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Mobile SoC Migration to FINFET

Mobile SoC is now main driver for CMOS scaling

* Power, Performance, Area, Cost (PPAC) considerations, cost = f(volume)
* Snapdragon™ 820 - Qualcomm Technologies’ first 14nm product

* Snapdragon™ 835 - World’s first 10nm product
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 Fully-Depleted FinFET Basics
» Technology Considerations

* Design Considerations
 Conclusion




Towards Stronger Gate Control
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* Fully-depleted finFET weakens Cgz, C, = steeper S, less DIBL
& less body effect

* Lower supply & lower power for given | & I,

lower supply
lower power




Concept of Fully-Depleted

« Dopants not fundamental to field-effect action, just provide
mirror charge to set up E-field to induce surface inversion

 Use heavily-doped “bottom plate” under undoped body to
terminate E-fields from gate (extremely retrograded well
doping)

as it has no charge to offer body

* Implementations /

 Planar on bulk
 Planar on SOI (FD-SOI)
* 3-D (e.g., finFET) on bulk “bottom plate”
* 3-D on SOI

» Body becomes fully-depleted L e J undoped

drain

source

Yan et al., Bell Labs [2]
Fujita et al., Fujitsu [3]
Cheng et al., IBM [4]




Migrating to Fully-Depleted FINFET
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» Technology Considerations
* Mechanical Stressors
» High-K/Metal-Gate
* Lithography
» Middle-End-Of-Line




Journey to FINFETS

* 16/14nm complexity accumulated from scaling innovations
introduced earlier across multiple earlier nodes

Technology Foundry Reason
Innovation Debut Required

Mobility boost for more
FET drive & higher 1,/

HKMG replacement  28nm (HK-first) Higher C,, for more FET
gate integration 20nm (HK-last) drive & channel control

Sub-80nm pitch
lithography without EUV

Complex 20nm Contact FET diffusion &
middle-end-of-line gate with tighter CPP

Mechanical stressors 40nm

Multiple-patterning 20nm




Mechanical Stressors

* Mobility depends on channel lattice strain (piezoresistivity)
« Grow stressors to induce channel strain along L

 Tensile for NMOS, compressive for PMOS

* Techniques: S/D epitaxy, stress memorization, gate stress
 Anisotropic mobility & stress response

* [ vs. W direction, (100) fin top vs. (110) fin sidewall

Garcia Bardon et al., IMEC [5]
Liu et al., Globalfoundries [6]




Stress-Related Layout Effects

 Stressors are stronger in 16/14nm for more FET drive,
so layout effects can be more severe - schematic/layout A

» Stress build-up in longer active, I,/fin not constant vs. # fins
* Interaction with stress of surrounding isolation & ILD
 NMOS/PMOS stress mutually weaken each other

* New effects being discovered, e.g., gate-cut stress effect

IEOICLLP C19F-4S

NMOS

f/// xf Faricelli, AMD [7]
Lee et al., Samsung [8]

Sato et al., IBM [9]




Electrical Chip-Package Interaction

« FET mobility sensitive to stress from die attach to package

» Package stress can impact long-range device matching
(e.g., I/0 impedance, bias references, data converters)
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Terzioglu, Qualcomm [1]




High-K/Metal-Gate (HKMG)

* Increase C,, with less I, & no poly depletion, but HK/MG

interface is very delicate
* Replacement metal gate (RMG) after S/D anneal for stable V-
 Gate = (ALD MG stack to set @,,)+(metal fill to reduce R;)

« HK-first > HK-last for better gate edge control

MG metal fill silicide less silicide

HK
HK-first  (bottom only) HK-last  (pottom+sides)
Auth et al., Intel [10] Packan et al., Intel [11]




HKMG Concerns

* Very high R, 2 non-quasistatic effects

» Variation in MG grain orientation - V; variation

* Metal boundary effect (AV; near interface between two @,)
» Gate density induced mismatch (AV; from RMG CMP dishing)

MG very resistive
fins in over fin Dy
gate trench

metal fill

)

Asenov, U Glasgow [12]
Yamaguchi et al., Toshiba [13]
Yang et al., Qualcomm [14]

fins
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Lithography Innovations

* Needed for sub-80nm pitch, EUV not ready for production
1. Pitch splitting - mask coloring, overlay-related DRCs

2. Orthogonal cut mask - reduce line-end-to-end spacing
3. Spacer-based patterning for fins, adopting for gate

Mask A Mask B

”JlJHHHlll

sacrificial spacer

mandrel
TRTAT

&
EERER

Auth et al., Intel [10], [15]
Dorsch, www.semi.org [16]




Complex Middle-End-Of-Line (MEOL)

« Difficult to land diffusion & gate contacts on tight CPP
 Self-aligned contacts to prevent contact-to-gate shorts

« Separate contacts to diffusion & to gate,
also insert via under Metal-1

» Significant BEOL, MEOL & R, resistance

Metal-1 I

via

:

gate
contact

misalignment nitride cap

Auth et al., Intel [15]
Rashed et al., Globalfoundries [17]
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* Design Considerations

* General
e Parasitic C & R
e Stacked FET

 Passives, PNP-BJT, ESD Diodes

* |/O Voltages




Designing with FINFET
* More drive current for given footprint

* Quantized channel width
— Challenge for logic & SRAM
— OK for analog, enough g, granularity

* Less DIBL - better r,,,
* Essentially no body effect (AV; < 10mV)

3x intrinsic gain

 Higher R, & R, spreading resistance
* Lower (; but higher C 4 & C,, coupling
* Higher Rwell (Rdiode’ latch-up)

* Mismatch depends on fin geometry, MG
grains, gate density, stress, less on RDF

Sheu, TSMC [18]
Hsueh et al., TSMC [19]




Stronger Parasitic Coupling

« S/D trench contacts & gate form vertical plate capacitors
* Worse supply rejection in LDO regulators
» Kickback noise to analog biasing signals, e.g., LPDDR RX

« Adding capacitance increases area & wake-up time
(concern for burst-mode operation, e.g., loT)
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Dealing with High Series Resistance

« MEOL parasitic resistances very significant
* Double-source layout becoming common to halve S/D R
 Drivers needs to drive very low impedances, e.g., 500

« Better to unshare diffusions to reduce R despite higher C,
contrary to “conventional wisdom”

contact

diffusion short
contact together

l




Stacked FET

* Ideal transconductor needs high r,, & long L
- L. limited by gate litho/etch loading & HKMG integration

« Stacked FET is common but intermediate diffusion degrades
r., 1N GHz range

 Impact on intrinsic gain, common-mode noise rejection, ...

low-frequency high-frequency (7
ac current 1= ac current 5,
I e




Resistor Options

 Precision MEOL resistor
(thin metal compound on ILDO)

 Difficult to build poly resistor
ends in HK-last process

* Ends not well defined,
current spreading near contacts

» Decouples resistor integration
from FEOL

» Metal-gate resistor
* Available for free
 Not well controlled

* Pheer dEPENdS ON gate density,
W, W__, limit
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Capacitor Options

* Metal-Oxide-Metal (MOM) - Rarely has scaling helped analog ©
* Be careful with non- physical BEOL overlay corner models

reality Cax Model C,,;, model

min
A

Wy A

« Accumulation-mode varactor
 Steeper transition for
higher Ko
 Quarter-gap @, gate
material for higher V;

A

N+’ accumulation

n-well inversion

p-substrate

s > Vs
» Metal-Insulator-Metal (MIM) - Extra cost, less common
Chang et al., UC Berkeley [20]




PNP-BJT & ESD Diodes
PNP-BJT

emitter base collector

p-substrate

Gated ESD Diode STl ESD Diode

n+ D+

n+

p-substrate p-substrate




Low-Voltage Bandgap Reference
|deality
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Banba et al., Toshiba [21]




|/0 Voltage Not Scaling With Core Supply

« Many 1/0s still use 1.8V signaling despite core V,, reduction
* Many peripheral ICs remain at lower cost nodes
« Backward compatibility is key constraint for some [/Os

* Increasingly tough to keep 1.8V thick-oxide devices
* Thick-oxide HKMG ALD fill not easy for tighter fin pitch
* More complex level shifters to deal with wider voltage gap

« Some standards no longer support legacy modes in favor of
higher link rate & lower power (e.g., LPDDR5)

« Need ecosystem consensus
* Industry has migrated from 5.0V to 3.3V to 2.5V to 1.8V
* Obvious power & area benefit to migrate to say 1.2V
* 1.8V remains an industry-wide issue until next transition

Wei et al., Globalfoundries [22]




Considerations for HEP Application

Significant logic area scaling migrating to finFET

» Though not as good as 4x reduction from 28nm to 14nm (marketing)
Mature 14nm & 10nm process

« No model corner uncertainty - less overdesign & perf. compromise
Hf-based HK gate dielectric reliability

» May be prone to hysteretic (ferroelectric) polarization & worse BTl at high
radiation levels, causing undesirable V; shift

» HK polarization issues resolved for “typical” CMOS usage

Latch-up prevention

» High fin resistance enforces stricter well-tie spacing & guard ring DRCs
Beta ratio (NMOS-to-PMOS drive strength) - 1

* Mechanical stressors & (110) fin sidewall much more effective to boost hole vs.
electron mobility - strong PMOS

« Circumvent need for pre-charge logic to get higher performance
Device mismatch
* Fully-depleted structure intrinsically superior (less/no RDF)

» Benefit reduced by new mismatch sources (fin dimensional control, MG grain
orientation, LDE sensitivities)
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Conclusion

e 14nm mobile SoCs in production for 2+ years,
10nm SoCs in production for 2 year;
no showstoppers to migrate AMS designs to finFET

e 16/14nm AMS design is about understanding all the
scaling technologies that led to finFET as much as
understanding finFET itself

e FINFET/HKMG/MEOL parasitics & local layout
effects have significantly increased AMS design
effort

e Logic & SRAM will continue to drive CMOS scaling
priorities into /nm & 5nm




[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]
[9]

References (1/2)

E. Terzioglu, “Design and technology co-optimization for mobile SoCs,” in Int. Conf. on IC Design &
Technology, Keynote, Leuven, Belgium, Jun. 2015.

R.-H. Yan et al., “Scaling the Si MOSFET: From bulk to SOI to bulk,” IEEE Trans. Electron Devices, vol. 39,
no. 7, pp. 1704-1710, Jul. 1992.

K. Fujita et al., “Advanced channel engineering achieving aggressive reduction of V; variation for ultra-
low power applications,” in IEEE Int. Electron Devices Meeting Tech. Dig., pp. 32.3.1-32.3.4, Dec. 2011.

K. Cheng et al., “Fully depleted extremely thin SOI technology fabricate by a novel integration scheme
featuring implant-free, zero-silicon-loss, and faceted raised source/drain,” in IEEE Symp. VLS| Technology
Tech. Dig., pp. 212-213, Jun.2009.

M. Garcia Bardon et al., “Layout-induced stress effects in 14nm & 10nm finFETs and their impact on
performance,” in IEEE Symp. VLSI Technology Tech. Dig., Kyoto, Japan, Jun. 2013, pp. 114-115.

Y. Liu et al., “NFET effective work function improvement via stress memorization technique in
replacement metal gate technology,” in IEEE Symp. VLSI Technology Tech. Dig., Kyoto, Japan, Jun. 2013,
pp. 198-199.

J. Faricelli, “Layout-dependent proximity effects in deep nanoscale CMOS,” in Proc. IEEE Custom
Integrated Circuits Conf., San Jose, CA, Sep. 2010, pp. 1-8.

C. Lee et al., “Layout-induced stress effects on the performance and variation of finFETs,” in IEEE Int.
Conf. on Simulation of Semiconductor Processes and Devices, Washington, DC, Sep. 2015, pp. 369-372.

F. Sato et al., “Process and local layout effect interaction on a high performance planar 20nm CMOS,” in
IEEE Symp. VLSI Technology Tech. Dig., Kyoto, Japan, Jun. 2013, pp. 116-117.

[10] C. Auth et al., “45nm high-k + metal-gate strain-enhanced transistors,” in IEEE Symp. VLS| Technology

Tech. Dig., Honolulu, HI, Jun. 2008, pp. 128-129.

[11] P. Packan et al., “High performance 32nm logic technology featuring 2" generation high-k + metal gate

transistors,” in IEEE Int. Electron Devices Meeting Tech. Dig., Baltimore, MD, Dec. 2009, pp. 659-662.

et a ANnaloo =10 gnal besio s Ol0QIE 0 €




References (2/2)

[12] A. Asenov, “Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-pym MOSFET’s
with epitaxial and 6-doped channels,” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1718-1724, Aug.
1999.

[13] M. Yamaguchi et al., “New layout dependency in high-K/metal gate MOSFETs,” in IEEE Electron Devices
Meeting Tech. Dig., Washington, DC, Dec. 2011, pp. 579-582.

[14] S. Yang et al., “High-performance mobile SoC design and technology co-optimization to mitigate high-K
metal gate process variations,” in IEEE Symp. VLSI Technology Tech. Dig., Honolulu, HI, Jun. 2014 pp. 1-2.

[15] C. Auth et al., “A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-
gate transistors, self-aligned contacts and high density MIM capacitors,” in IEEE Symp. VLSI Technology
Tech. Dig., Honolulu, HI, pp. 131-132, Jun. 2012.

[16] J. Dorsch, “Changes and challenges abound in multi-patterning lithography,” Semiconductor
Manufacturing & Design Community, www.semi.org/en/node/54491, Feb. 2015.

[17] M. Rashed et al., “Innovations in special constructs for standard cell libraries in sub 28nm technologies,”
in IEEE Int. Electron Devices Meeting Tech. Dig., Washington, DC, Dec. 2013, pp. 248-251.

[18] B. Sheu, “Circuit design using finFETs,” in IEEE Int. Solid-State Circuits Conf., Tutorial T4, San Francisco,
CA, Feb. 2013.

[19] F.-L. Hsueh et al., “Analog/RF wonderland: circuit and technology co-optimization in advanced finFET
technology,” in IEEE Symp. VLSI Technology Tech. Dig., Honolulu, HI, Jun. 2016, pp. 114-115.

[20] L. Chang et al., “Gate length scaling and threshold voltage control of double-gate MOSFETs,” in IEEE Int.
Electron Devices Meeting Tech. Dig., San Francisco, CA, Dec. 2000, pp. 719-722.

[21] H. Banba et al., “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE J. Solid-State Circuits,
vol. 34, no. 5, pp. 670-673, May 1999.

[22] A. Wei et al., “Challenges of analog and I/0 scaling in 10nm SoC technology and beyond,” in IEEE
Electron Devices Meeting Tech. Dig., San Francisco, CA, Dec. 2014, pp. 462-465.

pDke et & Analoo 20 gnal Desig s oloqle gde 26




