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Plan of the talk

I Broad overview of the QCD phase diagram in the temperature
(T ) and chemical potential (µ) plane

I Steps towards an Effective Field Theory (EFT) based
approach at low density and intermediately high T
[arXiv:1710.05345 [hep-ph]] Sourendu Gupta, RS

I Examples of EFTs at high density and low T

I Application to the calculation of shear viscosity on a phase of
dense quark matter Phys. Rev. D (2017), Sreemoyee Sarkar,
RS

2 / 72



The phase diagram of QCD

I The lagrangian — QCD — is known

I Finite chemical potential: L = LQCD + µψ̄γ0ψ

I Finite temperature: e−H/T
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Phase diagram of QCD
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The phase diagram of QCD

I At low T and µ hadronic matter

I At very high T and/or high µ deconfined quarks and gluons

I Perturbative calculations show some control for T > 1GeV eg.
Mustafa et. al. (2015)

I Perturbative calculations show some control for µ > 1.5GeV
Kurkela et. al. (2009)

I The intermediate region is challenging, but of physical interest
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Warm QCD
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QCD thermodynamics at µ = 0

I mq is small, and there is an approximaate chiral symmetry.

ψ → e iτ
aθaψ [SU(2)V ], ψ → e iγ

5τ aθaψ [SU(2)A]. τ a are Pauli
matrices that mix u and d spinors

I Relevant current Jaµ5 (x) = ψ̄taγµγ5ψ

I Partial conservation: ∂µJ
aµ
5 = 2mqP

a. Pa(x) = ψ̄taγ5ψ

I At low T , the symmetry is spontaneously broken by the
condensate 〈ψ̄ψ〉. SU(2)L × SU(2)R → SU(2)V

I 3 light Goldstone bosons, πa’s

I At high enough T chiral symmetry is restored

I For mq = 0, chiral symmetry restoration is a second order
phase transition. For finite pion mass, the transition from the
symmetry broken phase at small T to the restored phase at
large T is a crossover
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Calculating the QCD crossover
I Lattice QCD is a rigorous technique to compute the

thermodynamics of QCD
I We know quantitatively that for the physical mq (u, d and

heavier s) the transition from hadronic matter at low T to the
QGP at high T is a crossover around 145− 165MeV
[Brookhaven/HotQCD, TIFR, Wuppertal-Budapest, Bielefeld
... collaborations]. Eg. below [Bazavov et. al. (1407.6387)]
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Calculating the QCD crossover

I Multiple observables computed on the lattice (eg. speed of
sound, susceptibilities)

I But it is challenging to compute transport properties on the
lattice

I Finite µ is also challenging
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Towards an “effective” field theory (EFT) near crossover

I It will be useful to have an effective theory (EFT) whose
parameters are fit using the static lattice calculations

I The expansion parameter is not the coupling constant but the
ratio of the energy scale to a cutoff scale

I Matching can be done for static quantities that are measured
in experiment or on the lattice

I This can then be used to compute dynamical quantities
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The NJL model

I It is a simple, and widely studied model that captures the
physics of the chiral crossover ([Nambu, Jona-Lasinio (1961)])

I It is based on the assumption that quarks are light degree of
freedom near the crossover

I The parameters of the model are fixed by using the vacuum
properties, fπ = 92.3MeV, and the chiral condensate
(〈ψ̄ψ〉)(1/3) = 251MeV

I In the chiral limit, this gives Tc (defined by the point of
inflection of the chiral condensate) as ∼ 175MeV

I On the other hand lattice data (Bazavov et. al., Gupta et.
al.) gives Tc ≈ 155MeV

I More complicated fields/energy functionals may be
considered, but is there a systematic way?
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The NJL model

I NJL is a not bad model for chiral dynamics, but it doesn’t
contain the correct degrees of freedom at low and high
temperatures

I At low energies, the effective theory describing the system is
chiral perturbation theory where πs are the degrees of freedom

I At high energies, the effective theory describing the system
should include dynamical gluonic degrees of freedom

I The NJL models, trying to match both these regimes, miss
important physics near the crossover region

I Can one write a low energy effective theory of fermions valid
in the crossover region?

I Need to write all terms consistent with the symmetries of the
theory
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The Euclidean action
I

L = d (0) + ψ/∂4ψ − µψγ4ψ + d43ψ/∂ iψ + d3T0ψψ + L6

I

L6 = +
d65

T 2
0

[
(ψψ)2 + (ψiγ5taψ)2

]
+

d66

T 2
0

[
(ψtaψ)2 + (ψiγ5

ψ)2
]

+
d67
t

T 2
0

(ψγ4ψ)2 +
d67
s

T 2
0

(ψiγiψ)2 +
d68
t

T 2
0

(ψγ5γ4ψ)2 +
d68
s

T 2
0

(ψiγ5γiψ)2

+
d69
t

T 2
0

[
(ψγ4t

a
ψ)2 + (ψγ5γ4t

a
ψ)2

]
+

d69
s

T 2
0

[
(ψγ i taψ)2 + (ψγ5

γ
i taψ)2

]

+
d61

T 2
0

[
(ψiΣi4ψ)2 + (ψiγ5Σij t

a
ψ)2

]
+

d62

T 2
0

[
(ψiΣi4t

a
ψ)2 + (ψΣijψ)2

]
+ O(

1

T 5
0

(ψψ)3) ,

I There are no dimension 5 terms (for eg. ψ̄(∂)2ψ) consistent
with the SU(2)A symmetry

I Dimension 6 terms with derivatives in the mean field
approximation ψ̄(∂/)3ψ give higher order corrections than we
study here. This is because we make a mean field
approximation 13 / 72



Spatial momentum cutoff

I Take the energy cutoff to be of the order of T or slightly
larger. We will instead use dim-reg

I T0 is not a parameter; rather to be thought of as a scale
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Parameters of the theory

I mq = d3T0 acts as the bare quark mass, but is not fitted to π
mass at T = 0

I Time and space distinguished: SO(3, 1)→ SO(3). For
example, the kinetic term is

ψ/∂4ψ + d43ψ/∂iψ

I Similarly, all vector interaction terms can have different spatial
and temporal coefficients

I All interaction terms with chiral symmetry written down

I Seems hopeless, 12 unknown parameters
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Mean field approximation

I But sectors of observables with only specific linear
combinations of ds emerge

I For example, in the mean field approximation

ψ̄αψβ → δαβ〈ψ̄ψ〉

I

LMFT = −N T 2
0

4λ
Σ2 + ψ/∂4ψ − µψγ4ψ + d43ψ/∂iψ + mqψψ + d (0)

I Including all the Fierz transformations,

λ = (N + 2)d65 − 2d66 − d67
t + d67

s + d68
t − d68

s + d60
t − d60

s

I m = mq + Σ
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Free energy

I

Ω = −NT 2
0 Σ2

4λ
−N I0

I

I0 =
T

2

∑
p4=(2n+1)πT

∫
d3p

(2π)3
log(

m2 + p2 + (p4)2

T 2
)

=

∫
d3p

(2π)3

(
Ep + log[1 + exp(−Ep/T )]

)
I Ep =

√
(d4)2p2 + m2

I I0 =
m4

64π2(d4)3 [−3
2 − log( (d4)2M2

m2 )] + 1
2π2

∫
dpp2log[1 + exp(−Ep/T )]

I M is the renormalization scale in the MS scheme
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Transition and the order parameter

I In the chiral limit the second order phase transition point is

denoted by Tc . We obtain, (d4)3

λ = 1
12

T 2
c

T 2
0

I For convenience, T0 is chosen as the value for the critical
point in the chiral limit

I All quantities in units of T0

I (d4)3

λ = 1
12

I Out of the three parameters, mq = d3T0, λ, d4 one
combination is fixed
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Order parameter

I By minimizing the free energy we can find the order
parameter m

I In the plot the width is associated with varying
M ∈ (1.25πT0, 1.75πT0)
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Fluctuations of the order parameter

I In mean field ψ̄βψα → 〈ψψ̄〉δαβ
I Fluctuations ψ → e iπ

aτ aγ5/(2f )ψ, ψ̄ → ψ̄e iπ
aτ aγ5/(2f )

I Therefore, ψαψ̄β → e
iπaτ aγ5/(2f )
β′β 〈ψβψ̄α〉e

iπaτ aγ5/(2f )
αα′

I At very long wavelengths an effective lagrangian for the π’s is
applicable

I Lf =
c2T 2

0
2 π2 + 1

2 (∂0π)2 + c4

2 (∇π)2 + c41

8 π
4 + ··
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π lagrangian

I We start with the two point function

I Lf =
c2T 2

0
2 π2 + 1

2 (∂0π)2 + c4

2 (∇π)2
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Correlation functions

I Correlation relations of currents related to π properties

I Two illustrative examples

I limq4→0

∫
d4xe iqx〈Pa(x)Pb(0)〉 = ( f

2mq
)2c4 δabq4

q2+M2
π

I limq4→0

∫
d4xe iqx〈Jai5 (x)Jbi5 (0)〉 = ((2f )2)c4 δabq2

q2+M2
π

I M2
π = c2T 2

0 /c
4 related to the screening length

I Static π − π correlator decays as ∼ e−Mπr

I u =
√
c4 is the π “speed”

I From a combination of the correlators one can extract f , c4,
Mπ

I [Brandt, Francis, Meyer, Robaina (2014)]
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Correlation functions

I A finite temperature generalization of GOR relation is satisfied

I c2T 2
0 = −Nmq〈ψ̄ψ〉

f 2

I [Son, Stephanov (2002)]

I We can compute f , c4, Mπ in the EFT and compare to the
lattice data. I will describe this next
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Results
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Inputs

I Matching u and Mπ at T = 0.84Tco

I Error in T associated with Tco = 211(5)MeV

I [Brandt, Francis, Meyer, Robaina (2014)]
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Outputs
I By fitting u and Mπ parameters we obtain the fermionic

parameters
I Uncertainty associated with M
I Different boxes associated with varying Tco in the error band
I Useful if the fermionic parameters do not vary rapidly with T
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Tc and f

I The peak of the chiral susceptibility in the EFT occurs at
Tco = 1.24Tc

I Taking Tco = 211(5)MeV, we get Tc = 170± 6MeV

I This agrees with the lattice prediction [Brandt et. al. (2013)]
for 2 flavors: Tc ≈ 170MeV

I A little larger than the value of Tc from the lattice for 2 + 1
flavors [Bazavov et. al. (2014), Borsanyi et. al. (2013), Aoki
et. al. (2009)]

I fu/T (0.84Tco) = 0.41(2) in [Brandt et. al. (2013)]

I Our calculated value
fu/T (0.84Tco) = [0.41]

+1(input)
−1 |+3(scale)

−2 |+2(T)
−2
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Mπ

I Pion Debye screening mass
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u

I Pion velocity
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f

I Pion constant f

I An independent prediction
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P

I Pressure of the π

Pπ = − 3(c2T 2
0 )2

64π2(c4)(3/2)
[log(

c2T 2
0

c4M2
)− 3

2
]

− 3T

∫
d3p

(2π)3
log(1− eE

π/T )

I Eπ =
√

c4p2 + c2T 2
0

I If c2 is small the pressure is large. Energetic cost is small
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P
I Rise in the pressure of the π because of the thermal piece

−3T

∫
d3p

(2π)3
log(1− eE

π/T ) (1)

as u decreases
I Thermodynamic derivatives like entropy, and specific heat

under weaker control
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32 / 72



Towards finite µ

I If we use the standard modification H → H − µN
I In dim-reg an interesting result that Tc(µ)2 + 3

π2µ
2 = T 2

0 in
the chiral limit

I In particular, implies that for small µ,

Tc(µ) = Tc(0)− 1
2κ

µ2

Tc (0) +O(µ3)

I Tc(0)κ = 3
π2

I Thus the mean field prediction is roughly 5− 10 times the
lattice prediction for 2 + 1 flavors [Bielefeld, HotQCD,
collaborations]

I Several corrections in the EFT required at finite µ
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Future directions

I Can be extended by
I Analyzing 2 + 1 flavors so that comparison with other lattice

calculations is possible
I Include the role of σ fluctuations
I Calculating transport properties
I Going to finite µ
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Dense quark matter
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Quark matter at high density

I Physically interesting regime between dense hadronic matter
and dense quark matter at around µ ∼ [500, 700]MeV

I Quantitative perturbative control is difficult but qualitative
difference between hadronic matter may show up

I With this philosophy we study the properties of quark matter
at high density perturbatively

I Starting point, weakly interacting, nearly massless light quarks
(assuming the strange quark mass can be ignored), interacting
weakly via gluons
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Quark matter at high density: illustrative example

I Know from basic statistical physics that quarks will fill up
energy levels up to a Fermi surface

I If the only other scale in the problem is T (unpaired quark
matter), and we are interested in µ� T , only excitations
near the Fermi surface participate in dynamics

I T ∼ keV, µ ∼ 1000MeV

I This calls out for an effective theory with an expansion in T/µ

I Quarks well below the Fermi surface, and anti-quarks can be
integrated out

I Systematic method: High Density Effective theory
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HDET lagrangian

I Instead of the full lagrangian

L = ψ̄iD/ψ + µψ̄γ0ψ − 1

4
FµνF

µν

I The magnitude of the momentum is close to µ
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Patches

Hong (1998, 1999); Casalbuoni, Gatto, Nardulli, (2001); Schaefer
(2003)
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HDET lagrangian

I Instead of the full quark lagrangian

Lq = ψ̄iD/ψ + µψ̄γ0ψ

I An effective lagrangian

Lq =
∑
vF

[ψ†+iV · Dψ+ − ψ†+D⊥
1

2µ
D⊥ψ+]

I V µ = (1, v) and D⊥ is the perpendicular derivative

I Additional contact terms suppressed by higher powers of µ

I Formal similarities to HQET

I Can not be used to compute the pressure but can be used to
compute transport properties
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Gluons
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Gluon polarization diagrams
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Gluon screening

I Longitudinal gluons are Debye screened

∆L(q) = i
q̂i q̂j

(q0)2 − q2 − ΠL(q)
(2)

I ΠL(0) = m2
D = g2Nf gS

µ2

2π2

I Transverse gluons are Landau damped

∆t(q) = i
δij − q̂i q̂j

(q0)2 − q2 − Πt(q)
(3)

I Πt(q
µ → 0) = ig2Nf gS

π
4
q0

q
µ2

2π2
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Shear viscosity in the unpaired phase

I Shear viscosity measures the ability to transport momentum
between two layers of a fluid

I η ∼ n〈p〉〈τ〉
I n =

p3
F

3π2

I p ∼ pF
I τ is inversely proportional to the scattering cross-section

τ ∝ 1

|M|2

I M∼ g2

((q0)2−q2−Π)

I A simplification that the Landau damped transverse gluons
dominate at small T Heiselberg, Pethick (1993)

I τ ∼ µ
g3T 2 ( T

gµ)1/3, η ∼ µ5

g3T 2 ( T
gµ)1/3

I Similarly one can calculate the bulk viscosity
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Implications: r -modes

I Rotating neutron stars (Ω = 2πf ) feature an unstable fluid
dynamics mode Andersson (1998), Friedman and Morsink
(1998)

I First treating the fluid as an ideal fluid one obtains in a
rotating frame

v(r) ≈ aΩf (r)Ylme
i(mφ−σr t)

I σr ≈ − 2mΩ
l(l+1) < 0 for m > 0

I σI = σr + mΩ > 0 for m > 2
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r -modes

I Including “damping” from gravitational waves: couple
gravitons to the fluid motion

I E ≈ E0e
−2t/τGR

I τGR < 0, implying instability

I The mode grows with time

I Note that an inertial observer far away sees the angular
momentum as well as the energy of the star decrease

I 1/τGR ∼ −(GN)Ω2l+2: instability increases with Ω

I (l = m = 2 is the dominant mode and is most studied)
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r -modes

I Viscosities in the fluid indeed damp the fluid flow

I Including damping from gravitational waves, shear viscosity η,
and bulk viscosity ζ

I E ≈ E0e
−2(t/τGR+1/τη+1/τζ)

I 1
τη
∝
∫
d3xηδσabδσab

I In the absence of microscopic damping mechanisms, the loss
in angular momentum is very rapid (the rotational speed of
about 500Hz drops by a substantial fraction in 1 year)

I The non-observation of such spin down constrains the
microscopic properties of neutron stars
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Quark matter versus hadronic matter

I Unpaired quark matter is consistent with non-obervation of
rapid de-spinning of the fast rotating pulsars but not hadronic

I Jaikumar, Rupak, Steiner (2008); Alford, Schwenzer (2014)
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Additional damping effects

I Caveat is that there could be additional damping effects

I Other condensates in hadronic matter

I Friction between the crust-core interface Bildsten, Ushomirsky
(1999); Lindblom, Ushomirsky (2000); Jaikumar, Rupak
(2010)

I Non-linear saturation of the r−modes to a small magnitude
Alford, Mahmoodifar, Schwenzer (2012); Alford, Han,
Schwenzer (2012)
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Color superconductivity

I But quark matter is expected to be in a paired phase because
the interaction between quarks is attractive in the color
antisymmetric channel Alford, Rajagopal, Wilczek and
Shuryak, Schaefer, Rapp (1998)

I At asymptotically high densities where the strange quark mass
can be ignored, quark matter is in the CFL phase

I The di-quark condensate is antisymmetric in color and in spin,
and therefore also in flavor

〈ψαi (p)(Cγ5)ψβj(−p)〉 ∝ ∆
∑
I

εIαβεIij (4)

I U(1)× SUc(3)× SUL(3)× SUR(3)→ Z2 × SUc+L+R(3)

I The ε tensors “lock” color and flavor, and hence CFL
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Complete change in low energy excitations

I In the CFL phase all fermionic quasi-particle excitations are
gapped due to pairing

I Energy scales µ > 500MeV, ∆ ∼ 10MeV, T ∼ 0.001− 1MeV
where ∆ is proportional to the condensate and is the gap in
the fermionic spectrum

I E =
√

(p − µ)2 + ∆2

I This is the analog of electronic superconductivity where the
electrons form Cooper pairs, and to break a Cooper pair one
needs to supply an energy ∆

I Therefore a hierarchy of scales µ� ∆� T
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EFT for CFL

I Therefore the fermionic contribution to transport properties is
exponentially suppressed e−∆/T

I The gluons are also screened on length scales much shorter
than 1/T

I They can be integrated out and an effective theory based only
on the Goldstone modes is sufficient to describe phenomena
for T � ∆

I U(1)× SUc(3)× SUL(3)× SUR(3)→ Z2 × SUc+L+R(3)

I Ignoring the gauged part of the symmetry breaking, the
breaking pattern of the continuous symmetry is
U(1)× SUL(3)× SUR(3)→ SUL+R(3) Alford, Rajagopal,
Wilczek, (1998)

I This pattern is familiar from chiral symmetry breaking in
vacuum, except for the additional U(1)B
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Mesonic EFT

I

L =
1

4f 2
π

tr[∂0Σ∂0Σ]− v2
π

1

4f 2
π

tr[∂iΣ∂iΣ]

+
1

2f 2
φ

[∂0φ∂0φ]− v2
φ

1

2f 2
φ

[∂iφ∂iφ]

+ c4[(∂0φ)4 + (∂iφ)4 − 2(∂iφ)2(∂0φ)2]

+ c3(∂iφ)2(∂0φ) + ...

(5)

I φ associated with UB(1) breaking

I Σ = exp( it
aπa

fπ
) associated with L− R

I Son, Stephanov (1999), Casalbuoni, Gatto (1999, 2000),
Schaefer (2000)
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Mesonic EFT coefficients

I In perturbation theory to lowest order in g

I f 2
π = 21−8 log(2)

18
µ2

2π2 , vπ = 1/3

I f 2
φ = 9 µ2

2π2 , vφ = 1/3

I c4 = 3
4π2

I c3 = 3µ
π2

I Can include small quark mass corrections in the standard
manner Son, Stephanov (1999), Casalbuoni, Gatto (1999,
2000), Schaefer (2000)
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Scattering of mesons

I An important feature is that mesons only interact via
derivative interactions

I Consequently at least |M| ∝ T 4 for φ

I Manuel, Dobado, Estrada (2005); Mannarelli, Manuel, ’Saad
(2008); Mannarelli, Manuel (2010)

I A detailed calculation gives τ ∝ µ4/T 5

I This corresponds to mean free path larger than the size of the
neutron star: no damping
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Constraints on CFL

I CFL phase is inconsistent with r-mode stability constraints
Manuel, Mannarelli, S’ad (2008), Jaikumar, Rupak (2010)
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Strange quark mass and neutrality

I Ignoring Ms is not a good approximation if µ is not very large

I
√

M2
s + (pFs )2 = µ =⇒ pFs ≈ µ−M2

s /(2µ), but this leaves
an unbalanced positive charge.

I Need to introduce a chemical potential, µe , to restore
neutrality.

I Weak equilibrium implies µd − µs = 0, µd − µu = µe

I Electrical neutrality is imposed by demanding ∂Ω
∂µe

= 0.

I Similarly, color neutrality by desiring ∂Ω
∂µ3,8

= 0
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Neutral unpaired quark matter
I For unpaired quark matter we obtain µe = M2

s /(4µ),
µ3 = µ8 = 0.

Alford, Burgess, Rajagopal (1999)
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Inhomogenoue pairing phases
I Focus on the two flavors u and d
I CFL involves pairing between different flavors

〈u(p)d(−p)〉 ∝ ∆

or in position space

〈u(x)d(x)〉 ∝ ∆

I This is preferred if the Fermi surfaces are equal in size
I An inhomogeneous pairing pattern may be preferred if δµ is

large enough
〈u(p + q)d(−p + q)〉 ∝ ∆

or in position space

〈u(x)d(x)〉 ∝ ∆e i2q·r

Alford, Bowers, Rajagopal (2001). Favoured for µ ∼ 500MeV
for a range of parameters Rajagopal, RS (2005)
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Gapless fermionic modes
I E = −δµ− q cos θ +

√
(p − µ)2 + ∆2

I This dispersion relation has gapless surfaces (if |δµ+ q| < ∆)

60 / 72



Low energy degrees of freedom

I Gapless modes of the u and d quarks

I In general, lattice phonons associated with translational
symmetry breaking

I Gauge bosons of which only transverse gluons, t1, t2, and t3

are relevant because they are long ranged

I The polariziation tensor for these was calculated in RS EPJA
(2017)

61 / 72



Low energy lagrangian

L =
1

2

∑
vF

Ψ†LvF

(
V · ∂ − q cos θ − δµ ∆

∆ Ṽ · ∂ − q cos θ − δµ

)
ΨLvF

+
1

2

∑
vF

gAa
µΨ†LvF

(
V µta 0

0 −Ṽ µta∗

)
ΨLvF

+
cµ
fϕ
∂µϕ

aψ̄LvF γ
µψLvF + (L→ R)

(6)
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Gluonic and Goldstone contribution

I Gluons have a short mean free path and their contribution to
viscosity is subdominant

I Because of scattering off gapless quarks, the contribution of
the Goldstone mode is also sub-dominant

ηφ ∼
1

v3
φ

f 2
φ

µ2
T 3 (7)

I Therefore the dominant contribution comes from quarks

I The dominant scattering mechanism is the exchange of
transverse t1, t2, t3 gluons
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Shear viscosity in the FF phase

I The modification of the density of states is simple —
geometric

I η(0) ≈ µ4

5π2 (1− ∆
q )τ (0)

I τ (0) is related to the collision integral

1

τ (0)
∝ 1

T

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3

|M(12→ 34)|2

(2π)4δ(
∑

pµ)[f1f2(1− f3)(1− f4)]

φabi .Π
(0)
abcd .φ

cd
i

with φabi = vapb, Πijkl = 3
2 (êi êj − δij)(êk êl − δkl)

I Complicated because the distribution functions f depend on
the angles in addition to the magnitude of the momentum.
Needs to be done numerically
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Results for the FF phase

Sarkar, RS (2017); Alford Nishimura Sedrakian [ANS] (2014)
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Conclusions and future work

I Data on the angular velocity of neutron stars puts constraints
on the viscosity of the matter the cores of neutron stars:
possibly suggesting the presence of a (1) deconfined phase
with (2) gapless fermionic excitations

I Crystalline color superconducting phases are natural
candidates for a paired quark matter phase with gapless
excitations. The shear viscosity is even larger compared to
unpaired quark matter in the two flavor case

I Will be interesting to see if results of the full three flavor
problem consistent with the data
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Backup slides
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Bulk viscosities

I Similarly one can calculate the bulk viscosity

I Bulk viscosity is related to particle production during
compression and expansion

I For example expansion will break the weak equilibrium
between u and d . Electro-weak processes changing u to d
re-establish the equilibrium

I ζ = A Γ
Ω2+Γ2 . Has a Lorentzian shape with the peak at Γ = Ω

I Γ ∼ G 2
FT

2µ3 Madsen (1998)
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Favourability of LOFF phases

I The inhomogeneous (FF) phase thermodynamically preferred
state compared to isotropic states for δµ ∼ [0.707, 0.754]∆,
where ∆ is the gap for δµ = 0

I A detailed analysis (Mannarelli, Rajagopal, RS (2005),
Ippolito, Nardulli, Ruggieri (2007)) suggests that for three
flavors 440 . µ . 520MeV an inhomogenous state might be
the ground state. This is the relevant region for neutron star
cores

I We take the simplest phase with only one momentum
direction q

I We only consider two flavors of quarks u and d in this first
analysis
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Intuition for favoured inhomogeneous pairing
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