1 A	6 A 25 A 25 A 6 A				
Additional (as required)						
+12 V DC -12 V DC	±0.5% ±0.5%						
" See Notes Fand 3. "" See Note 2.							

Table 2

- ESONE Committee: standard EUR 4100 in 1972
- Crate:
 - Data bus:24b
 - Power
 - Control
 - 24+1 station
 - Controller on 25th

Jul 7-17 2018,iThemba

Z.A.LIU Intl. School on RT System 2018

 WRITE LINES
 V

 TIMING STRODES
 2,1,0

 B
 F,A

 COMMON CONTROLS
 0

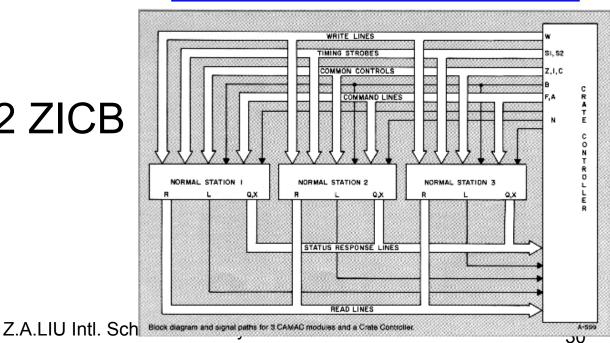
 OMMAND LINES
 0

 NORMAL STATION 1
 NORMAL STATION 2

 NORMAL STATION 1
 NORMAL STATION 2

 R
 Q,X

 R


Pin assignments

- Data Way(W24,R24)
- Interrupt:L24
- Station:N24+1
- FA:5+4
- Power:6
- Control:S1S2 ZICB QX

TITLE	DESIGNATION	COL- TACTS	USE AT A MODULE	TITLE	DESIGNATION	COL- LACTS	USE AT A MODULE
Command							
Station Numl	ber N	1	Selects the module (individual line from control station).	Common Contro	bis		Operate on all stations conne to them , no command require
Sub-Address	×1,2,4,8	4	Selects a section of the module.	Initalize	z	1	Sets module to a defined stat (accompanied by S2 and B).
Function	F1,2,4,8,16	5	Defines the function to be perform ed in the module.	Inhibit	I	ł	Disables teatures for duration of signal.
Timing				Clear	с	ł	Clears registers (accompanie by 52 and B).
Strobe I	51	1	Controls first phase of operation. (Dataway signals may change.)				-,,
			•	Non-Standard C	onnectors		
Strobe 2	52	1	Controls second phase. (Dataway signals may change.)	Free bus-lines	P1, P2	2	For specified uses .
Cata				Patch Contact	s P3-P5	3	For unspecified interconnection No Dataway lines .
							r
Write	W1-W24	24	Bring information to them odule.				
Read	R1-R24	24	Take information from the	Mandatory Pow	er Lines		
news	111121		module.	+24 V DC	+24	1	
				+6 V DC	+6	1	
				-6 V DC	-6	1	
Status				-24 VDC 0 V	-24	2	Power return.
Look-a‡Me	L	ł	indicates request for service (individual line to control station).	04	0	2	Powerre un.
			(nanasinic evana sarah).	Additional Powe	rtines		
Busy	в	1	Indicates that a Dataway				
			operation is in progress.	UON DO			Lines are reserved for the this work of personal sectors
			-	+12 V DC -12 V DC	+12 - 12	1	toilowing power supplies. Low current for indicators, ef
Response	a	1	Indicates status of feature selected by command.	Clean Earth	E	ł	Reference for circuits requirir clean earth.
				Reserved YH, Y2	2 2		Reserved for future allocation
Command Accepted	х	1	Indicates that module is able to perform action required by the	1999 1999 11, 18			

command.

CTANDADD DATAWAY IN AOD

Jul 7-17 2018, iThemba

Pin assignment

P N ALLOCATION AT NORMAL STATION (view from front of case)

(STATIONS 1-21)

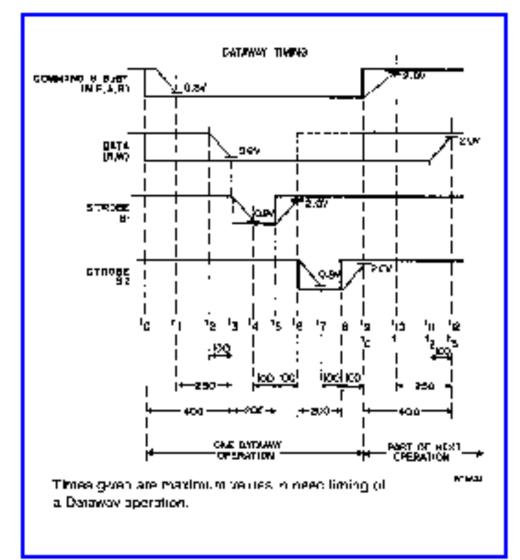
Bus line	Free Bus line	P1	в	Вьсу	Bus line
Bus line	Free Bus line	P2	F16	Function	Bus line
Individual pat	ch contact	P3	F8	Function	Bus line
Individual pat	ch contact	м	F4	Function	Bus line
Individual pat	ch contact	P5 -	F2	Function	Bus line
Bus line	Command Accepted	х	Fi	Function	Bus line
Bus line	Inhibit	I -	A8	Subaddress	Bus line
Bus line	Clear	с	A4	Subaddress	Bus line
Individual line	Station Number	N	A2 -	Subaddress	Bus line
Individual line	Look-at-Me	L	A4 -	Subaddress	Bus line
Bus line	Strobe 1	51	z	hitaize	Bus line
Bus line	Strobe 2	52	a	Response	Bus line
		W24	W23		
		W22	W21		
		W20	W19		
		W18	W17		
24 Write Bus	Lines	W16	Wis		
W1=LSB		W14	W13		
W24 ≓M5 8		W12	WH		
		W10	W9		
		W 8	W7		
		W6	WS.		
		W4	W3		
		W2	W1		
		R24	R23		
		R22	R21		
		R20	R 19		
		R 18	B17		
24 Read Bus	Lines	R 16	R 15		
R1=L58		R 14	R13		
R24 ≓M 5B		R12	R11		
		R 10	R9		
		R8	87		
		R6	RS		
		R4	R3		
		R2	R1		
	-12 V DC	-12	-24	-24 V DC	
		NC	-6	-6VDC	
		NC	NC	0,400	
Power	Auxiliary-6 V supply		E	Clean Earth	Power
Bus lines	-12 VDC	+12	-	424 VDC	roma Bus lines
	- 12 VLC Auxiliary +6 V supply			+6VDC	ous nines
	OV/Power Return)	12 0	+0 0	OV/Power R	ot mo
	ov(roma kadinj	0	0	ov (romer k	e on ij

Normal Module station

PIN ALLOCATION AT CONTROL STATION					
	(5)	IA TIOI	3		
Individual	patch contact	М	в	Вьсу	Bus line
Individual	patch contact	P2	F16	Function	Bus line
Individual	patch contact	P3	F8	Function	Bus line
Individual	patch contact	м	F4	Function	Bus line
Individual	patch contact	PS	F2	Function	Bus line
Bus line	Command Accepted	х	F1	Function	Bus line
Bus line	Inhibit	I.	A 8	Subaddress	
Bus line	Clear	С	M	Subaddress	Bus line
Individual	patch contact	P6	A2	Subaddress	Bus line
	patch contact	P7	A1	Subaddress	
	Strobe 1	51	z	hitaize	Bus line
Bus line	Strobe 2	5 2	a	Response	Bus line
		L24			
		L23			
		L22			
		L21			
		L20			
		L 19			
		L 18			
		L 17			
		L 16			
		L 15			
		L 14			
		L 13			
	ual Look-at-Me Lines	L 12			
Lintom S	tation 1, etc.	L11			
		L 10		N1 to Station	il,etc.
		L9	N9		
		L8	N8		
		17	N7		
		L6	N6		
		LS	NS		
		L4	N4		
		L3 L2	N3 N2		
		12	N2 N1		
	- 12 V DC	-12	N1 -24	-24 V DC	
	-12 V DC	-12 NC	-24 -6	-24 VDC -6 VDC	
		NC	NC	-0.400	
Power	Auxiliary - 6 V supply	YE		Clean Earth	Power
	-12 V DC		+24	424 VIDC	Bus line
200 10 10	Auxiliary +6 V supply	Y2	тел +6	+6 V DC	2-22 m PC
	OV(Power Return)	0	0	OV/Power R	et mó
	(rona nearly	•	-		

Z.A.LIU Intl. School on RT System 2018

Control


Module

station

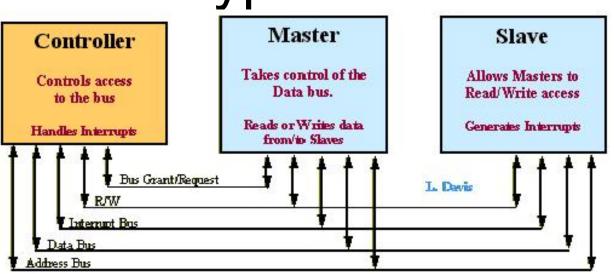
Table 3a

Timing and data rate

- Data Cycle: 1us
- Data width
 :24b=3B
- Rate:24bps=3Bps

Fastbus

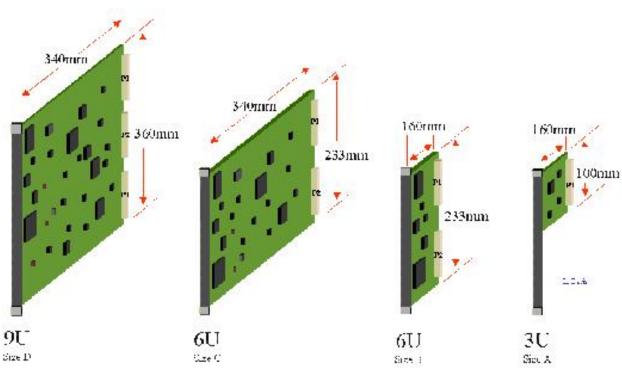
 You should know this even I skip this as rarely seen nowadays


VMEbus

- VMEbus(Versa Module Europa bus)
 - a computer bus standard, originally fo the Motorola 68000 CPUs,
 - standardized by the <u>IEC</u> as <u>ANSI</u>
 /<u>IEEE</u> 1014-1987
- Crate:
 - 1-21 stations
 - Controller on 1st
- Modules
 - 3U,6U and 9U
- Power:
 - VME32: +5volt,and +/-12volt supply;
 VME64a 3.3volt supply

Module types

- Controller
- Master
- Slave


Evolution of VME							
Topology	Year	Bus Cycle	Maximum Speed (Mbyte / Sec)				
VMEbus32 Parallel Bus Rev A	1981	<u>BLT</u>	40				
VMEbus IEEE-1014	1987	<u>BLT</u>	40				
VME64	1994	MBLT	80				
VME64x	1997	2eVME	160				
<u>VME320</u>	1997	2eSST	320				

Jul 7-17 2018, iThemba

Module types

- Types
 - 3U
 - 160×100mm
 - P1
 - 6U
 - 160×233mm
 - 340×233mm
 - P1 + P2
 - 9U
 - 340×366mm
 - 400×366mm
 - P1+P2+P3
- Data/Addr space:
 - 8/16/32/64b

Jul 7-17 2018,iThemba

VMEbus and VME64 P1 Connectors

Jul 7-17 2018, iThemba

VMEbus and VME64 P2 Connectors

Signal Name Row C

Pin #

1 2 3

 \circ

 \circ

 \circ

 \odot

 \odot

 \odot

 \mathbf{O}^{1}

Ο.

 \odot

 \circ

 \odot

Ο,

 \odot

 \odot

 \bigcirc

0

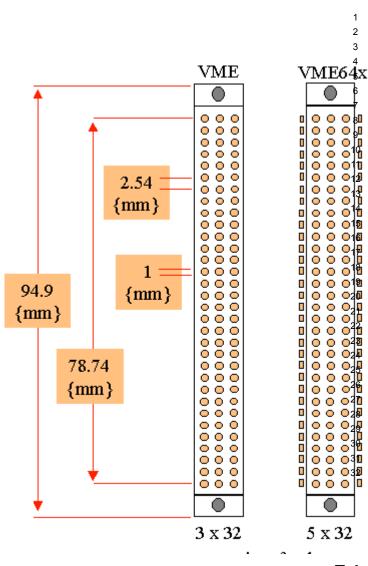
 \bigcirc

 $^{\circ}$

 \odot

 \circ

030

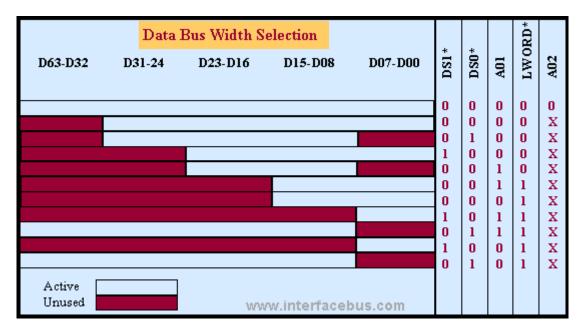

Oda

⊇do

016

○12

្រា

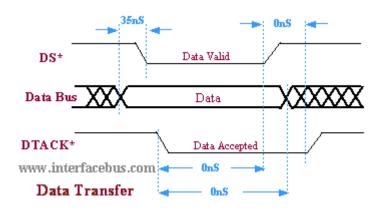


Signal Name	Signal Name
Row A	Row B
	+5v
	GND
	RETRY
	A24
	A25
	A26
	A27
	A28
	A29
	A30
	A31
	GND
	+5v
	D16
	D17
User Defined	D18
User Denned	D19
	D20
	D21
	D22
	D23
	GND
	D24
	D25
	D26
	D27
	D28
	D29
	D30
	D31
	GND
	+5V

	VME64x P2 Connector							
	Pin	Signal Name	Signal Name	Signal Name	Signal Name	Signal Nam		
		Row z	Row A	Row B	Row C	Row d		
	1	UsrDef	UsrDef	+5V	UsrDef	UsrDef		
	2	GND	UsrDef	GND	UsrDef	UsrDef		
	3	UsrDef	UsrDef	RETRY	UsrDef	UsrDef		
	4	GND	UsrDef	A24	UstDef	UsrDef		
	5	UsrDef	UsrDef	A25	UsrDef	UsrDef		
	6	GND	UsrDef	A26	UsrDef	UsrDef		
	7	UsrDef	UstrDef	A27	UsrDef	UsrDef		
	8	GND	UsrDef	A28	UsrDef	UsrDef		
	9	UsrDef	UsrDef	A29	UsrDef	UsrDef		
	10	GND	UsrDef	A30	UsrDef	UsrDef		
fined	11	UsrDef	UsrDef	A31	UsrDef	UsrDef		
	12	GND	UsrDef	GND	UsrDef	UsrDef		
	13	UsrDef	UsrDef	+5∀	UsrDef	UsrDef		
14 15 16	14	GND	UsrDef	D16	UsrDef	UsrDef		
	15	UsrDef	UsrDef	D17	UsrDef	UsrDef		
	16	GND	UsrDef	D18	UsrDef	UsrDef		
	17	UsrDef	UsrDef	D19	UsrDef	UsrDef		
	18	GND	UsrDef	D20	UsrDef	UsrDef		
	19	UsrDef	UsrDef	D21	UsrDef	UsrDef		
	20	GND	UsrDef	D22	UsrDef	UsrDef		
	21	UsrDef	UsrDef	D23	UsrDef	UsrDef		
	22	GND	UsrDef	GND	UsrDef	UsrDef		
	23	UsrDef	UsrDef	D24	UsrDef	UsrDef		
24 25	24	GND	UsrDef	D25	UsrDef	UsrDef		
	25	UsrDef	UsrDef	D26	UsrDef	UsrDef		
	26	GND	UsrDef	D27	UsrDef	UsrDef		
27	27	UsrDef	UsrDef	D28	UsrDef	UsrDef		
	28	GND	UsrDef	D29	UsrDef	UsrDef		
29 30 31	29	UsrDef	UsrDef	D30	UsrDef	UsrDef		
	30	GND	UsrDef	D31	UsrDef	UsrDef		
	31	UsrDef	UsrDef	GND	UsrDef	GND		
	32	GND	UsrDef	+5v	UsrDef	V PC		

Data Width and Adr. Width

- Data Width:
 8-64bits
- Addr Width
 8-64bits



Timing

0nS

(XXXXX

- Strobe
- As
- DTACK
- Block

35nS

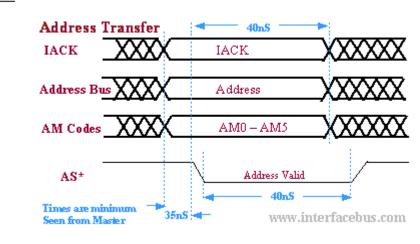
DS*

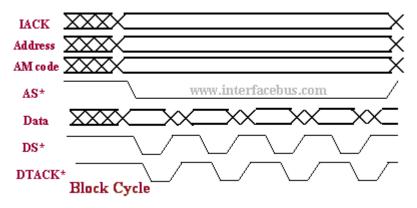
DTACK*

Data Bus XXX

www.interfacebus.com

Data Transfer


Data Valid


Data

0nS

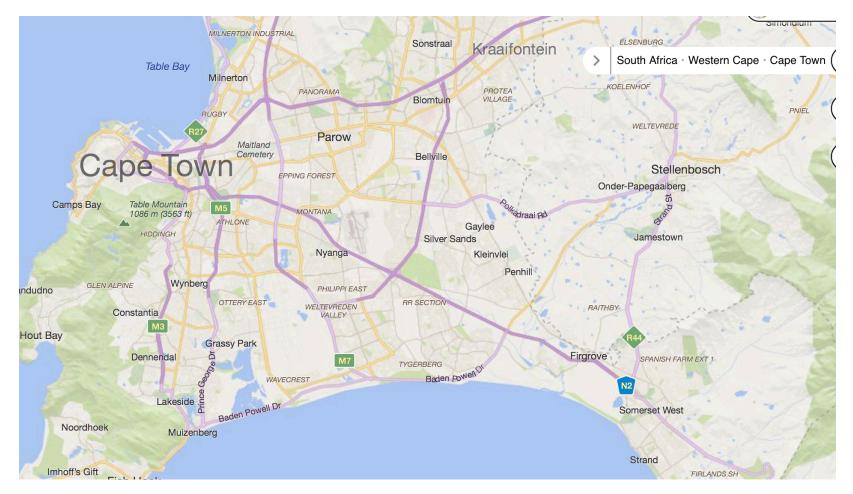
0nS

Data Accepted

Jul 7-17 2018,iThemba

New Standard

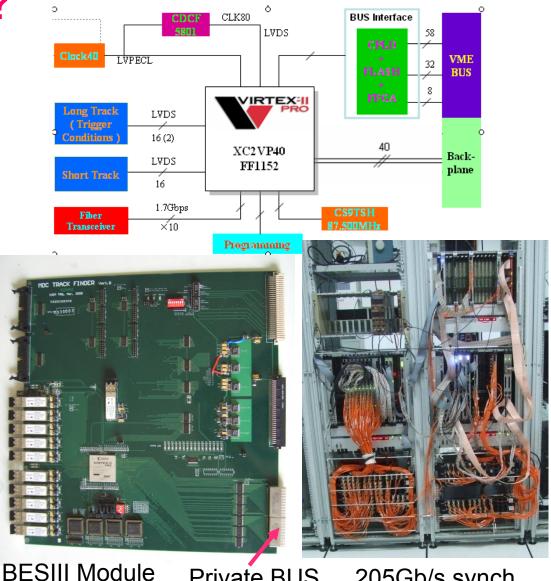
Jul 7-17 2018,iThemba


Problem with BUSed crate?

• Beijing Traffic. The Rings(BUSs) make problem!

Good solution like Cape Town Routes

Point to point direct or via limited routing



Jul 7-17 2018,iThemba

We did meet BUS Problems! New

Standard again?

- VME (2003/4) Not satisfactory
 - Higher samples/s
 - Powerful FPGA
 - >3Gbps transmission
 - reconfiguration
- Problem
 - Bus bandwidth too low
 - No serial interconnection
 - No Intelligence
- New standard is needed

Z.A.LIU Intl. School on RT System 2018

205Gb/s synch trans. In BESIII 44

Jul 7-17 2018, iThemba

8,iThemba Z.A.

Pre-xTCA workshops

- At same time, ongoing International Linear Collider, XFEL workshops
 - 2004 ATCA, MTCA intro paper NSS-MIC, Rome
 - 2005 ILC Snowmass Conference + Availability
 Workshop @ Grömitz on ATCA for *high availability*
 - 2007 1st ATCA workshop, IEEE RT2007 Fermilab
 - 2008 2nd ATCA workshop, IEEE NSS-MIC
 Dresden

What is the new standard?

- ATCA
 - Advantages
 - High speedIO and 10Gb/s interconnections
 - HA ~99.999%
 - IP management
- MicroTCA (MTCA)
 - Advantages of ATCA
 - Half height, compact system

Should we adopt industrial standard again as VME?

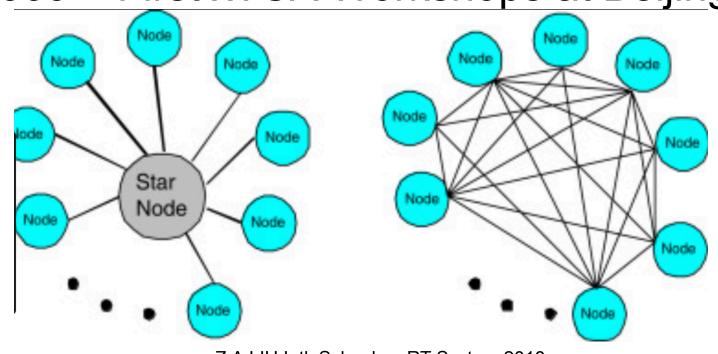
Good idea!

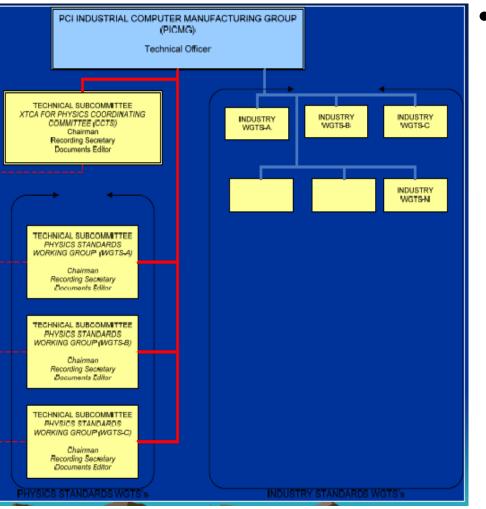
- AdvancedMC (AMC)
 - Modular design

Jul 7-17 2018,iThemba

Why xTCA for Physics

- ATCA shortages
 - Height 8U, not suitable for machine control
 - No rear transition board yet
 - No control signals >>>
- MTCA shortages
 - No rear transition board yet (HA)
 - No control sysnals …
- AMC shortages
 - Inter connection?
 - Control signals?
 - pin signal difinition


Compute Node designed by IHEP


New standard: xTCA for Physics

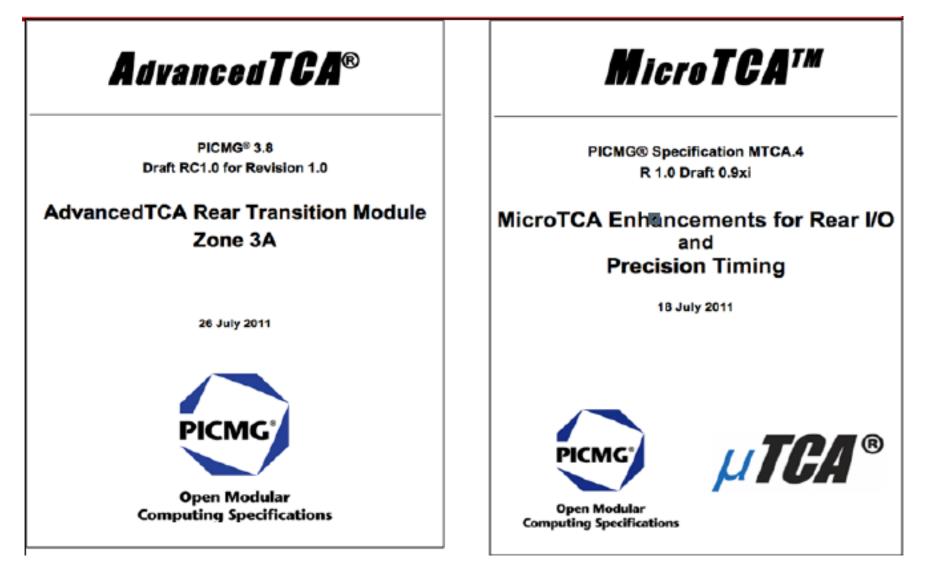
It is possible to have a direct link!

- YES! That ATCA/xTCA
 - 2009 –xTCA for Physics subcommittees formed under PICMG open source telecom standards ~200 vendors
- 2009 First xTCA Workshops at Beijing

xTCA for Physics CCTS

- Founded Mar. 10 2009
 under PICMG
 - IHEP, SLAC, FNAL, DESY
 - >40 companies
 - Officers
 - Chair: SLAC Ray Larsen
 - Secretory: TriCircle Augustus Lowell
 - Doc Editor: IHEP Z.A.Liu

xTCA features


- ATCA & MicroTCA Unique Features
 - ATCA board, shelf is first modular computer architecture with completely serial multi-Gbps backplane
 - Serial ports are bidirectional pairs in star or mesh topology
 - Serial bit rate of one port at 2.5 Gbps exceeds data rate of parallel bus backplanes, e.g. VME 32/64 bit word at 10 MHz => 320/640 Mbps (*now 2.5G*=>10G=> 40 G)
 - Architecture based on FPGAs with imbedded SERDES Tx-Rx, LVDS balanced logic
 - High processing power of single ATCA card (Blade)
 - MCH enables module to any other module communication
 - Special low jitter switches for clocks
 - Dual redundancy MCH, Processor, Power Units optional

Jul 7-17 2018,iThemba

xTCA Standards – Hardware Extensions

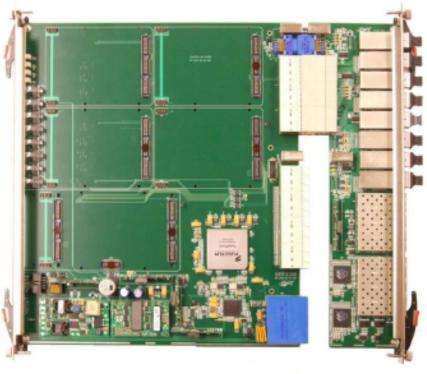
- Rear Transition Modules
 - ATCA Card => PICMG 3.8
 - Zone 3 area defined but interface left to discretion of vendors
 - Severely limits interoperability of vendor modules
 - Physics developed ATCA Standard RTM Interface
 - Fabric, power, JTAG, IPMI, managed from ATCA
 - MicroTCA Double-Wide Card => MTCA.4
 - MTCA.0 defined double-wide AMC but not Zone 3 or RTM mechanics
 - MTCA.4 developed new crate, RTM, interface, cooling
 - Fabric, power, JTAG, IPMI, managed from AMC
 - RTM hot-swappable

xTCA Physics Extensions to PICMG Standards

xTCA Extn: Physics Design Guide ATCA

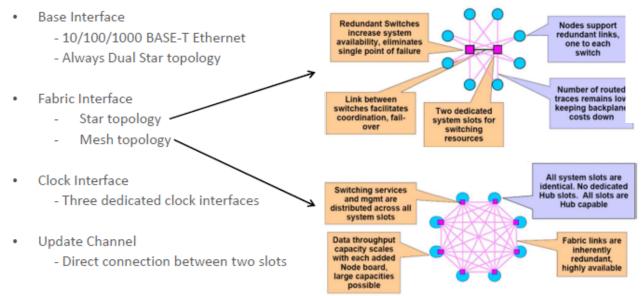
Physics Design Guide for Clocks, Gates & Triggers in Instrumentation

> PDG.0 R0.8 19 March 2013



xTCA further Extension: MTCA.4.1 for RTM backplane

Jul 7-17 2018, iThemba



ATCA

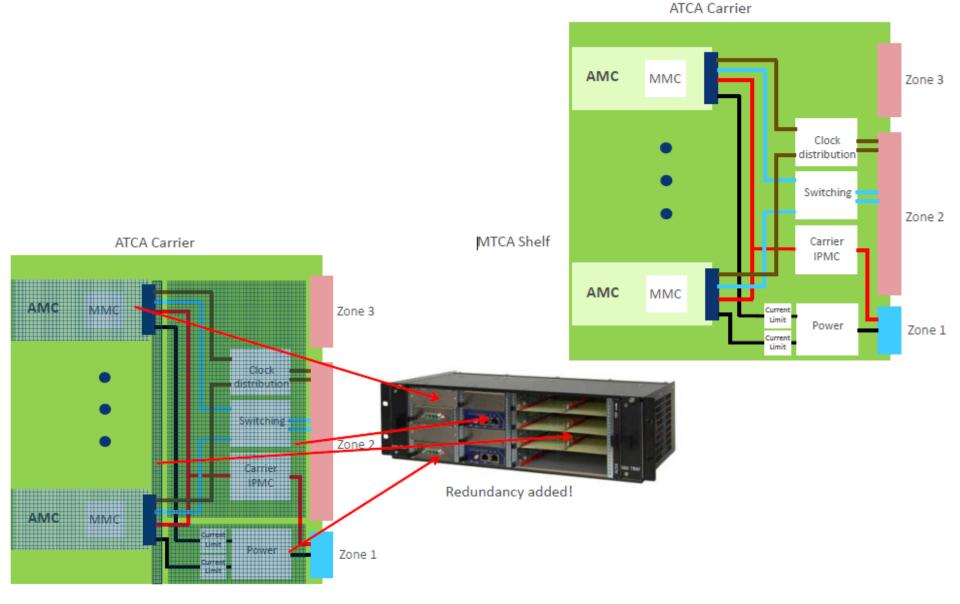
ATCA Interfaces

Zone 2 Backplane Interfaces

Point to Point Link speed: 10Gbps

AMC/ATCA/MTCA.0

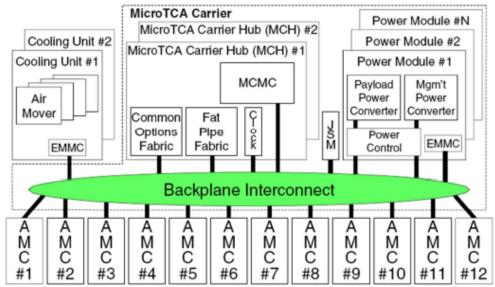
- AMC: Advanced Mezzanine
 Card
 - Initially developed as function extension for ATCA Boards
 - Fully integrated into the ATCA IPMI management structure
- Plugged into a so called ATCA Carrier
- Hot Swap capability


MTCA

ATCA

Jul 7-17 2018,iThemba

ATCA Carrier/MTCA.0

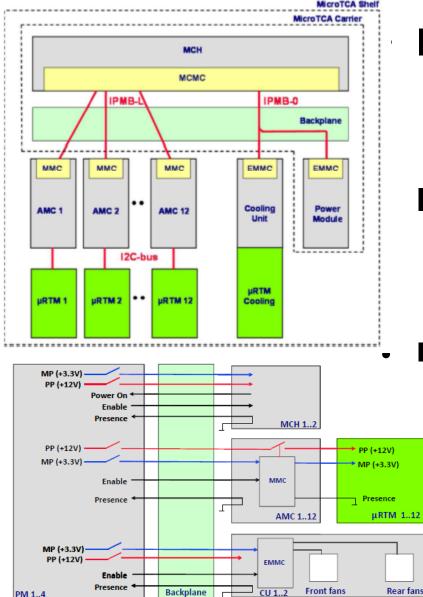


Jul 7-17 2018, iThemba

MTCA.0

Terms and Acronyms

- MCH MicroTCA Carrier Hub
 - · This is the complete module you can buy from a vendor
- MCMC MicroTCA Carrier Management Controller
 - · This is the physical IPMI controller on the MCH
- MMC Module Management Controller
 - · This is the physical IPMI controller on an AMC
- EMMC Enhanced MicroTCA Carrier Management Controller
 - This is the physical IPMI controller on a Cooling Unit and on Power Module
- IPMB-0 Intelligent Platform Management Bus 0
 - Logical IPMB, physically divided into redundant IPMB-A and IPMB-B
- IPMB-L IPMB-Local
 - IPMI link between MCH and AMCs



Jul 7-17 2018,iThemba

Z.A.LIU Intl. School on RT System 2018

MicroTCA block diagram

Management extensions in MTCA.4

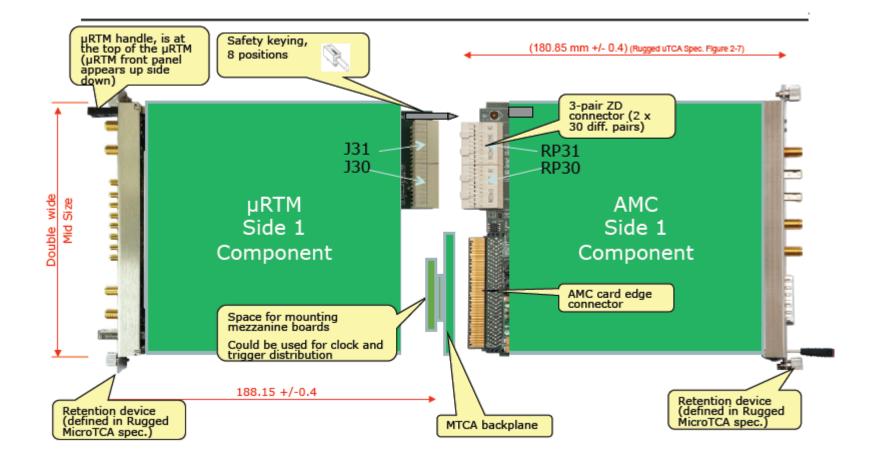
Jul 7-17 2018.iThemba

IPMB-L

- Connects the MCMC on the MCH to the MMC on the AMC Modules
- Radial architecture

IPMB-0

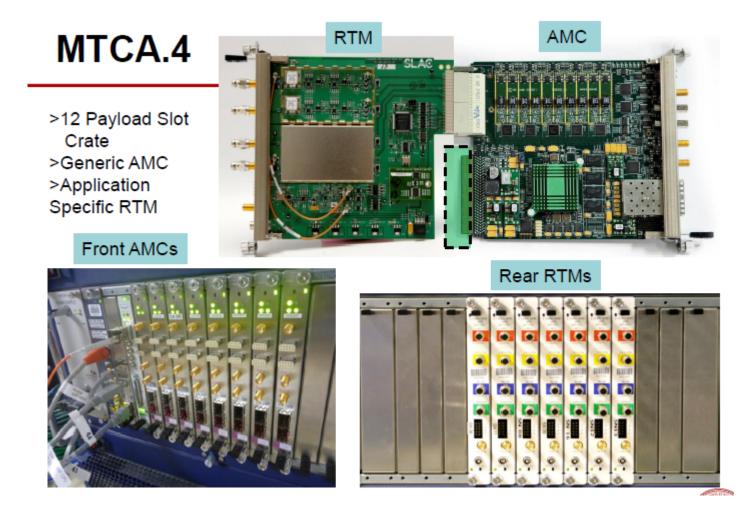
- Connects the MCMC on the MCH to the EMMC on the PM and CU
- Bused architecture

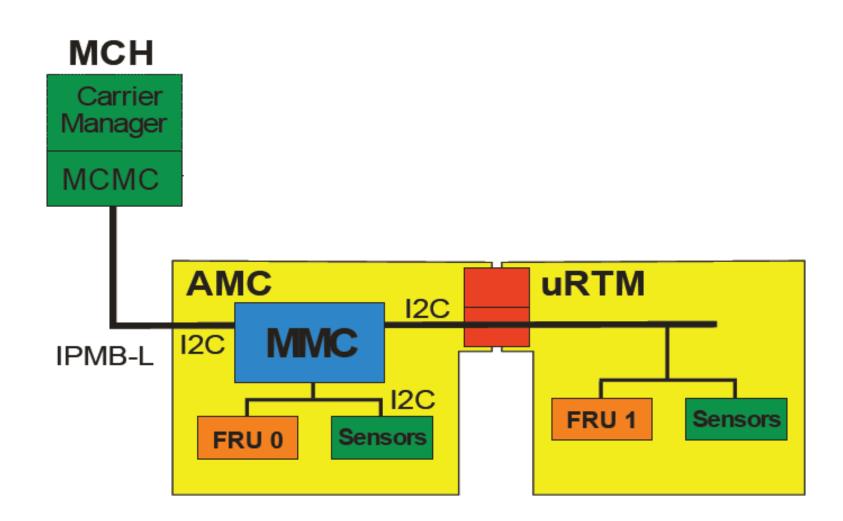

I2C-Bus

- Connects the AMC to the μ RTM
 - The μ RTM is treated as managed
- FRU of the AMC

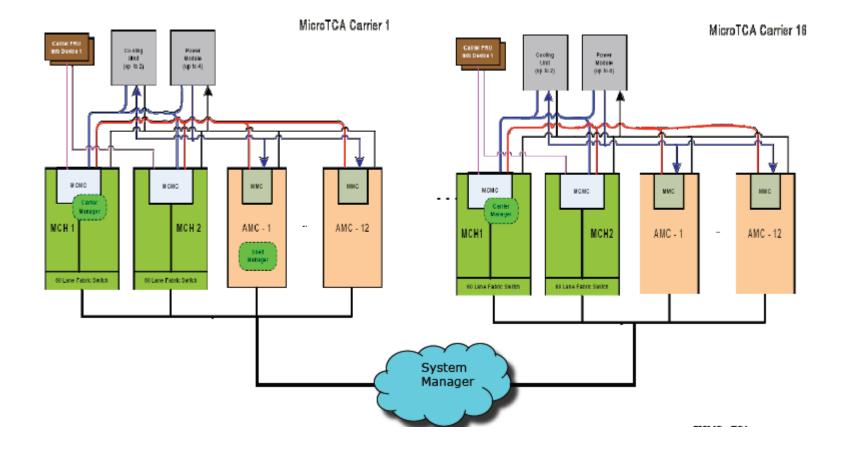
Z.A.LIU Intl. School on RT System 2018

59


MTCA.4 (xTCA for Physics) AMC and uRTM


Jul 7-17 2018, iThemba

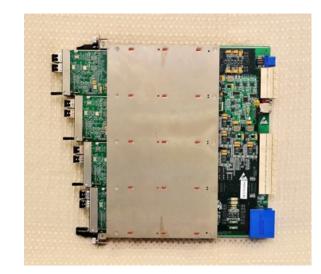
A lot progress in hardware development


• At DESY, SLAC, IHEP (see later)


MTCA.4 – Hardware Management

MCH Functionality:Management

Examples at TrigLab/IHEP AMC/ATCA



for PANDA

Examples at TrigLab/IHEP

Ľ

BelleII/Belle2link

BelleII/
 PXD/DAQ

Examples at TrigLab/IHEP

- CMS Trigger Upgrade
 - Inputs:
 - 10 Gbps/ch, 36 Chs
 - Outputs:
 - 10Gbps, 12 chs
 - Concentration, PreProcessing and Fanout

Summary

- Signal Levels and BUS standards are introduced
- Please refer to PICMG 3.8, MTCA.4, PDG .0 MTCA.4.1 and some more to be developed.
- Standardization is not only in Physics Experiment, but anywhere as you see.
- Start following the standard will save you a lot.

Backups

Jul 7-17 2018,iThemba