Particle therapy Critical issues and Challenges

P. Le Dû

patrickledu@me.com

IFMP_CORFU_17

Nov 17

History of Hadrontherapy

1946: R. Wilson first proposed a possible therapeutic application of proton and ion beams

1954: first patient treated with deuteron and helium beams at Lawrence Berkeley Laboratory (LBL)

Radiological Use of Fast Protons

ROBERT R. WILSON Research Laboratory of Physics, Harvard University Cambridge, Massachusetts

EXCEPT FOR electrons, the particles energies by machines such as cyclotrons or Van de Graaff generators have not been directly used therapeutically. Rather, the neutrons, gamma rays, or artificial radioactivities produced in various reactions of the primary particles have been applied to medical problems. This has, in large part, been due to the very short penetration in tissue of protons, deuterons

per centimeter of path, or specific ionization, and this varies almost inversely with the energy of the proton. Thus the specific ionization or dose is many times less where the proton enters the tissue at high energy than it is in the last centimeter of the path where the ion is brought to rest.

These properties make it possible to irradiate intensely a strictly localized region within the body, with but little skin dose It will be easy to produce well

TOMSK # 3 2 *R. Radiologial use of fast protons, Radiology 47, 487-491, 1946*

Treating Cancer

Radiotherapy X

- **Local irradiation 100 Gy = 90 % of sterilization**
- **Frequent treatment (2/3 of cases).**
- **Allow good quality of life and tolerance**
- **non invasive, itinerant and without important physical effects.**
- **Cheap (< 10%) of the cancer budget (France)**
- **Essentially X rays (Linear accelerators) & photons (curietherapy)**
- **Efficient treatment but ….**

Why Radiotherapy X is NOT 100 % efficient?

- Complication < 5 % – Tolerance of saine tissue is the limiting factor **MClose to Organ at Risk**
	- Failures due to radioresistant tumors!
	- Second cancer 30 years after Radio Therapy (from recent statistics)

 \blacksquare Adult : 1.1

■Chidren : 6 → Particle therapy around 15%of the cases

Why use Hadrons for Therapy?

[Dose Distribution Curve] Absorbed Relative Dose (%) **Bragg peak** 100 X rayi 80 Gamma ray 60 40 **Proton** 20 $\mathbf 0$ Л Heavy particle
beam(Carbon) Ś, **Body surface** 10 15 Depth from body surface (cm) Tumor site

Most dose is deposited in the sharp "Bragg Peak", with no dose beyond

- **Escalate the dose** in the tumor
- Reduction of dose in surrounding normal tissue

The advantage of Protons

How to irradiate the tumor ?

Spread Bragg peak

Treatment in depth \rightarrow combine

- $-$ Energy modulation \rightarrow Scan the energy to make a Spread Out Bragg Peak (SOBP) that spans the tumor
- Intensity modulation

Hadrontherapy principle (C ion)

Nov 17 Nov 17 November 2012 19:00 November 2013 19:00 November 2013 19:00 November 2014 19:00 November 2014 19 Electron : most of the energy released in first cm Photon : Large energy loss all over the path (X rays therapy) C ions : heavy charged particle : most of the energy lost at the end of path (Braggs peak)

Protons and Carbon in Comparison

■ Compared to the lighter protons,carbon ions produce pencil beams with a sharper peak and less penumbra

■ Carbons have, however, a dose tail due to fragmentation

Summary :BIOLOGICAL BASICS Protons vs photons

(reduced toxicity). TC image: dose distribution calculated for proton beams and X-rays.

Clinical advantages : treatment of deepseated, irregular shaped and radioresistant tumors; small probability of side effects in normal tissue (critical structrure); proton therapy suitable for pediatric diseases

Comparison IMRT-Protons

Comparing Proton and conventional RT

Conventional Radiotherapy: Important dose outside the tumor

 $TOMSK # 3$ 12 **IMRT = Intensity Modulated Radio Therapy: still non negligable dose outside the tumor**

Scattering technique : Low dose outside

Estimated absolute yearly rate (%) of 2nd cancer after radiotherapy

Proton vs light ion

Proton Therapy is growing rapidly!

Iontherapy around the world

 \Box Need a bigger Accelerator \rightarrow : Synchrotron (70-300 Mev/nucleon) \rightarrow more complex and expensive (\times 5?) Initiator: Berkeley (1954-1993) - 2500 patients Experimental : GSI (Germany- 120 patients Routine: Chiba (Japan) \rightarrow 1000 patients/year New facilities: HIT (Heidelberg), Pavia (TERA) Vienna (MED- AUSTRON), Caen-Ganil (F)

The IBA C400 Medical Ion Cyclotron Prototype for ARCADE (Caen, France)

Efficacity of ion therapy

73M Lt. Nasal Cavity Malignant Melanoma T4N0M0 57.6GyE/16fr/4w

Before 2 months after RT

GSI- W. Enghardt courtesy

Particle therapy environment

Machine Beam delivery Photon detectors CT imaging Notion sensor

Nov 17 If the state of the state of the state of the CORFU_17 If the state of the state of the state of the st *Courtesy Katia Parodi*

Particle therapy workflow

■ Step 1 → Treatment planning after CT scan

- **Dose to be distributed**
- **MC simulation**
- **Give information to the machine**

Step 2 Treatment – **10-20 fractions (tumour irradiation)**

■ *Step* 3 → verification *using* CT *scan*

Overdosage in normal tissue

Nov 17

What are the critical issues & challenges?

This is NOT a 'simple target' but a human body

– Treatment and quality assurance techniques of conventional radiotherapy not adequat for particle therapy

A complex procedure for the 'treatment planning' \blacksquare How to be sure that the dose is delivered at the right place (tumour) ?

– Particle beam are error sensitive **Displaced organ & overdose Moving organ in some case**

What is the dose deposited ? How to verify the treatment?

The two 'simultaneous' challenges

Reducing error means \rightarrow Real Time imaging – 3D in vivo dosimetry and tomography *Use fragments of beam projectile reactions in the biological matter emerging from the tumor target volume* **T** Verification using Computed Tomography/Radiography: – CT imaging in charged Particle therapy is needed for: **Target volume definition (anatomical boundaries with** additional information from multimodality imaging (CT/MRI/PET studies) Dose and range calculation **Patient alignment verification** *But today these process are made at different moment and place*

IFMP_CORFU_17 22

standard medical (Anger) SPECT camera

IFMP_CORFU_17

dose and β *+ activities* Nov 17 23

Single photon: in vivo Compton Camera

(A.Muller,TU Dresden)

Scintillating-fibre Hodoscope + MA PMT Ray et al. IPN Lyon

IFMP_CORFU_17 ²⁴

F.Fiedler et al. Dresden CZT-strip+LYSO-block Detector

- Required devices:
	- Hodoscope (x,y,t)
	- Scatterer (x,y,E)
	- Absorber (x,y,z,E,t)

Exemple of Single photon: in vivo SPECT

Present examples: in beam PET

Rotating Movir Moving Rotatin

¹H-therapy at the National Cancer Center, Kashiwa, Japan

In-beam PET scanner at ¹²C-therapy unit at GSI

IFMP_CORFU_17 26 **Large beam background No Real time capability Low signal to noise ratio**

Nov 17

Positron Emission Tomograph …some Hardware

In-beam: GSI Darmstadt Off-line: MGH Boston, HIT Heidelberg

more…

- *HIMAC, Chiba*
- *NCC, Kashiwa*
- *HIBMC, Hyogo*
- *MDACC, Houston*
- *Univ. of Florida*

In-vivo range measurements

- *In-vivo dosimetry & real-time image guidance*
- *Ongoing developments (TOF-PET, PET+CT) reduce unfavorable in-beam random coincidences/background (by 20-30%)*

Mature technology

IFMP_CORFU_17 Nov 17 *Courtesy W. Enghardt / OncoRay*

In vivo PET recent developments

room at MGH, ready to scan

MGH

Courtesy T. Yamaya, NIRS Japan Nov 17 If $\frac{1}{2}$ is the correction of the correction of $\frac{1}{2}$ and $\frac{1}{2}$

A long termdream The Proton CT

X ray & CT after each fraction ?

X ray is agressive --> see table below about estimated absolute rate of (%) of 2nd cancer

- 30-50 mGy/scan
- 30 fraction daily --> Total : 0,6 -3 Gy

I

Basics of particle imaging

- *The particle (proton/ion) go through the patient at high energy*
- *Advantages:* Ш
	- *Decrease the uncertainties → better dose accuracy*
	- *Reduce the dose delivered to the patient*
- *Challenge the data reconstruction*
	- *correctly reconstruct the path of the proton*

Radiograph of a phantom Uwe Schneider PhD thesis (1978,PSI) *A tribute to G.Charpak*

Nov 17

Proton CT: 1) replaces X-ray absorption with proton energy loss

2) reconstruct mass density distribution instead of electron distribution

The Basics Ingredients

- Beam \blacksquare
	- Measurement (position and direction) particle per particle
- **Photon detectors**
	- In beam selection of
		- \blacksquare single photon \rightarrow compton camera (SPECT)
		- \blacksquare two photons \rightarrow in Beam TOF-PET
- **Proton (ion) CT**
	- Measure the energy (position, energy and time) of the diffracted particle in an imaging calorimeter
- The Global aspect! \blacksquare
	- Event by event selection particle like in a nuclear & HEP physics experiment.
	- Deatimeless electronics
	- Real time acquisition and reconstruction

$\mathcal{L}_{\mathsf{Nov}_{17}}$ Need all HEP modern instrumentation tools & technique

Schematic block diagram of an integrated concept of radiography / therapy system

Present examples : PCT

Different prototypes are proposed based on the same "philosophy" (Reinhard Schulte et Al.) BNL, Santa Cruz, Loma Linda, Stony Brook layout (2003)

Fig. 1. The Proton Range Radiography setup.

AQUA-CNAO

NIU/FNAL Scint/WLS+SiPM GPU farm

Ion Transmission Imaging See talk from B.Voss

IFMP_CORFU_17 34

Primary-Ion Radiography / Tomography

ICs stack

Alderson

rotating table

(300x300x3)mm³

Water equivalent path length

*Transmission ion imaging prior to or in***between MP coRFULTS feasible Nov 35**

Final Conclusions

There is a lot to do Particularly for students

References Proceedings of NSS-MIC conferences

http://www.nss-mic.org/2016/NSSMain.asp₃₇ *Transaction on Nuclear Sciences (TNS)*

Thanks to

W. Enghardt (Dresden) U.Amaldi (Tera) H.Hoffman (CERN) K.Parodi (Munich TU) T.Yamaya (Chiba,JP) Pr. J.P. Gerard (Nice) Etoile Collaboration Lyon) R. Schulte (Loma Linda)

Thank you for your attention

IFMP_CORFU_17 38

Why particle CT ?

■ The role of CT imaging in charged Particle therapy is *needed for:*

- *Target volume definition (anatomical boundaries with additional information from fused MRI and PET studies*
- *Dose and range calculation*
- *Patient alignment verification*

The protons go through the patient Higher energy, small dose

