Particle therapy Critical issues and Challenges

P. Le Dû

patrickledu@me.com

IFMP_CORFU_17

Nov 17

History of Hadrontherapy

1946: R. Wilson first proposed a possible therapeutic application of proton and ion beams

1954: first patient treated with deuteron and helium beams at Lawrence Berkeley Laboratory (LBL)

Radiological Use of Fast Protons

ROBERT R. WILSON Research Laboratory of Physics, Harvard University Cambridge, Massachusetts

EXCEPT FOR electrons, the particles which have been accelerated to high energies by machines such as cyclotrons or Van de Graaff generators have not been directly used therapeutically. Rather, the neutrons, gamma rays, or artificial radioactivities produced in various reactions of the primary particles have been applied to medical problems. This has, in large part, been due to the very short penetration in tissue of protons, deuterons per centimeter of path, or specific ionization, and this varies almost inversely with the energy of the proton. Thus the specific ionization or dose is many times less where the proton enters the tissue at high energy than it is in the last centimeter of the path where the ion is brought to rest.

These properties make it possible to irradiate intensely a strictly localized region within the body, with but little skin dose. It will be easy to produce well

R. Radiologial use of fast protons, Radiology 47, 487-491, 1946

Treating Cancer

Radiotherapy X

- Local irradiation \rightarrow 100 Gy = 90 % of sterilization
- Frequent treatment (2/3 of cases).
- Allow good quality of life and tolerance
- non invasive, itinerant and without important physical effects.
- Cheap (< 10%) of the cancer budget (France)
- Essentially X rays (Linear accelerators) & photons (curietherapy)
- Efficient treatment but

Why Radiotherapy X is NOT 100 % efficient?

- Complication < 5 %
- Tolerance of saine tissue is the limiting factor
 Close to Organ at Risk
- Failures due to radioresistant tumors!
- Second cancer 30 years after Radio Therapy (from recent statistics)

Adult : 1.1Chidren : 6

→Particle therapy around 15% of the cases

Why use Hadrons for Therapy?

[Dose Distribution Curve]

Most dose is deposited in the sharp "Bragg Peak", with no dose beyond

- Escalate the dose in the tumor
- Reduction of dose in surrounding normal tissue

The advantage of Protons

How to irradiate the tumor ?

Spread Bragg peak

\blacksquare Treatment in depth \rightarrow combine

- Energy modulation → Scan the energy to make a Spread Out Bragg Peak (SOBP) that spans the tumor
- Intensity modulation

TOMSK # 3

Hadrontherapy principle (C ion)

Electron : most of the energy released in first cm Photon : Large energy loss all over the path (X rays therapy) C ions : heavy charged particle : most of the energy lost at the end of path (Braggs peak) Nov 17 IFMP_CORFU_17 8

Protons and Carbon in Comparison

Compared to the lighter protons, carbon ions produce pencil beams with a sharper peak and less penumbra

Carbons have, however, a dose tail due to fragmentation

Summary :BIOLOGICAL BASICS Protons vs photons

TC image: dose distribution calculated for proton beams and X-rays.

Clinical advantages : ✓ treatment of deepseated, irregular shaped and radioresistant tumors: small probability of side effects in normal tissue (critical structrure); proton therapy suitable for pediatric diseases (reduced toxicity).

Comparison IMRT-Protons

Comparing Proton and conventional RT

Conventional Radiotherapy: Important dose outside the tumor

IMRT = Intensity Modulated Radio Therapy still non negligable dose outside the tumor TOMSK # 3

Scattering technique Low dose outside

Estimated absolute yearly rate (%) of 2nd cancer after radiotherapy

Tumor site	X-rays	IMXT	Protons
Oesoph. & stomach	0.15	0.11	0.00
Colon	0.15	0.07	0.00
Breast	0.00	0.00	0.00
Lung	0.07	0.07	0.01
Thyroid	0.18	0.06	0.00
Bone & soft tissue	0.03	0.02	0.01
Leukemia	0.07	0.05	0.03
All	0.75	0.43	0.05
Compared to X-rays	1	0.6	0.07
	IFMP CORFU 17		

Proton vs light ion

Proton Therapy is growing rapidly!

Iontherapy around the world

Need a bigger Accelerator → : Synchrotron (70-300 Mev/nucleon) → more complex and expensive (x5?)
 Initiator: Berkeley (1954-1993) - 2500 patients
 Experimental : GSI (Germany- 120 patients
 Routine : Chiba (Japan) → 1000 patients/year
 New facilities: HIT (Heidelberg), Pavia (TERA)
 Vienna (MED- AUSTRON), Caen-Ganil (F)

The IBA C400 Medical Ion Cyclotron Prototype for ARCADE (Caen, France)

Efficacity of ion therapy

73M Lt. Nasal Cavity Malignant Melanoma T4N0M0 57.6GyE/16fr/4w

Before

2 months after RT

GSI- W. Enghardt courtesy

Particle therapy environment

Machine Beam delivery Photon detectors CT imaging Motion sensor

Courtesy Katia Parodi 18

Particle therapy workflow

• Step 1 \rightarrow Treatment planning after CT scan

- Dose to be distributed
- MC simulation
- Give information to the machine

Step 2 → Treatment
- 10-20 fractions (tumour irradiation)

20

Step 3 rianglet verification using CT scan

Overdosage in normal tissue IFMP_CORFU_17

Nov 17

What are the critical issues & challenges?

This is NOT a 'simple target' but a human body

 Treatment and quality assurance techniques of conventional radiotherapy not adequat for particle therapy

A complex procedure for the 'treatment planning'
 How to be sure that the dose is delivered at the right place (tumour)?

Particle beam are error sensitive
Displaced organ & overdose
Moving organ in some case

What is the dose deposited ? How to verify the treatment?

The two 'simultaneous' challenges

 \blacksquare Reducing error means \rightarrow Real Time imaging - 3D in vivo dosimetry and tomography Use fragments of beam projectile reactions in the biological matter emerging from the tumor target volume Verification using Computed Tomography/Radiography: - CT imaging in charged Particle therapy is needed for: Target volume definition (anatomical boundaries with additional information from multimodality imaging (CT/MRI/PET studies) Dose and range calculation Patient alignment verification But today these process are made at different moment and place

IFMP_CORFU_17

However the photon energy different from standard medical (Anger) SPECT camera

Nov 17

IFMP_CORFU_17

Relation between dose and β+ activities23

Single photon: in vivo Compton Camera

(A.Muller,TU Dresden)

Scintillating-fibre Hodoscope + MA PMT RGW & al. IPN Lyon

IFMP_CORFU_17

Required devices:

- Hodoscope (x,y,t)
- Scatterer (x,y,E)
- Absorber (x,y,z,E,t)

CZT-strip+LYSO-block Detector F.Fiedler et al. Dresden 24

Exemple of Single photon: in vivo SPECT

Present examples: in beam PET

¹H-therapy at the National Cancer Center, Kashiwa, Japan

In-beam PET scanner at ¹²C-therapy unit at GSI

 Large beam background
 No Real time capability
 Low signal to noise ratio IFMP_CORFU_17

Positron Emission Tomograph ...some Hardware

In-beam: GSI Darmstadt Off-line: MGH Boston, HIT Heidelberg

more...

- HIMAC, Chiba
- NCC, Kashiwa
- HIBMC, Hyogo
- MDACC, Houston
- Univ. of Florida

© In-vivo range measurements

😕 In-vivo dosimetry & real-time image guidance

Ongoing developments (TOF-PET, PET+CT) reduce unfavorable in-beam random coincidences/background (by 20-30%)

Mature technology

Courtesy W. Enghardt / OncoRay

IFMP_CORFU_17

Nov 27

In vivo PET recent developments

room at MGH, ready to scan

MGH

Courtesy T. Yamaya, NIRS Japan Presented at IEEE MIC 2014

A long termdream The Proton CT

X ray & CT after each fraction ?

X ray is agressive --> see table below about estimated absolute rate of (%) of 2nd cancer

- 30-50 mGy/scan
- 30 fraction daily --> Total : 0,6 -3 Gy

Tumor site	X-rays	IMXT	Protons
Oesoph. & stomach	0.15	0.11	0.00
Colon	0.15	0.07	0.00
Breast	0.00	0.00	0.00
Lung	0.07	0.07	0.01
Thyroid	0.18	0.06	0.00
Bone & soft tissue	0.03	0.02	0.01
Leukemia	0.07	0.05	0.03
All	0.75	0.43	0.05
Compared to X-rays	1	0.6	0.07

Basics of particle imaging

The particle (proton/ion) go through the patient at high energy

- Advantages:
 - Decrease the uncertainties \rightarrow better dose accuracy
 - Reduce the dose delivered to the patient

- correctly reconstruct the path of the proton

Radiograph of a phantom Uwe Schneider PhD thesis (1978,PSI) A tribute to G.Charpak

Nov 17

Proton CT: 1) replaces X-ray absorption with proton energy loss

2) reconstruct mass density distribution instead of electron distribution

IFMP_CORFU_17

The Basics Ingredients

- Beam
 - Measurement (position and direction) particle per particle
- Photon detectors
 - In beam selection of
 - single photon \rightarrow compton camera (SPECT)
 - two photons → in Beam TOF-PET
- Proton (ion) CT
 - Measure the energy (position, energy and time) of the diffracted particle in an imaging calorimeter
- The Global aspect!
 - Event by event selection particle like in a nuclear & HEP physics experiment.
 - Deatimeless electronics
 - Real time acquisition and reconstruction

Need all HEP modern instrumentation tools & technique

Schematic block diagram of an integrated concept of radiography / therapy system

Present examples : PCT

Different prototypes are proposed based on the same "philosophy" (Reinhard Schulte et Al.) BNL, Santa Cruz, Loma Linda, Stony Brook layout (2003)

Fig. 1. The Proton Range Radiography setup.

AQUA-CNAO Scint/MPPC/GEM

NIU/FNAL Scint/WLS+SiPM GPU farm

■ Ion Transmission Imaging → See talk from B.Voss

IFMP_CORFU_17

Primary-Ion Radiography / Tomography

rotating table

Water equivalent thickness

Water equivalent path length

Transmission ion imaging prior to or inbetween FMR FUis feasible NOV 35

Final Conclusions

There is a lot to do Particularly for students

References Proceedings of NSS-MIC conferences

Transaction on Nuclear Sciences (TNS) http://www.nss-mic.org/2016/NSSMain.asp

Thanks to

W. Enghardt (Dresden) U.Amaldi (Tera) H.Hoffman (CERN) K.Parodi (Munich TU) T.Yamaya (Chiba, JP) Pr. J.P. Gerard (Nice) Etoile Collaboration Lyon) R. Schulte (Loma Linda)

Thank you for your attention

IFMP_CORFU_17

Why particle CT ?

The role of CT imaging in charged Particle therapy is needed for:

- Target volume definition (anatomical boundaries with additional information from fused MRI and PET studies
- Dose and range calculation
- Patient alignment verification

The protons go through the patient Higher energy, small dose

