Analog/Mixed-Signal Design in FinFET Technologies

<u>A.L.S. Loke</u>, E. Terzioglu, A.A. Kumar, T.T. Wee, K. Rim, D. Yang, B. Yu, L. Ge, L. Sun, J.L. Holland, C. Lee,
S. Yang, J. Zhu, J. Choi, H. Lakdawala, Z. Chen, W.J. Chen, S. Dundigal, S.R. Knol, C.-G. Tan, S.S.C. Song, H. Dang,
P.G. Drennan, J. Yuan, P.R. Chidambaram, R. Jalilizeinali, S.J. Dillen, X. Kong, and B.M. Leary

alvin.loke@ieee.org

Qualcomm Technologies, Inc.

September 4, 2017

CERN ESE Seminar (Based on AACD 2017)

Mobile SoC Migration to FinFET

Mobile SoC is now main driver for CMOS scaling

- Power, Performance, Area, Cost (PPAC) considerations, cost = f(volume)
- Snapdragon[™] 820 Qualcomm Technologies' first 14nm product
- Snapdragon[™] 835 World's first 10nm product

Plenty of analog/mixed-signal content

- PLLs & DLLs
- Wireline I/Os
- Data converters
- Bandgap references
- Thermal sensors
- Regulators
- ESD protection

SoC technology driven by logic & SRAM scaling needs due to cost

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Outline

- Fully-Depleted FinFET Basics
- Technology Considerations
- Design Considerations
- Conclusion

- Capacitor divider dictates source-barrier $\phi_s \& I_D$
- Fully-depleted finFET weakens C_B , $C_D \rightarrow$ steeper S, less DIBL & less body effect
- Lower supply & lower power for given $I_{off} \& I_D$

Concept of Fully-Depleted

- Dopants *not* fundamental to field-effect action, just provide mirror charge to set up *E*-field to induce surface inversion
- Use heavily-doped "bottom plate" under undoped body to terminate *E*-fields from gate (extremely retrograded well doping)
- Body becomes *fully-depleted* as it has no charge to offer
- Implementations
 - Planar on bulk
 - Planar on SOI (FD-SOI)
 - 3-D (e.g., finFET) on bulk
 - 3-D on SOI

Yan *et al.*, Bell Labs [2] Fujita *et al.*, Fujitsu [3] Cheng *et al.*, IBM [4]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Outline

• Fully-Depleted FinFET Basics

- Technology Considerations
 - Mechanical Stressors
 - High-K/Metal-Gate
 - Lithography
 - Middle-End-Of-Line
- Design Considerations
- Conclusion

Journey to FinFETs

• 16/14nm complexity accumulated from scaling innovations introduced earlier across multiple earlier nodes

Technology Innovation	Foundry Debut	Reason Required
Mechanical stressors	40nm	Mobility boost for more FET drive & higher I _{on} /I _{off}
HKMG replacement gate integration	28nm (HK-first) 20nm (HK-last)	Higher C _{ox} for more FET drive & channel control
Multiple-patterning	20nm	Sub-80nm pitch lithography without EUV
Complex middle-end-of-line	20nm	Contact FET diffusion & gate with tighter CPP

Mechanical Stressors

- Mobility depends on channel lattice strain (piezoresistivity)
- Grow stressors to induce channel strain along L
 - Tensile for NMOS, compressive for PMOS
 - Techniques: S/D epitaxy, stress memorization, gate stress
- Anisotropic mobility & stress response
 - L vs. W direction, (100) fin top vs. (110) fin sidewall

Stress-Related Layout Effects

- Stressors are stronger in 16/14nm for more FET drive, so layout effects can be more severe \rightarrow schematic/layout Δ
- Stress build-up in longer active, I_D/fin not constant vs. # fins
- Interaction with stress of surrounding isolation & ILD
- NMOS/PMOS stress mutually weaken each other
- New effects being discovered, e.g., gate-cut stress effect

Electrical Chip-Package Interaction

- FET mobility sensitive to stress from die attach to package
- Package stress can impact long-range device matching (e.g., I/O impedance, bias references, data converters)

Terzioglu, Qualcomm [1]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

High-K/Metal-Gate (HKMG)

- Increase C_{ox} with less I_{gate} & no poly depletion, but HK/MG interface is very delicate
- Replacement metal gate (RMG) after S/D anneal for stable V_T
- Gate = (ALD MG stack to set Φ_M) + (metal fill to reduce R_G)
- HK-first \rightarrow HK-last for better gate edge control

HKMG Concerns

- Very high $R_{gate} \rightarrow$ non-quasistatic effects
- Variation in MG grain orientation $\rightarrow V_{T}$ variation
- Metal boundary effect (ΔV_T near interface between two Φ_M)
- Gate density induced mismatch (ΔV_T from RMG CMP dishing)

Lithography Innovations

- Needed for sub-80nm pitch, EUV not ready for production
- 1. Pitch splitting \rightarrow mask coloring, overlay-related DRCs
- 2. Orthogonal cut mask \rightarrow reduce line-end-to-end spacing
- 3. Spacer-based patterning for fins, adopting for gate

Complex Middle-End-Of-Line (MEOL)

- Difficult to land diffusion & gate contacts on tight CPP
- Self-aligned contacts to prevent contact-to-gate shorts
- Separate contacts to diffusion & to gate, also insert via under Metal-1
- Significant BEOL, MEOL & R_{ext} resistance

Auth *et al.*, Intel [15] Rashed *et al.*, Globalfoundries [17]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Outline

- Fully-Depleted FinFET Basics
- Technology Considerations
- Design Considerations
 - General
 - Parasitic C & R
 - Stacked FET
 - Passives, PNP-BJT, ESD Diodes
 - I/O Voltages

Conclusion

Designing with FinFET

- More drive current for given footprint
- Quantized channel width
 - Challenge for logic & SRAM
 - OK for analog, enough g_m granularity
- Less DIBL \rightarrow better r_{out} , $3 \times$ intrinsic gain
- Essentially no body effect ($\Delta V_T < 10mV$)
- Higher R_s & R_d spreading resistance
- Lower C_j but higher C_{gd} & C_{gs} coupling
- Higher R_{well} (R_{diode}, latch-up)
- Mismatch depends on fin geometry, MG grains, gate density, stress, less on RDF

Sheu, TSMC [18] Hsueh *et al.*, TSMC [19]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Stronger Parasitic Coupling

- S/D trench contacts & gate form vertical plate capacitors
- Worse supply rejection in LDO regulators
- Kickback noise to analog biasing signals, e.g., LPDDR RX
- Adding capacitance increases area & wake-up time (concern for burst-mode operation, e.g., IoT)

Dealing with High Series Resistance

- MEOL parasitic resistances very significant
- Double-source layout becoming common to halve S/D $R_{contact}$
- Drivers needs to drive very low impedances, e.g., 50Ω
- Better to unshare diffusions to reduce *R* despite higher *C*, contrary to "conventional wisdom"

Stacked FET

- Ideal transconductor needs high r_{out} & long L
- L_{max} limited by gate litho/etch loading & HKMG integration
- Stacked FET is common but intermediate diffusion degrades r_{out} in GHz range
- Impact on intrinsic gain, common-mode noise rejection, ...

Resistor Options

- Precision MEOL resistor (thin metal compound on ILD0)
 - Difficult to build poly resistor ends in HK-last process
 - Ends not well defined, current spreading near contacts
 - Decouples resistor integration from FEOL
- Metal-gate resistor
 - Available for free
 - Not well controlled
 - *ρ_{sheet}* depends on gate density,
 W, *W_{max}* limit

Capacitor Options

Metal-Oxide-Metal (MOM) - Rarely has scaling helped analog
Be careful with non-physical BEOL overlay corner models

• Metal-Insulator-Metal (MIM) - Extra cost, less common

Chang et al., UC Berkeley [20]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

Low-Voltage Bandgap Reference

• Higher $V_D \rightarrow$ headroom issue

Banba *et al.*, Toshiba [21]

Loke et al., Analog/Mixed-Signal Design in FinFET Technologies

PTAT

CTAT

I/O Voltage Not Scaling With Core Supply

- Many I/Os still use 1.8V signaling despite core V_{DD} reduction
 - Many peripheral ICs remain at lower cost nodes
 - Backward compatibility is key constraint for some I/Os
- Increasingly tough to keep 1.8V thick-oxide devices
 - Thick-oxide HKMG ALD fill not easy for tighter fin pitch
 - More complex level shifters to deal with wider voltage gap
 - Some standards no longer support legacy modes in favor of higher link rate & lower power (e.g., LPDDR5)
- Need ecosystem consensus
 - Industry has migrated from 5.0V to 3.3V to 2.5V to 1.8V
 - Obvious power & area benefit to migrate to say 1.2V
 - 1.8V remains an industry-wide issue until next transition

Wei et al., Globalfoundries [22]

Considerations for HEP Application

- Significant logic area scaling migrating to finFET
 - Though not as good as 4x reduction from 28nm to 14nm (marketing)
- Mature 14nm & 10nm process
 - No model corner uncertainty \rightarrow less overdesign & perf. compromise
- Hf-based HK gate dielectric reliability
 - May be prone to hysteretic (ferroelectric) polarization & worse BTI at high radiation levels, causing undesirable V_T shift
 - HK polarization issues resolved for "typical" CMOS usage
- Latch-up prevention
 - High fin resistance enforces stricter well-tie spacing & guard ring DRCs
- Beta ratio (NMOS-to-PMOS drive strength) \rightarrow 1
 - Mechanical stressors & (110) fin sidewall much more effective to boost hole vs. electron mobility → strong PMOS
 - Circumvent need for pre-charge logic to get higher performance
- Device mismatch
 - Fully-depleted structure intrinsically superior (less/no RDF)
 - Benefit reduced by new mismatch sources (fin dimensional control, MG grain orientation, LDE sensitivities)

Conclusion

- 14nm mobile SoCs in production for 2+ years, 10nm SoCs in production for ½ year; no showstoppers to migrate AMS designs to finFET
- 16/14nm AMS design is about understanding all the scaling technologies that led to finFET as much as understanding finFET itself
- FinFET/HKMG/MEOL parasitics & local layout effects have significantly increased AMS design effort
- Logic & SRAM will continue to drive CMOS scaling priorities into 7nm & 5nm

References (1/2)

- [1] E. Terzioglu, "Design and technology co-optimization for mobile SoCs," in *Int. Conf. on IC Design & Technology*, Keynote, Leuven, Belgium, Jun. 2015.
- [2] R.-H. Yan *et al.*, "Scaling the Si MOSFET: From bulk to SOI to bulk," *IEEE Trans. Electron Devices*, vol. 39, no. 7, pp. 1704-1710, Jul. 1992.
- [3] K. Fujita *et al.*, "Advanced channel engineering achieving aggressive reduction of V_T variation for ultralow power applications," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, pp. 32.3.1-32.3.4, Dec. 2011.
- [4] K. Cheng *et al.*, "Fully depleted extremely thin SOI technology fabricate by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain," in *IEEE Symp. VLSI Technology Tech. Dig.*, pp. 212-213, Jun.2009.
- [5] M. Garcia Bardon *et al.*, "Layout-induced stress effects in 14nm & 10nm finFETs and their impact on performance," in *IEEE Symp. VLSI Technology Tech. Dig.*, Kyoto, Japan, Jun. 2013, pp. 114-115.
- [6] Y. Liu *et al.*, "NFET effective work function improvement via stress memorization technique in replacement metal gate technology," in *IEEE Symp. VLSI Technology Tech. Dig.*, Kyoto, Japan, Jun. 2013, pp. 198-199.
- [7] J. Faricelli, "Layout-dependent proximity effects in deep nanoscale CMOS," in *Proc. IEEE Custom Integrated Circuits Conf.*, San Jose, CA, Sep. 2010, pp. 1-8.
- [8] C. Lee et al., "Layout-induced stress effects on the performance and variation of finFETs," in *IEEE Int. Conf. on Simulation of Semiconductor Processes and Devices*, Washington, DC, Sep. 2015, pp. 369-372.
- [9] F. Sato *et al.*, "Process and local layout effect interaction on a high performance planar 20nm CMOS," in *IEEE Symp. VLSI Technology Tech. Dig.*, Kyoto, Japan, Jun. 2013, pp. 116-117.
- [10] C. Auth *et al.*, "45nm high-k + metal-gate strain-enhanced transistors," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, Jun. 2008, pp. 128-129.
- [11] P. Packan *et al.*, "High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, Baltimore, MD, Dec. 2009, pp. 659-662.

References (2/2)

- [12] A. Asenov, "Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-µm MOSFET's with epitaxial and δ-doped channels," *IEEE Trans. Electron Devices*, vol. 46, no. 8, pp. 1718-1724, Aug. 1999.
- [13] M. Yamaguchi *et al.*, "New layout dependency in high-K/metal gate MOSFETs," *in IEEE Electron Devices Meeting Tech. Dig.*, Washington, DC, Dec. 2011, pp. 579-582.
- [14] S. Yang *et al.*, "High-performance mobile SoC design and technology co-optimization to mitigate high-K metal gate process variations," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, Jun. 2014 pp. 1-2.
- [15] C. Auth et al., "A 22nm high performance and low-power CMOS technology featuring fully-depleted trigate transistors, self-aligned contacts and high density MIM capacitors," in IEEE Symp. VLSI Technology Tech. Dig., Honolulu, HI, pp. 131-132, Jun. 2012.
- [16] J. Dorsch, "Changes and challenges abound in multi-patterning lithography," Semiconductor Manufacturing & Design Community, www.semi.org/en/node/54491, Feb. 2015.
- [17] M. Rashed et al., "Innovations in special constructs for standard cell libraries in sub 28nm technologies," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, Washington, DC, Dec. 2013, pp. 248-251.
- [18] B. Sheu, "Circuit design using finFETs," in *IEEE Int. Solid-State Circuits Conf.*, Tutorial T4, San Francisco, CA, Feb. 2013.
- [19] F.-L. Hsueh *et al.*, "Analog/RF wonderland: circuit and technology co-optimization in advanced finFET technology," in *IEEE Symp. VLSI Technology Tech. Dig.*, Honolulu, HI, Jun. 2016, pp. 114-115.
- [20] L. Chang *et al.*, "Gate length scaling and threshold voltage control of double-gate MOSFETs," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, San Francisco, CA, Dec. 2000, pp. 719-722.
- [21] H. Banba *et al.*, "A CMOS bandgap reference circuit with sub-1-V operation," *IEEE J. Solid-State Circuits*, vol. 34, no. 5, pp. 670-673, May 1999.
- [22] A. Wei *et al.*, "Challenges of analog and I/O scaling in 10nm SoC technology and beyond," in *IEEE Electron Devices Meeting Tech. Dig.*, San Francisco, CA, Dec. 2014, pp. 462-465.