Highlights from LHC

Kajari Mazumdar, TIFR, Mumbai

Prologue

Not a status report

A small selection of interesting results from ATLAS and CMS only Keeping in mind the organizers' request for reporting deviations!

This talk is based on materials publicly available (by mainly ATLAS & CMS colleagues)

- → Will discuss some results from ATLAS and CMS experiments (personal take)
- → Present personal perspective

Apologies for personal bias for CMS collaboration & if I have missed mentioning your favourite process

19.12.2017

Ode to LHC

proton-proton collisions

Run2: $\sqrt{s} = 13 \text{ TeV}$

- 2015: 2 ~ 4 /fb
- 2016: 2 ~ 40 /fb
- **■** 2017: Highest instantaneous luminosity ever in stable beams $L = 2.05 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ → ∠ ~ 50/fb

CMS Integrated Luminosity, pp.

- ☐ Also had a brief operation with low luminosity needed for precise measurement of W mass.
- Expect excellent productive operation of LHC in 2018 \rightarrow expect \angle ~ 50 /fb

Run1:
$$\sqrt{s} = 7 \text{ TeV}$$
, $\mathcal{L} \sim 6 / \text{fb}$
= 8 TeV, $\mathcal{L} \sim 23 / \text{fb}$

Target of Run2: \angle ~ 140 – 150 /fb

Outstanding performance of LHC machine team

LHC operations in 2017 related to heavy ion studies

Xe-Xe (A=129, Z= 54) collisions:

- → demonstrates the flexibility of the LHC machine
- > Fully stripped Xenon beams
- 2.72 TeV per colliding nucleon
- \square 300 pb⁻¹ in ATLAS and CMS
- **☐** 100 pb⁻¹ in LHCb

- 5 TeV pp run: as reference for HI physics data (lead-lead collision)
- → 2.51 TeV per colliding proton
 - = energy of each colliding nucleon in Pb-Pb run (13 TeV * 82/ 208)

Big motivations for LHC

- 1. Discover or rule out existence of Higgs boson: **√** done in 2012
- 2. Probe physics at TeV energy scale
- 3.

What we all know by now:

Grand success of Standard Model (SM) established from precision data at LEP,
 Tevatron and LHC results so far

Fundamental discoveries in LHC after ~6 yrs.: Higgs boson (s?)

supersymmety?? extra space dimensions??....

- Open problems: mechanism of electroweak symmetry breaking
 - → possibilities: (i) SM
 - (ii)SUSY,...,
 - (iii) Technicolour, Little Higgs, Extra dim.? unification of forces, space-time structure at short distaces

We do not give up and also LHC is here to stay for a long time.

Performance by detectors

- Physics highlights presented in this talk is based on data up to 2016 only.
- No result as yet from 2017 data

19.12.2017

High p_T physics with ATLAS and CMS

High mass di-muon event in CMS: $m_{\mu\mu}$ =2.4 TeV

High mass di-jet event in CMS: $m_{jj} = 7.7 \text{ TeV}$ ATLAS: $m_i j = 9.3 \text{ TeV}$

Though both ATLAS and CMS experiments were designed for high p_T physics, both the experiments are doing extremely well in the area of reasonably low p_T physics \rightarrow will not be covered in this talk; could be discussed in WG sessions.

19.12.2017

Searches for BSM physics

- Cover wide ranges of various final states
- Cover vast range of models
- Experimental searches typically model-independent
- → Look for resonances
- → Look for excess in the tail of distribution or any disagreement.

Knowing ALL SM contribution is of paramount importance

Note signals could be hiding under the bulk!

Interpret results in simplified model scenario

- Bump hunt if X production possible kinematically
- Main issue: estimation of background
 - 2 methods: i) parametrise background shape in sideband regions of resonance by analytic expression.
 - (ii) data driven method → use control region & transfer factor for signal region

Search for resonances: Run2 strategy

March of Standard Model (Theory?)

19.12.2017

10

Diboson productions

Purely weak processes

Gauge bosons produced along with quarks

Electroweak production of dibosons

Single, double, quartic gauge couplings and dominant background

- First observation of same sign WW
- Crucial for establishing role of Higgs in weak gauge boson scattering
- Significance observed (expected) 5.5 (5.7) σ

- In agreement with SM
- BSM contribution would enhance high tail of mjj distribution

CMS-PAS SMP-17-004 arXiv:1709.05822

19.12.2017

Production of ZZ+2j

> 100 GeV

800 1000 1200 1400 1600

ttz. WWZ

 $f_{TR}/\Lambda^4 = 1 \text{ TeV}^4$ $f_{T0}/\Lambda^4 = 2 \text{ TeV}^4$

 m_{77} [GeV]

m_{ii} [GeV]

CMS

Events / bin

CMS

Must bother about the same final state from QCD!

$$\sigma_{\rm EW}({\rm pp} \to ZZ{\rm jj} \to \ell\ell\ell'\ell'{\rm jj}) = 0.40^{+0.21}_{-0.16} \, ({\rm stat}) \, ^{+0.13}_{-0.09} \, ({\rm syst}) \, {\rm fb}$$

Consistent with SM value:

$$0.29^{+0.02}_{-0.03}$$
 fb

$$\mu = 1.39^{+0.72}_{-0.57} \text{ (stat)} ^{+0.46}_{-0.31} \text{ (syst)} = 1.39^{+0.86}_{-0.65}$$

→ Constraint on various anomalous Quartic Gauge Couplings

> SMP-17-006 to PLB arXiv: 1708.02812

600

Measurement of weak mixing angle

Exploit forward-backward asymmetry in Z \rightarrow ee/ $\mu\mu$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta^*)} = A(1 + \cos^2\theta^*) + B\cos\theta^*$$

 $\vartheta^*: \ell^-$ angle in Collins-Soper frame

$$\cos \theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{M^2(M^2 + P_1^2)}} \times \frac{P_z}{|P_z|}$$

$$A_{\mathrm{FB}} = rac{\sigma_{\mathrm{F}} - \sigma_{\mathrm{B}}}{\sigma_{\mathrm{F}} + \sigma_{\mathrm{B}}}, \qquad egin{aligned} v_{\mathrm{f}} & T_{\mathrm{3}}^{\mathrm{f}} - 2Q_{\mathrm{f}}\sin^{2} heta_{\mathrm{W}}, \ a_{\mathrm{f}} & T_{\mathrm{3}}^{\mathrm{f}}, \end{aligned}$$

$$\sin^2 \theta_{\rm W} = 1 - M_{\rm W}^2/M_{\rm Z}^2$$
. $\sin^2 \theta_{\rm eff}^{\rm f} = \kappa_{\rm f} \sin^2 \theta_{\rm W}^2$ $\kappa_{\rm f}$ = electroweak correction

$$\sin^2 \theta_{\rm eff}^{\rm f} = \kappa_{\rm f} \sin^2 \theta_{\rm W}$$

15

$$\begin{split} \sin^2\theta_{eff}^{lept} &= 0.23101 \pm 0.00036(stat) \pm 0.00018(syst) \pm 0.00016(theory) \pm 0.00030(pdf) \\ \sin^2\theta_{eff}^{lept} &= 0.23101 \pm 0.00052. \end{split}$$

- Most precise measurement at LHC
- Lot of efforts on for improvement

CMS-PAS SMP-16-007

Measurement of W-mass

- One of the fundamental inputs to SM ->
- Precise measurement crucially constrains the allowed region in m_t- m_H plane
- Based on simultaneous fit of lepton p_T and transverse mass
- Relies on factorization of Drell-Yan differential distribution for reweighting of individual components.

$$\frac{d\sigma}{dp_1 dp_2} = \frac{\left[\frac{d\sigma(m)}{dm}\right] \left[\frac{d\sigma(y)}{dy}\right] \left[\frac{d\sigma(p_T, y)}{dp_T dy}\left(\frac{d\sigma(y)}{dy}\right)^{-1}\right] \left[(1 + \cos^2 \theta) + \sum_{i=0}^{7} A_i(p_T, y)P_i(\cos \theta, \phi)\right]}{\text{PDFs}}$$
Angular Coeffs

- Important inputs for experimental extraction of M_W
 - → Parton density function
 - \rightarrow modeling of q_T
 - > renormalization and factorization scales
 - \rightarrow accurate calibration of hadronic recoil, lepton p_T
- The challenge ultimately is to reduce *all* systematic uncertainties

ATLAS measurement: total uncertainty = 19 MeV expt. uncert.: 10.6 MeV, theory uncert. 13.6 MeV

Cross section measurement in top-quark sector

Large energy of (Vs = 13 TeV) at LHC opens up possibility for interaction at larger mass scales involving production of multiple heavy particles. 19.12.2017

17

tZq production

CMS-PAS-TOP-16-020

arXiv:1712.02825 ATLAS CONF-2017-052

- Rare SM process (~120 fb)
 - SM tZq probes both tZ and WWZ couplings
 - SM tZq background for:
 - FCNC tZ production,
 - tH final state
 - Study tZq tri-lepton final state:
 - lowest branching fraction (2.2%)
 - high signal to background ratio
- ATLAS: 5.4σ observed (4.2σ expected)
- CMS Evidence: 3.7σ observed (3.1σ expected)
- Hint at Run1: 2.4(1.8) σ

Production of ttW & ttZ

CMS arXiv:1711.02547 to JHEP

background

• Measurement of ttW, ttZ, tt γ couplings: key test of standard model in the gauge sector at

TeV energy scale.

- Main background for ttH and many BSM process
- 3 exclusive analyses:
- i) Same sign dilepton pair for ttW (4.8%)
- ii) 3 lepton for ttZ (2.8%)
- iii) 4 lepton for ttZ (0.5%)

- General good agreement between prediction and data
- Slight excess (2σ) of events in 3lepton final state in categories N_j = 2, 3 and N_b > 1

Note: Excess is not in the most sensitive category Several SUSY analysis has also observed such excess but NOT the ttH analysis

Four top quark production

- Extremely rare process (~10fb)
 - sensitive to ttH coupling and to many to BSM theories
 - Explore same-sign dilepton & multlepton final states

- \triangleright Significance: 1.6 σ observed (1.0 σ expected)
- Cross section: 16.0+13.8-11.4 fb (agrees with SM)
- Constrain the Yukawa coupling of the top quark $|y_t/y_t^{SM}| < 2.1 @ 95\% CL$

Top production in proton-nucleus collision

- Novel probe for nuclear densities at high virtuality in high-x region
- Study of top production in HI collision (in hot and dense medium)
- → good handle of space time structure of QGP in nucleus-nucleus collision
- → probes system size dependence of QGP formed
- 1 isolated lepton, 2 non-b jets, 2 b-tagged jets; Fit m_{ii} to W-mass
- Excess above background matches with NNLO+NNLL accuracy

CMS-HIN-17-002 arXiv: 1709.07411

 σ (tt) = 45± 8 nb

1st observation

Higgs status: post July, 2012:

- LHC results have presented the first idea about the nature of Higgs boson.
- → Everything seems compatible with SM expectations within uncertainties.
- \rightarrow Mass 125.09 ± 0.24 GeV known with precision of 0.2% Spin-parity : $J^p = 0^+$
- → H couplings to gauge bosons: ~ 30% accuracy

- → H decays to 3rd generation fermions (bbar, tau-tau) established
- Numerous searches for signatures beyond SM properties or other Higgs bosons → as yet no sign of new physics.

Qn. Is it *THE* Standard Model Higgs or one of the Higgs of beyond Standard Model physics? A.: we have to wait for precision measurements

Higgs production at 13 TeV and main decays

Presentation of results after accommodating BSM

$$\sigma_i \cdot \mathbf{B}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H},$$

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}} \quad \text{or} \quad \kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j,$$

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{\text{SM}}}{1 - B_{\text{BSM}}}$$

bb - 57% of decays

 Large branching fraction but also has a large background rate

WW - 21% of decays

 Large number of events, complicated kinematics

gg - 9%

ττ - 6%

 Accessible with good τ Identification and Acquisition

cc - 3%

ZZ - 3 %

 Very pure final state, low Yield, discovery channel!

νν - 0.2%

 Well parameterized background, discovery channel!

Run1 measurements for Higgs

(Production cross section) * (decay branching ratio) compared with SM

ATLAS: $H \rightarrow ZZ^* \rightarrow 4I$

$$\mu = 1.28^{+0.18}_{-0.17} (\text{stat.})^{+0.08}_{-0.06} (\text{exp.})^{+0.08}_{-0.06} (\text{th.}) = 1.28^{+0.21}_{-0.19}$$

- 2σ excess in VBF production mode
- In both low and high p_T categories
- Constrain BSM: CP-even and CP-odd couplings to Z and CP-odd to gluons, using effective Lagrangian.

CMS does not find any excess in same channel: HIG-17-012

H sector: coupling to fermions

Established H → ττ

Combined (ATLAS + CMS; 7 + 8 + 13 TeV) : 5.9 σ significance

 $\mu = 0.98 \pm 0.18$

From a single experiment (CMS) with **4.9** σ significance

 $\sigma^* Br(H \rightarrow \tau \tau) = 1.09 + 0.27 - 0.26 \text{ fb}$

Evidence for $H \rightarrow bb$

ATLAS arXiv: 1708.03299

CMS arXiv 1708.00373

ttH measurement

Large Yukawa coupling yt ~
But ttH production rate ~ 1% of ggH

- → needs more time for better measurements
- Experimentally: ttH is a difficult measurement
- Very low cross section ~ 0.5 pb
- Irreducible backgrounds: →ttbb: ~ 15 pb, ttW, ttZ:~ 1.5 pb

Many final states accessible:

tt \rightarrow 1l, 2l, H \rightarrow bb, WW, ZZ, $\tau\tau$, $\gamma\gamma$

19.12.2017

ttH, ATLAS

ATLAS-CONF-2017-076

Run1 saw some excess in ttH

Use boosted jets

ttH process established with significance of 2.8 (expected 1.8)

ttH,, CMS

multilepton final states

Category	Observed μ fit $\pm 1\sigma$
Same-sign di-lepton	1.7(-0.5)(+0.6)
Three lepton	1.0(-0.7)(+0.8)
Four lepton	0.9(-1.6)(+2.3)
Combined (2016 data)	1.5(-0.5)(+0.5)
Combined (2015 data) [42]	0.6(-1.1)(+1.4)
Combined (2015+2016 data)	1.5(-0.5)(+0.5)

3.3(2.5) σ obs. (exp.) μ = 1.5 ±0.5 (1.0± 0.4)

$H\rightarrow bb, \tau\tau$	
9 000000	e*, µ
3 33333	⁶
g 0000000	Н
9 0000000	W. C.
	б

		Ξ
Category	Observed	Expected
3 jets, 2 b-tags	186.0	$114.8^{+52.6}_{-34.1}$
\geq 3 jets, 3 b-tags	104.9	$48.6^{+26.2}_{-15.9}$
\geq 4 jets, 2 b-tags	32.4	$40.1^{+16.8}_{-11.3}$
\geq 4 jets, 3 b-tags	7.4	$10.8^{+5.2}_{-3.3}$
≥ 4 jets, ≥ 4 b-tags	9.1	$12.2^{+7.5}_{-4.3}$
dilepton combined	5.2	$7.7^{+3.6}_{-2.3}$

Sign of top-H coupling

- $\sigma(ttH) \sim (coupling)^2$
- tHq final state: 2 processes → Interference term reveals the sign of ttH coupling

- SM: destructive coupling leads to small rate ~ 70 fb
- → too small to establish observation with present data
- BSM: large (X 10 SM) enhancement for inverted coupling
- Obs. (exp.) upper limit on σ = 0.56 (0.24) pb
- $\mu = 1.82 \pm 0.73$
- Event sample dominated by contribution from ttH
- Constraints on κ_f

ggH, H →μμ

HIG-17-019

Clean channel, inundated by DY background

SM Branching ratio: $2.2*10^{-4}$, data: $< 5.7*10^{-4}$

CMS: Observed (exp.) rate < 2.64 (1.89) $*\sigma_{SM}$

(by combining 7+8+13 TeV data)

ATLAS: observed (expected): 2.8 (2.9) * σ_{SM}

CMS: H $\rightarrow \gamma \gamma$

All categories combined:

$$\widehat{\mu} = 1.16^{+0.15}_{-0.14} = 1.16^{+0.11}_{-0.10} \text{ (stat.) } ^{+0.09}_{-0.08} \text{ (syst.)}$$

CMS HIG-17-018

Low mass $H \rightarrow \gamma \gamma$

- BSM models like NMSSM, 2HDM accommodates a scalar with mass below 125 GeV
- LEP data had hints of such a particle
- Standard H \rightarrow $\gamma\gamma$ analysis, but in a challenging region of $m_{\gamma\gamma}$: 70-110 GeV \rightarrow use $\Delta m_{\gamma\gamma}$ = 100 MeV
- Improvement in trigger led to lowering the search region from 80 GeV (8 TeV) to 70 GeV (13 TeV)
- Mild excess observed

13 TeV: $^{\sim}2.9\sigma$ local (1.47 σ global) significance

@ 95.3 GeV

8 TeV: $\sim 2\sigma$ local significance @ 97.6 GeV

Combined: $^{\sim}2.8\sigma$ local (1.3 σ global) significance @95.3 GeV

Need more data to settle

Invisible Higgs

Data volume delivered by LHC

still limited precision

→ lee way to accommodate H(inv)

Determination of Higgs total decay width provide indirect constraint on invisible decay.

Run1: B_{BSM} < 0.34 @ 95% confidence limit

Direct measurement is more sensitive, allows "direct production" of DM at LHC!

Experimental "tag/identification": need a "visible" system recoiling against Et(miss)

→ use all production processes

VBF process more sensitive: Results from 2016 data (36 /fb) coming soon

 $Z \rightarrow \ell^+\ell^-$ H(inv): $\mathcal{B}(H(inv)) = 0.45$ (0.40) from shape (MVA) analysis

(i) $gg \rightarrow g+H(inv)$ and (ii) $W/Z(\rightarrow jets)+H(inv)$ combined : $\mathcal{E}(H(inv))=0.53$

Run1 + Run2 (partial): $\mathcal{B}(H\rightarrow inv.) < 0.24 (0.23)$ at 95% CL, assuming SM production

Interpretation in Higgs-portal model

- JHEP 02 (2017) 135 SM particles communicate with dark matter particles via Higgs & tree level coupling → invisible decay of H (produced acc. to SM)
- Interpretation of limit in terms of spin-independent DM-nucleon cross section.
- Assumption: nature of DM particle either scalar or fermion; + effective interaction does not depend on spin
- Use 90% CL to compare with constraints from direct detection $\rightarrow \mathcal{B}(H(inv)) < 0.20$

$$\sigma_{\rm S-N}^{\rm SI} = \frac{4\Gamma_{\rm inv}}{m_{\rm H}^3 v^2 \beta} \frac{m_{\rm N}^4 f_{\rm N}^2}{(m_{\chi} + m_{\rm N})^2}$$

$$\sigma_{\rm f-N}^{\rm SI} = \frac{8\Gamma_{\rm inv} m_{\chi}^2}{m_{\rm H}^5 v^2 \beta^3} \frac{m_{\rm N}^4 f_{\rm N}^2}{(m_{\chi} + m_{\rm N})^2}$$

 $f_{\rm N}$: nuclear form factor = [0.260, 0.629]

LHC sensitivity for low mass DM below ~ 10 GeV DM mass [GeV]

 $B(H \rightarrow inv) < 0.20$

90% CL limits

HIG-17-009

Double Higgs Production: HH→4b

- Gives direct access to its self-coupling & probes the EWSB potential.
- SM: extremely low rate for HH production
- Significantly enhanced in many BSM scenarios
- Resonant production of new narrow width states: $X \rightarrow HH$: Identify m_X using resolved b-jets
- → (N)MSSM (~300-500 GeV),
- → Extra dimensions (>500 GeV)
- Four b quark signature: X→HH→bbbb
- Limits on spin 0 & spin 2 (KK-graviton) resonances:
 300 < m_X < 1100 GeV (observed)

V(qq)H(bb) resonances

- Motivation: composite Higgs, Little Higgs models, ...
- Interpretation in simplified model: Heavy Vector Triplet

- (ii) decay to branchings suppressed, as in Little Higgs model
- Trigger on single fat jet (fully efficient for pT> 450 GeV)
- Jet substructure technique on anti-kT R=1 jet to identify V & H

ATLAS-CONF-2017-018

SUSY particle searches

Huge progress in refining strategy for searches:

→ Typically inclusive

but broad searches may leave gaps in sensitivity for difficult regions

→ Sophisticated analysis techniques

→ Robust background estimation

→ Techniques for comprehensive interpretation evolving continuously.

Evolution of gluino mass search

- Use Simplified Model Spectrum (SMS) to interpret specific final state
- New strategies to push beyond: boosted and long-lived signatures

SUSY particle cross sections

Search for squark, gluino, stop, sbottom

- Gluinos (squarks) excluded < 2(1.6) TeV
- But squarks excluded < 1 TeV, if only one squark is light.

 arXiv: 1708.09266
- stop > 950 GeV, sbottom > 1.2 TeV
- LSP < 1 TeV (800 GeV)

Electroweak production of SUSY particles

- Exclude chargino, neutralino below 600 (750) GeV in decay through τ (stau)
- exclude masses below 1150 GeV when considering flavour symmetric decays and large mass splitting
- Exclude masses up to 650 GeV for various combinations of branching ratios for decays with W/Z/H bosons in final states.

 40

SUSY search in dilepton final state

Run1 recap: observed excess in m(II) distribution → ATLAS: on-Z, CMS: off-Z

Eur. Phys. J.C75 (2015) 318 JHEP 04 (2015) 124

Run2: 2016 data → no excess observed by either

Beyond vanilla SUSY

Search for long lived particles

ATLAS CONF-2017-017

CMS arXiv: 1710. 07170

Different topologies possible:

Ex.: Chargino nearly degenerate with a neutralino (wino like LSP)

→ long-lived → disappearing track for Ch. → neu. + pion

typical lifetime \sim 0.2 ns ($c\tau$ = 6 cm) Gluino search may be more sensitive.

Lepton number violation in LSP decays

JHEP 09 (2017) 88

Exclude gluino masses < 1.8 TeV

ATLAS CONF-2016-075

 Exclude chargino, neutralino masses < 1.1 TeV

Baryon number violation

Excluded stop mass [100, 470]GeV

Search for long lived particles

disappearing track

- Signature: Disappearing track + missing energy
- Need tracking at large radius

Search	Final State	Sensitivity	References
Direct search for charged LLPs	disappearing track + E _T ^{miss} + 1 / 4 jets (ISR / gluino decays)	exclude m($\tilde{\chi}_1^{\pm}$) < 460 GeV for Δ m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^{0}$) =160 MeV	1712.02118
Search for LLP decay products	displaced vertex (≥5 tracks) + E _T ^{miss}	probe 1.8 - 2.4 TeV gluinos with $\tau \sim O(10^{-2})$ - $O(10)$ ns	1710.04901

Exclude: pure wino up to 460 GeV

Limits, and limits and limits

Stau production

Higgsino search in gauge-mediated scenario

Accumulated data is not yet enough

R-parity violation

mass region excluded: 230 to 770 GeV

Dijet resonances

Classic signature with maximal reach → best exclusion limits (@95% CL)

CMS arXiv:1708.9986 CMS PAS: EXO-16-056, CMS PAS-16-032,

arXiv: 1611.03568

- Best limits so far •
- Excited quarks m_{q'} > 6.0 TeV (exp.: 5.8 TeV)
 - Additional gauge boson m_W' > 6.0 TeV (exp.: 5.8 TeV)
 - Quantum black hole m_{BH} > 8.9 TeV (exp.: 8.9 TeV)
 - Axigluon/colouron > 6.1 TeV (exp.: 6.0 TeV)
 - String > 7.7 TeV (exp.: 7.7 TeV)
 - RS graviton $(k/M_{Pl} = 0.1) > 1.7 \text{ TeV (exp.: } 2.1 \text{ TeV)}$

Dilepton resonances

Search for narrow resonances in invariant mass distribution of dileptons

above Standard Model background

Z' SSM $m_{Z''}$ > 4.5 TeV, sequential gauge bosons

 $Z' SSM m_{Z''} > 2.1 TeV$

For models with enhanced coupling to 3rd generation

W' SSM $m_{W''}$ > 5.11 TeV

Z' Ψ $m_{7''}$ > 3.7 TeV

ATLAS CONF-2017-027 ATLAS CONF-2017-016

Phys. Lett. B 761 (2016) 372-392

CMS JHEP 02 (2017) 048 CMS PAS-EXO-16-008

CMS arXiv: 1611.06594

Search for dark matter in mono-X final states

- X could be jet, lepton, W, Z, H
- Dark matter may couple to SM particles via a mediator which ATLAS CONF-2017-060
 - communicates with SM particles
- → mediator with interaction of type Vector, axial-vector,...
- For vector and axial vector type interaction
- Excluded DM mass: 400 600 GeV, mediator mass 1.6 to 1.8 TeV

Make it

47

CMS PAS: EXO-16-048

Mono-mania

Retrospect & prospect

- Big ideas are highly constrained by experimental data
- It is not clear if LHC will solve the problem of fine tuning, reveal the nature of dark matter, etc. → no guarantee for a positive answer.

Q.: What important questions can LHC resolve?

A.: precision as a requirement: essential to address some of the above.

High-luminosity LHC operation at 14 TeV will provide $L \sim 3/ab$ by 2030 to extract the full potential of this broad-band machine.

- → HL-LHC as Higgs factory will allow precision measurements of Higgs sector
- → Rare decay modes of Higgs will be accessible.
- → Role of Higgs to be established for W₁ W₁ scattering
- → Study of Standard Model processes high energies to explore electric dipole moment etc.

Need almost completely new detectors: ATLAS and CMS

→ Miles to go before we sleep

Higgs self-coupling

- Measuring the Higgs self-coupling is the key point to prove the electroweak symmetry breaking mechanism
- Observing two Higgs boson in the event is the only way to probe the self coupling.
- Accurate measurement may indicate the extension of Higgs sector, if any.

Higgs potential

 SM production rate of double Higgs is small, signal interfere with background destructively.

- → Enhancement possible through resonant production of H → hh in MSSM, NMSSM, 2HDM, Higgs portal model etc.
- → Very good prospect for HL-LHC: rate at 14 TeV (NNLO): 40.2 fb
- $bb\gamma\gamma$: small rate but relatively clean signature

LHC machine timeline: extraction of full potential is top priority

Run3:

Integrated lumi ≥ 300 /fb by 2022

HL-LHC:

- Lumi-level at 5x design,
- PU=140 / 200
- integrated lumi nosity: 3000 -5000 /fb

What will LHC bring, for sure, in future?

Run2: observation of H→ bb (Yukawa coupling)

Run2/3: observation of ttH process: (Yukawa coupling)

HL-LHC: observation of H $\rightarrow \mu\mu$ (2nd generation Yukawa)

HL-LHC: Higgs width → with 50% accuracy (BSM constraint)

HL-LHC: $H \rightarrow$ invisible < 10% (BSM constraint)

HL-LHC: $gg \rightarrow HH$ (Higgs potential)

HL-LHC: Hcc coupling (2nd generation Yukawa)

- Additionally, X300 sensitivity to rare decays involving new physics.
- Higgs coupling modifier (κ_{μ}) to 5% , H $\to\mu\mu$ signal strength $(\sigma_{\rm meas}/\sigma_{\rm SM})$ to 10%
- Precision measurement of gauge-Higgs couplings across broad kinematics
- → can potentially probe (i) existence of new physics in loops or

(ii) non-fundamental nature of Higgs or

(iii) confirm non-trivial aspects of Higgs sector, including knowledge of H potential.

- Updates used in the extrapolation:
 - Di-photon mass resolution (include ECAL ageing after 1000 fb⁻¹of collected data),
 convoluted with expected gain from regression (as in Run2) and at 200 PU scenario
 - Improvement in b-tagging gives a signal efficiency increase of 15%
- A significance of 1.9 standard deviations is expected in CMS with 3000 fb⁻¹
 - Further improvements are anticipated account for improvements that can be gained from precision timing information in ECAL and the tracker

3σ "evidence" of di-Higgs production can be reached by combining all channels in CMS & ATLAS.

Prospect of SUSY searches at HL-LHC

A large number of SUSY scenarios need large integrated luminosity

Direct staus

Discovery up to ~ 500 GeV

Electroweak SUSY with Higgs

Discovery up to ~ 800 geV

Hidden stops

Discovery up to ~ 500 GeV

- Discovery potential extended by several hundred GeV for pair produced squarks, gluinos
- Gain more for chargino-neutralino production
 → Discovery reach up to 850 GeV with 3/ab
- Di-stau production: discovery ~ 520 GeV with 3/ab

CMS PAS SUS-14-012 ATLAS PHYS-PUB-2014-010

What is needed other than luminosity?

- Note LHC has delivered only ~ 1% of total data to be delivered by 2030s.
- Study of H $\rightarrow \mu\mu$ is in purely experimental domain
- But in some cases like measurement of Hcc, or triple Higgs coupling precision in both theory and experiment are essential

Naïve extrapolation of Run1 results, based on integrated luminosity and σ (ATLAS + CMS combined) \rightarrow need to aim for accuracy better than $\mathcal{O}(1\%)$, to be able to benefit from the high statistics data of HL-LHC.

 Search for BSM has turned out to be a marathon, though we expected to be a sprint until a few years back!

Thought/provocations in the context of this workshop

The holy books in LHC community

- Great collaboration between experimental
 theoretical communities has made the
 LHC community highly vibrant compared to
 the activities of a single type
- → More credibility of LHC related studies
- How can we be more part of CERN activities related to LHC?
 - -- Lot of working groups formed under broad categorization: Higgs, SM, FSQ, ...
 - -- Regular publication of yellow reports as the guidance to both experiment and theory communities.
- New activities recently started for studying the potential of high luminosity LHC.
 - -- lot of opportunities for substantial contribution and visibility

Example: industry for SM processes

- Calculating the rates with precision pays in the long run; eg. W, Z, t, H
- Higher order corrections enhance the cross section and also modify kinematics in final state → both equally important for BSM searches
- Higgs cross section correct to α_s^2 (N2LO) in 2013
- N3LO in 2016, involving more than 10k diagrams → sophisticated tools have made the required time to result reasonably small
- Drell-Yan, inclusive top pair processes are all equally crucial
- Note N4LO (in α_s) estimate for ggH may not be forthcoming in a while improvements in electroweak corrections start to become significant at high energies.
- Improvement in PDF (N3LO) highly desirable in near future?
- At higher energies multiple heavy particles are produced even at tree level:
 need to know their rates

Conclusion

- Current era of LHC is marked by triumph of SM Higgs
- SM will continue to rule strong even after BSM appears eventually
- Investing efforts in SM related works, even partly, will be prudent IMHO.

Extensive search for new physics

- → Continuing benchmark studies and exploring new strategies
- → By now the era of large jumps in energy or luminosity is over.
- → A lot more needs to be done by consolidation and widening the strategies.

backup

ATLAS: $H \rightarrow ZZ^* \rightarrow 4I$

Study tensor stricture of Higgs coupling to vector bosons in terms of effective coupling

$$\mathcal{L}_{0}^{V} = \left\{ \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right.$$

$$\left. - \frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right.$$

Signal composition in different categories

ATLAS definition of phase-space regions in Higgs analyses

$$(\sigma \cdot BR)(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

i = production mode; f = decay channel; $\Gamma_H = total width = sum of all partial widths$

The signal yield in category k, n_{signal}(k) is computed as:

$$\mu_i = \frac{\sigma_i}{\sigma_i^{\text{SM}}} \quad \text{and} \quad \mu^f = \frac{BR^f}{BR_{\text{SM}}^f}.$$

$$\begin{split} n_{\text{signal}}(k) &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}^{f} \right\}, \\ &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}^{f}_{\text{SM}} \right\} \\ &\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \text{Efficiency} \\ \text{Luminosity} \quad \text{modifiers} \quad \text{Acceptance} \end{split}$$

Parametrization defined by the LHC Higgs cross section working group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Coupling modifiers: "k-framework" (kappa-framework) = multipliers at amplitude level introduced to parametrise possible deviation from SM. They are defined as

$$\kappa_j^2 = \sigma_j / \sigma_j^{SM} \quad \text{or} \quad \kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$$

$$\kappa_H^2 = \sum_j BR_{SM}^j \kappa_j^2 \qquad \Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}}$$

Sensitive to interference effect in loops e.g. negative interference between:

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	✓	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_{CERN-PH-2016-1}^{}$
$\sigma(VBF)$	-	-	-	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-		κ_W^2
$\sigma(qq/qg\to ZH)$	-	-		κ_Z^2
$\sigma(gg\to ZH)$	✓	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_		κ_t^2
$\sigma(gb\to tHW)$	_	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \to tHq)$	-	t– W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	-		$\kappa_{\rm Z}^2$
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	✓	t– W	κ_{ν}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{\tau\tau}$	_	_	,	κ_{τ}^2
Γ^{bb}	_	_		κ_b^2
$\Gamma^{\mu\mu}$	-	-		κ_b^2 κ_μ^2
Total width (B _{BSM} =	0)			<u>. </u>
Γ_H	./	_	κ_H^2	$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 + 0.06 \cdot \kappa_\tau^2 + 0.03 \cdot \kappa_c^2 + 0.03 \cdot \kappa_c^2 +$
• H	٧	_	*H	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_\mu^2$

[&]quot;Make It" - WIMP production searches LHC

[&]quot;Break It" - WIMP Annihilation searches - astrophysical gamma-ray searches

[&]quot;Shake It" - Direct DM searches underground

Diphoton differential cross section

ATLAS arXiv;1704.03839

Fiducial cross section and differential distributions compared to several fixed-order and ME+PS generators

Search for new physics

- Countably infinite number of models for physics beyond standard model has been proposed during last 30 years.
- LHC experiments are keeping no stone unturned.
- Broad categorization:
 - → Supersymmetry
 - → Dark matter
 - → Long-lived particles
 - → New heavy resonances
- Searches are tuned on specific final states
- → inclusive single/double (opposite sign, same sign) or multiple leptons
- → fully hadronic
- → b-tagged jets
- → Fat jets with substructures
- Consider only SM processes as backgrounds in any search
- → Lie in the tail of distributions: difficult to determine from simulations
- → Use control regions in data and transfer factors to signal region

Detector performance at HL-LHC (Phase II upgraded CMS detector

Motto: at least maintain current performance of physics objects

Electron positron collider at LHC?

- Strip Pb ions partially to get 1S e- knocked out and collide with proton
- CM energy =120 GeV ~ HERA range of DIS
- Boost of CM frame wrt lab: y = 4.4
- Accessible Q2 < few GeV2
- CMS very forward detector is capable for triggering on 1 GeV electron.
- Central acceptance of |η|<3 ideal
- Covered kinamtcs:
- Bjorken x over 5 orders of magnitude
- Q^2 over 3 orders in perturbative region

Transverse slice of CMS detector

- Particle flow reconstruction algorithm
- \rightarrow Utilise info from all parts of detector to reconstruct individual final state particles(γ , e, μ), jets, missing Et .
- Anti-kt (Cambridge-aachen) jet clustering , R=0.4 (0.8)
- b-jet: combined secondary vertex
- Hadronically decaying τ : sum of all pT within cone of R=0.3 should be <5 GeV

Coupling modifiers

$$\sigma_i \cdot \mathbf{B}^f = \frac{\sigma_i(\vec{k}) \cdot \Gamma^f(\vec{k})}{\Gamma_H}$$

If couplings are modified

$$\kappa_H^2 = \sum_j \mathbf{B}_{SM}^j \kappa_j^2$$

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}} \quad \text{or} \quad \kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$$

If only SM decays are allowed.

$$\kappa_H^2 = \Gamma_H / \Gamma_H^{\text{SM}}$$

$$\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{\text{SM}}}{1 - B_{\text{RSM}}}$$

CMS: MSSM H $\rightarrow \tau\tau$

Event categories

Excluded: m_A < 250 GeV for tan $\beta > 6$ $m_A > 1.6$ TeV for tan $\beta > 60$ Data allows low values of tan β in hMSSM

R-parity conserving electro-weakino production

Search	Final State	Limits	References
ewkino 2ℓ/3ℓ	2/3 leptons + MET	max. reach $m_{N2/C1} \sim 1150$ GeV (light sleptons), $m_{N2/C1} \sim 580$ GeV (no light sleptons)	ATLAS-CONF-2017-039
ewkino 2τ _{had}	2τ _{had} + MET	m _{N2/C1} ~ 580 GeV (light staus)	1708.07875
ewkino 4ℓ [13 fb ⁻¹]	$4\ell~(\leq\!\!2\tau_{\rm had}) + ({\sf MET~or~m_{eff}})$	probe up to 1.1 TeV RPV winos	ATLAS-CONF-2016-075
compressed higgsino LSPs	soft e ⁺ e ⁻ / μ ⁺ μ ⁻ + jet(s) + MET	μ > 100 (130) GeV for Δ m($\widetilde{\chi}^0_2$, $\widetilde{\chi}^0_1$) = 3 (5) GeV	SUSY-2016-25
compressed slepton NLSPs	soft $\ell^+\ell^-$ + jet(s) + MET	$m_{\widetilde{\ell}} > 70$ (180) GeV for $\Delta m(\ \widetilde{\ell}\ ,\ \widetilde{\chi}_1^0) = 1$ (5) GeV	
GMSB higgsino NLSPs	4b + MET	exclude μ between 130-230 GeV and 290-880 GeV for BF($\widetilde{h} \rightarrow h$ \widetilde{G}) = 1	ATLAS-CONF-2017-081
ultra-compressed higgsinos	disappearing track + jet + MET	exclude charged higgsinos up to 152 GeV	ATL-PHYS-PUB-2017-019 (reinterpretation of 1712.02118)
GMSB with photons	γ / γγ + MET	probe up to 1.2 TeV charginos/neutralinos	ATLAS-CONF-2017-080

- Multiple possibilities considered.
- No luck in any
- Stau production rate too low
- → need more data
- Chargino, neutralino decays
- → via slepton
- → W, Z, H in the final state

Possible due to abundance of LHC data

Production in GMSB

Search for 3rd generation SUSY particles

Search	Final State	Max Mass Reach [GeV]	References
sbottom	2 b-jets + MET	950 GeV (stop) 860 GeV (sbottom)	1708.09266
stop 0L	00 + b-jets + MET	950 GeV	1709.04183
stop 1& with DM+HF	10 + jets + MET	950 GeV	1711.11520
stop 20	2l + MET (+ jets)	720 GeV	1708.03247
stops with Z/h	1 / 2 / 31/2 + b-jets + MET	870 GeV	JHEP08 (2017) 006
stop→stau	2l + MET (+ jets)	1160 GeV	ATLAS-CONF-2017-079

