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Introduction

Primary focus

To understand the ways in which it may be possible (or NOT) to accommodate
quantum theory in a deeper picture of “reality”.

Classical vs Quantum view

Classical view: The physical properties have an existence independent of
observation. Measurements merely act to reveal such physical properties.

Quantum view: An unobserved particle does not possess physical properties that
exist independent of observation. Rather, such physical properties arise as a
consequence of measurements performed upon the system.

This quantum view of Nature was rejected by many physicists, in particular by
Albert Einstein.
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Introduction

EPR

In the famous “EPR paper” in 1935, with Nathan Rosen and Boris Podolsky,
Einstein proposed a thought experiment which, according to him,
demonstrated that quantum mechanics is not a complete theory of Nature.

According to EPR an element of reality must be represented in any complete
physical theory =⇒ it must be possible to predict with certainty the value
any physical property will have, immediately before measurement.

I recall that during one walk Einstein suddenly stopped, turned to me and
asked whether I really believed that the moon exists only when I look at
it. The rest of this walk was devoted to a discussion of what a physicist
should mean by the term “to exist”.

– Abraham Pais
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Introduction

Most physicists did not accept the EPR reasoning as convincing: The attempt to
impose on Nature by fiat properties which she must obey seems a most peculiar
way of studying her laws. Indeed, Nature has had the last laugh on EPR.

In 1964 John Belle formulated a mathematical statement in the form of
inequalities which were based on following two assumptions (which the critics of
quantum theory wanted to incorporate into the modified version of QM):

Realism & Locality

Realism: A system has well defined values of an observable whether someone
measures it or not. Measurement process simply reveals these values to us.
Locality: A measurement made on a system cannot influence other systems
instantaneously.

These assumptions are collectively known as the assumptions of local realism.

[For details: “Quantum Computation and Quantum Information” by M. A.
Nielsen & I. L. Chuang]
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Introduction

A system that can be described by a local realistic theory will satisfy this
inequality.

However, quantum mechanics, and indeed Nature, seems to take delight in
violating it ! =⇒ It turns out that Nature experimentally invalidates that
point of view, while agreeing with quantum mechanics [A. Aspect et. al.
(1981, 1982)].

What can we learn from Bells inequality violation?

The most important lesson is that our deeply held common sense intuitions about
how the world works are wrong =⇒ The world is not locally realistic.
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Leggett Garg inequality

The Leggett-Garg inequality (LGI) was introduced as a means of putting to
experimental test a world-view which Leggett and Garg called Macroscopic
Realism.

Macroscopic Realism is the doctrine that a macroscopic system is always
determinately in one or other of the macroscopically distinguishable states
available to it, and so is never in a superposition of these states =⇒ No
funny-business of quantum superposition is permitted at the macroscopic
level.

LGI was derived to allow experimental test of whether or not this doctrine is true.

If the violation of the LGI can be demonstrated on the macroscopic scale, this
would challenge the notion of realism even at the macroscopic level.

LGI bears strong formal analogies to Bell-inequalities: In a Bell-inequality one
considers measurements occurring on two (or more) systems at spacelike sepa-
ration, in a LGI, one considers repeated measurements, at different times, of a
single observable, on a single system: a timelike, rather than a spacelike separation
between measurements.

For this reason, LGIs have often come to be called temporal Bell-inequalities.
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Leggett-Garg inequality
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Leggett-Garg Inequality

Leggett and Garg begin their discussion by emphasizing that:

“Despite sixty years of schooling in quantum mechanics, most physicists have a
very non-quantum-mechanical notion of reality at the macroscopic level, which
implicitly makes two assumptions:

Assumptions

Macroscopic realism (MR): A macroscopic system with two or more
macroscopically distinct states available to it will at all times be in one or the
other of these states.

Non-Invasive measurability (NIM): It is possible, in principle, to determine the
state of the system with arbitrarily small perturbation on its subsequent
dynamics.

A direct extrapolation of quantum mechanics to the macroscopic level denies
this.”

Goals of LGI tests: To test“realism”, the notion that physical systems possess

complete sets of definite values for various parameters prior to, and independent

of, measurement and to demonstrate that QM applies on macroscopic scales up

to the level at which many-particle systems exhibit decoherence.
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Two Time Correlations

Dichotomic observable: Q = ±1

Two time correlation functions Cij =
1

N

N∑
q=1

〈Qq
i Q

q
j 〉

q → over an ensemble
−1 ≤ Cij ≤ 1
Cij = 1 =⇒ Perfectly correlated
Cij = −1 =⇒ Perfectly anti-correlated
Cij = 0 =⇒ No correlation

Macrorealism restricts the following combination of two time correlation
functions:

K3 = C12 + C23 − C13

= 〈Q1Q2〉+ 〈Q2Q3〉 − 〈Q1Q3〉
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Two Time Correlations

K3 = 〈Q1Q2〉+ 〈
[
Q2 − Q1

]
Q3〉 =

{
1 + 0 = 1

−1 + (±2) = 1 or − 3

=⇒ −3 ≤ K3 ≤ 1 ←− LGI for 3 time measurement scenario

−3 ≤ C12 + C23 − C13 ≤ 1

This is the LGI, in one of its standard forms. It will be satisfied if the special
conditions of macroscopic realism and noninvasive measurability hold. Leggett and
Garg go on to show that it can readily be violated in quantum mechanics.

LGI violations imply that hidden-variable (or “realistic”) alternatives to quantum
mechanics cannot adequately describe a system’s time evolution.

Four time measurement:

−2 ≤ C12 + C23 + C34 − C14 ≤ 2
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Quantum correlations in particle physics

Motivation

The foundations of quantum mechanics are usually studied in optical or electronic
systems where the interplay between the various measures of quantum correlations is
well known.

Inspired by the recent technical advances in high energy physics experiments, in
particular the neutrino oscillations experiments and B-factories, this quest has now
been directed towards mesons and neutrinos.

The detection efficiency is much higher than that of the corresponding detectors

used in optical or electronic systems [Bramon et.al. (2006)].

Quantum correlations in meson systems

[Bramon-Nowakowski (1999)]: Bell-inequalities for Entangled Neutral Kaons were
set up.

[Genovese et. al. (2001); Bramonet. al. (2005); Nikitin (2015)]: Several exper-
imental proposals to test Bell-inequalities for entangled mesons were proposed.

[Banerjee-Alok-MacKenzie (2016)]: Interplay between various measures of quan-

tum correlations for the entangled mesons were studied. It was shown that quan-

tum correlations here can be nontrivially different from their stable counterparts.
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Quantum correlations in particle physics

Quantum correlations in neutrinos

[Alok-Banerjee-Uma Sankar (2016)]: It was shown that various measures
of quantum correlations can be expressed in terms of neutrino oscillation
probabilities.

[Formaggio et. al. (2016)]: LG-type inequalities were studied in the context
of two flavor neutrino oscillations. Using MINOS experimental data, it was
shown that neutrino oscillations demonstrate a violation of the classical
limits imposed by the LG-type inequality.

[Naikoo-Alok-Banerjee-Uma Sankar-Guarnieri-Hiesmayr (2017)]: LG-type
inequalities were studied in the context of three flavor neutrino oscillations.
LG-type inequalities were constructed in terms of neutrino transition prob-
abilities. It was shown that these inequalities are sensitive to CP violating
phase and sign of ∆31.
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Quantum correlations in particle physics

Decoherence effects in flavor and neutrino physics

[Farzan-Schwetz-Smirnov (2008)]: It was shown that LSND data could be
explained without sterile neutrino if we include decoherence effects.

[Mavromatos et. al. (2008)]: Potential of the CNGS and J-PARC beams in
constraining models of quantum-gravity induced decoherence using neutrino
oscillations were discussed.

[Alok-Banerjee-Uma Sankar (2015)]: Effect of decoherence on important
quantities of the Bd system, such as sin 2β and ∆Md were studied. It
was shown that the values of these two quantities are modulated by the
decoherence parameter. An upper bound on this parameter was obtained
using Belle data.
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Leggett-Garg Inequality for Neutrinos
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LG Inequality: Three flavor neutrino oscillations

Let the initial state of neutrino be prepared in a specific flavor |νinitial〉 = |να〉
(α = e/µ/τ).

We use the dichotomic observable Q̂ = 2 |να〉 〈να| − 1 =⇒ Q = ±1 i.e., we
ask whether the neutrino is still in the state |να〉 (Q = 1) or has undergone a
transition to another flavor state |νβ〉 (Q = -1).

We then develop the two time correlation function Cij = 〈Q̂(ti )Q̂(tj)〉,

C0t = 4δαβ〈να(t)|νβ〉〈νβ |να(t)〉 − 2〈να(t)|νβ〉〈νβ |να(t)〉 − 2δαβ + 1.

The LG parameter is calculated to be (for initial state |νµ〉)

K3 = 1− 4Pµ→e(t) + 4α′(t)Pµ→e(2t) + 4β′(t)

α′(t) and β′(t) ← non measurable quantities

LGIs cannot be expressed in terms of the experimentally measurable neutrino
oscillation probabilities.
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LG-type Inequality: Three flavor neutrino oscillations

In order to bypass this difficulty and obtain experimentally testable inequality, the
assumption of NIM could be replaced by a weaker condition of Stationarity
[Huelga et. al. (1995)].

With this assumption, C(ti , tj) only depends on the time difference tj − ti ,
this leading to the following simplification, known as Leggett-Garg-type
Inequalities:

K3|stat = 2C(0, t)− C(0, 2t) ≤ 1.

Here we have assumed that t1 = 0 and t2 − t1 = t3 − t2 = t.

The LG parameter for an initial νµ becomes:

K3 = 2Pµ→e(2t)− 4Pµ→e(t) + 1

Using ultrarelativistic approximation t ≈ L

K3 = 2Pµ→e(2L)− 4Pµ→e(L) + 1

LG-type inequalities can be expressed in terms of the experimentally measurable
neutrino oscillation probabilities.
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LG-type Inequality: Three flavor neutrino oscillations

A problem: Need two detectors placed at L and 2L, respectively. Not possible with
the present day facilities.

Recipe: Eliminate the 2L dependence by searching for new energies such that the
following holds [Formaggio et. al. (2016)]:

Pµ→e(2L,E) = Pµ→e(L, Ẽ)

Finally,

K3 = 2Pµ→e(Ẽ)− 4Pµ→e(E) + 1

1 NOνA: L = 810 km, E ∼ 1− 7 GeV.

2 T2K: L = 295 km,E ∼ 1− 2 GeV.

Nova: Maximum flux at 4.7 Gev. T2K: Maximum
flux at 1.6 Gev.

Figure: NOvA and T2K experiments

Both these experiments use νµ source
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LG-type Inequality: Three flavor neutrino oscillations
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Figure: Maximum of LG function K3 plotted against CP violating phase δ. (Left panel:
NOνA; Right panel: T2K.)
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LG-type Inequality: Three flavor neutrino oscillations

Advantages of LG-type Inequalities

It allows for measurements made on distinct ensemble members to mimic a series
of measurements made on a single time-evolving system =⇒ This bypasses the
recent criticism of the LGI whereby measurements on a single system at later
times may be influenced by the outcomes of earlier measurements on that same
system [Clemente-Kofler (2016)].

Limitations of LG-type Inequalities

LG-type inequalities can test only limited class of realistic models.

It can test class of realistic models that are Markovian, for which the evolution of
the system after some time t is independent of the means by which the system
arrived in a given state at t [Emary-Lambert-Nori (2014)].
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Decoherence effects in B meson systems
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Motivation

The time evolution of neutral mesons are used to measure a number of
important parameters in flavor physics.

In the time evolution of neutral meson systems, a perfect quantum coherence
is usually assumed. (i.e. the interaction between the system and the
environment is neglected. By decoherence we mean interaction between
environment and system.)

However, any real system interacts with its environment and this interaction
can lead to a loss of quantum coherence.

Hence with the inclusion of decoherence effects, the measured values of some
of the parameters can get masked.

We study the effect of decoherence on the important observables in the B0
d

meson system, such as the CP violating parameter sin 2β and the B0
d − B̄0

d

mixing parameter ∆md .
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Decoherence

Decoherence is an unavoidable phenomenon as any physical system is inherently
open due to its inescapable interactions with a pervasive environment.

Possible environment

Environmental effects may arise at a fundamental level, such as the
fluctuations in a quantum gravity space-time background [S.W. Hawking
(1982); J. R. Ellis et. al. (1984); Huet-Peskin (1995)].

They may also arise due to the detector environment itself.

The effect of environment on the neutral meson systems can be taken into
account by using the ideas of open quantum systems.

We use an effective description which is phenomenological in nature. It is
independent of the details of the actual dynamics between the system and
environment.
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Open time evolution of B mesons

We are interested in the decays of B0 and B̄0 mesons as well as B0 ↔ B̄0

oscillations.

To describe the time evolution of all these transitions, we need a basis of
three states: |B0〉, |B̄0〉 and |0〉, where |0〉 represents a state with no B
meson and is required for describing the decays.

We use the density matrix formalism to represent the time evolution of the
B0 system: ρB0(B̄0)(0) is the initial density matrix for the state which starts

out as B0(B̄0).

The time evolution of these matrices is governed by the Kraus operators
Ki (t) as ρ(t) =

∑
i Ki (t)ρ(0)K †i (t).

The Kraus operators are constructed taking into account the decoherence
in the system which occurs due to the evolution under the influence of the
environment.
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Open time evolution of B mesons

Time dependent density matrices

ρB0 (t)
1
2
e−Γt

=

 ach + e−λtac −ash − ie−λtas 0
−ash + ie−λtas ach − e−λtac 0

0 0 2(eΓt − ach)


ρB̄0 (t)
1
2
e−Γt

=

 ach − e−λtac −ash + ie−λtas 0
−ash − ie−λtas ach + e−λtac 0

0 0 2(eΓt − ach)


ach = cosh

(
∆Γ t

2

)
, ash = sinh

(
∆Γ t

2

)
, ac = cos (∆m t), as = sin (∆m t).

Γ = (ΓL + ΓH)/2, ∆Γ = ΓL − ΓH : ΓL and ΓH are the respective decay widths
of the decay eigenstates B0

L and B0
H .

λ is the decoherence parameter, due to the interaction between one-particle
system and its environment.

To keep expressions simple, CP violation in mixing is neglected.
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CP asymmetry in B0
d → J/ψKS

Hermitian operator describing decay B0 → f and B̄0 → f

Of =

 |Af |2 Af
∗Āf 0

Af Ā
∗
f |Āf |2 0

0 0 0


Af ≡ A(B0 → f ) and Āf ≡ A(B̄0 → f ).

The probability, Pf (B0/B̄0; t), of an initial B0/B̄0 decaying into the state f
at time t is given by Tr

[
Of ρB0(B̄0)(t)

]
.

CP asymmetry of B0
d → J/ψKS decay

AJ/ψKS
(t) =

PJ/ψKS
(B̄0

d ; t)− PJ/ψKS
(B0

d ; t)

PJ/ψKS
(B̄0

d ; t) + PJ/ψKS
(B0

d ; t)
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CP asymmetry in B0
d → J/ψKS

AJ/ψKS
(t) =

(
|λf |2 − 1

)
cos (∆md t) + 2Im(λf ) sin (∆md t)

(1 + |λf |2) cosh
(

∆Γd t
2

)
− 2Re(λf ) sinh

(
∆Γd t

2

)e−λt

λf = A(B̄0
d → J/ψKS))/A(B0

d → J/ψKS).

By putting λ = 0, the usual expression for CP asymmetry in the interference
of mixing and decay is obtained.

In extracting sin 2β from AJ/ψKS
(t) it is usually assumed that ∆Γd ≈ 0, |λf | ≈ 1

and Im(λf ) ≈ sin 2β.

AJ/ψKS
(t) ≈ sin 2β e−λt sin (∆md t)

The coefficient of sin (∆md t) is sin 2β e−λt and not sin 2β!

The measurement of sin 2β is masked by the presence of decoherence.
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Determination of ∆md

In order to determine sin 2β, we need to know ∆md .

Is the measurement of ∆md also affected by the presence of decoherence?

LHCb, CDF and D0 experiments determine ∆md by measuring rates that a state
that is pure B0

d at time t = 0, decays as either as B0
d or B̄0

d as function of proper
decay time.

In the presence of decoherence, the survival (oscillation) probability of initial B0
d

meson to decay as B0
d (B̄0

d ) at a proper decay time t is:

B0
d survival (oscillation) probability

P±(t, λ) =
e−Γt

2

[
cosh(∆Γd t/2)± e−λt cos(∆md t)

]
The positive (negative) sign implies B0

d meson decaying with the same (opposite)
flavor as its production.
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Determination of ∆md

Time dependent mixing asymmetry: Used to determine ∆md

Amix(t, λ) =
P+(t, λ)− P−(t, λ)

P+(t, λ) + P−(t, λ)
= e−λt

cos(∆md t)

cosh(∆Γd t/2)

Neglecting ∆Γd , the otherwise pure cosine dependence is modulated by e−λt .

Determination of of ∆md at Belle and BaBar

∆md is determined by measuring time dependent mixing probability for
entangled B0

d mesons produced at Υ(4S) resonance.

The expressions for P±(t) are the same except that the proper time t is
replaced by proper decay-time difference ∆t between the decays of the two
neutral Bd mesons.

The true value of ∆md , along with ∆Γd , can be determined by a three
parameter (∆md , ∆Γd , λ) fit to the time dependent mixing asymmetry
Amix(t, λ). This in turn will enable a determination of true value of sin 2β.
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Quantum correlations in neutral meson systems
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Quantum correlations in neutral meson systems

B factories, electron-positron colliders tailor-made to study the production
and decay of B mesons, and φ factories, which perform the same function for
K mesons, provide an ideal testing ground.

For the B system, the decay Υ→ bb̄ is followed by hadronization into a BB̄
pair.

In the Υ rest frame, the mesons fly off in opposite directions (left and right,
say).

The same considerations apply to the K system, with the Υ replaced by a φ
meson.

An important feature of these systems for the study of correlations is the
oscillations of the bottom and strangeness flavors, giving rise to MM̄
oscillations.

Another feature about these systems is that they are decaying. Thus one
needs to study quantum correlations in unstable, decaying BB̄ and KK̄
systems.
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Quantum correlations in neutral meson systems

A number of well-established measures of quantum correlations, such as
Bell’s inequality violations teleportation fidelity, concurrence and geometric
discord, in the correlated BB̄ and KK̄ systems were studied in
[Banerjee-Alok-MacKenzie (2015)].

The flavor-space wave function of the correlated MM̄ meson systems
(M = K , Bd , Bs) at the initial time t = 0 is

|ψ(0)〉 =
1√
2

[
|MM̄〉 − |M̄M〉

]
,

where the first (second) particle in each ket is the one flying off in the left
(right) direction and |M〉 and |M̄〉 are flavor eigenstates.

Thus, the initial state of the neutral meson system is a singlet (maximally
entangled) state.
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Quantum correlations in neutral meson systems

The state of the two-particle decaying system at time t is given by

ρ(t) =
1

4


a− 0 0 −a−
0 a+ −a+ 0
0 −a+ a+ 0
−a− 0 0 a−

 ,

where a± = 1± e−2λt .

The density matrix depends on only one parameter (in addition to time), the
decoherence parameter λ, which describes the interaction of the mesons with
the environment.

To take into account the effect of decay in the systems under study, the
various correlations are modified by the probability of survival of the pair of
particles up to that time, which can be shown to be e−2Γt , where Γ is the
meson decay width.
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Quantum correlations in neutral mesons
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Figure: Average correlation measures, as a function of time t. The left and right panels
correspond to the correlations of a KK̄ and Bd B̄d pair created at t = 0, respectively. For
KK̄ pairs, left panel, time is in units of 10−10 seconds whereas for the Bd B̄d pair, time is
in units of 10−12 seconds (in all cases, the approximate lifetime of the particles). The
bands represent the effect of decoherence corresponding to a 3σ upper bound on the
decoherence parameter λ.
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Quantum correlations in neutral meson systems

On average, Bell’s inequality in these correlated-meson systems is violated for
about half of the meson lifetime.

We find that the quantum correlations here can be nontrivially different from
their stable counterparts. This is made explicit by the interplay between
Bell’s inequality violation and teleportation fidelity.

One particularly surprising result is that teleportation fidelity does not exceed
the classical threshold of 2/3 for all Bell’s inequality violations.

This behavior, not seen in stable systems, is interesting since one of the
cornerstones in the field of quantum information is the interplay between
Bell’s inequality violation and teleportation fidelity.
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More about Quantum Correlations
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Some measures of quantum correlations

Bell’s inequality

Given a pair of qubits in the state ρ, the elements of correlation matrix T are
Tmn = Tr [ρ(σm ⊗ σn)]. If ui (i = 1, 2, 3) are the eigenvalues of the matrix T †T
then the Bell-CHSH inequality can be written M(ρ) < 1 [Horodecki (1995,1996)],
where M(ρ) = max(ui + uj) (i 6= j).

Teleportation Fidelity

Teleportation provides an operational meaning to entanglement, whenever
Fmax > 2/3, teleportation is possible.

Fmax is computed in terms of the eigenvalues {ui} of T †T .

Fmax = 1
2

(
1 + 1

3
N(ρ)

)
where N(ρ) =

√
u1 +

√
u2 +

√
u3 [Horodecki et. al.

(1996)].

An inequality involving M(ρ) and Fmax

Fmax ≥
1

2

(
1 +

1

3
M(ρ)

)
≥ 2

3
if M(ρ) > 1.
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Some measures of quantum correlations

Concurrence

For a mixed state ρ of two qubits, the concurrence, which is a measure of
entanglement, is C = max(λ1 − λ2 − λ3 − λ4, 0). λi are the square root of the

eigenvalues, in decreasing order, of the matrix ρ
1
2 (σy ⊗ σy )ρ∗(σy ⊗ σy )ρ

1
2 where ρ

is computed in the computational basis {|00〉, |01〉, |10〉, |11〉}.
For a two-qubit system, concurrence is equivalent to the entanglement of
formation which can then be expressed as a monotonic function of concurrence C

as EF = − 1+
√

1−C2

2
log2(

1+
√

1−C2

2
)− 1−

√
1−C2

2
log2(

1−
√

1−C2

2
).

Geometric discord

For the case of two qubits, geometric discord is
DG (ρ) = 1

3
[‖~x‖2 + ‖T‖2 − λmax(~x~x† + TT †)] where T is the correlation matrix, ~x

is the vector whose components are xm = Tr(ρ(σm ⊗ I2)), and λmax(K) is the
maximum eigenvalue of the matrix K .
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Quantum correlations in neutral meson systems: More details
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MM̄ as an open quantum system

The flavor-space wave function of the correlated MM̄ meson systems
(M = K , Bd , Bs) at the initial time t = 0 is

|ψ(0)〉 =
1√
2

[
|MM̄〉 − |M̄M〉

]
,

where the first (second) particle in each ket is the one flying off in the left (right)
direction and |M〉 and |M̄〉 are flavor eigenstates. This initial state of the neutral
meson system is a singlet (maximally entangled) state.

The usual analysis of such systems is done using a trace-decreasing density matrix.
However, such an approach may not be very useful for calculating quantum
correlations as the usual methods for computing quantum correlations require a
trace-preserving, completely positive description of the system.

The semigroup formalism enables the calculation of a trace-preserving density
matrix.
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MM̄ as an open quantum system

The Hilbert space of a system of two correlated neutral mesons is

H = (HL ⊕H0)⊗ (HR ⊕H0).

HL,R are the Hilbert spaces of the left-moving and right-moving decay products,
each of which can be either a meson or an anti-meson, and H0 is that of the
zero-particle (vacuum) state.

Thus the total Hilbert space can be seen to be the tensor sum of a two-particle
space, two one-particle spaces, and one zero-particle state.

The initial density matrix of the full system is

ρH(0) = |ψ(0)〉 〈ψ(0)| .

The system, initially in the two-particle subspace, evolves in time into the full
Hilbert space, eventually (after the decay of both particles) finding itself in the
vacuum state.
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Kraus representation

Kraus representation, describes the time evolution of an open quantum system, which is
not necessarily unitary unlike the evolution of a closed quantum system. Real physical
systems are always entangled with their ambient environment, alternatingly addressed as
the reservoir. Kraus representations are very convenient for handling a number of
practical problem of open system dynamics.

Consider a large system S comprising of two subsystems Sa and Sb. At a given time t, let
the quantum states corresponding to S, Sa and Sb be represented by ρ(t), ρa(t) and
ρb(t), respectively. Then ρa(t) = Trb{ρ(t)} and ρb(t) = Tra{ρ(t)}. Since the total
system is unitary, its evolution is given by

ρ(t) = U(t)ρ(0)U†(t),

where U(t) is a unitary operator.The evolution of system Sa will look like

ρa(t) = Trb{U(t)ρ(0)U†(t)}.
If it is possible to recast above equation in the following form

ρa(t) =
∑
i

Ei (t)ρa(0)E†i (t),

such that
∑

i Ei (t)E†i (t) = 1, then the evolution of ρa(t) has a Kraus representation and
is completely positive.

The Kraus operators Ki (t) encode the information about the ambient environment of the

system of interest and include the decoherence parameter λ, which describes the

interaction of the mesons with the environment. These operators are determined using

the condition of complete positivity along with trace preservation.
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MM̄ as an open quantum system

The time evolution of the initial state is described by the following density matrix:

ρH(t) =
∑
i,j

Kij(t)ρH(0)K †ij (t),

where Kij(t) = Ki (t)⊗ Kj(t).

From basic notions of quantum correlations such as entanglement, one needs to
have two parties to correlate. For this we need to project from the full Hilbert
space H down to the two-particle sector HL ⊗HR . This can be achieved by using
the projector P2, the projector on to the two-particle sector HL ⊗HR .

The result is

ρ(t) =
P2 ρH(t)P2

Tr(P2 ρH(t))
=

1

4


a− 0 0 −a−
0 a+ −a+ 0
0 −a+ a+ 0
−a− 0 0 a−

 ,

where a± = 1± e−2λt .

=⇒ ρ(t) is trace-preserving.
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Quantum correlations in neutral meson systems

Non-locality

M(ρ) = (1 + e−4λt).

Concurrence

C = e−2λt .

Entanglement of formation is

EF = −1 +
√

1− C 2

2
log2(

1 +
√

1− C 2

2
)− 1−

√
1− C 2

2
log2(

1−
√

1− C 2

2
).
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Quantum correlations in neutral meson systems

Geometric discord

DG (ρ) = M(ρ)/3.

Teleportation fidelity

Fmax =
1

12

[
6 + 2e−2λt +

√
2

√
α−

√
β +
√

2

√
α +

√
β
]
,

where

α = 1 + cosh(4λt)− sinh(4λt), β = 3− 2α + cosh(8λt)− sinh(8λt).
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Quantum correlations in neutral meson systems

For the K meson, Γ = 1
2
(ΓS + ΓL) (where ΓS and ΓL are the decay widths of

short and long neutral kaon states, respectively); its value is 5.59× 109 s−1.

The decay widths for Bd and Bs mesons are 6.58× 1011 s−1 and
6.61× 1011 s−1, respectively.

In the case of the K meson system, the value of λ has been obtained by the
KLOE collaboration by studying the interference between the initially
entangled kaons and the decay product in the channel
φ→ KSKL → π+π−π+π− [F. Ambrosino et al. (KLOE Collaboration 2006)].
The value of λ is at most 1.58× 109 s−1 at 3σ.

In the case of Bd meson systems, 3σ upper limit for λ is 0.45× 1011 s−1

[Alok-Banerjee-Uma Sankar (2015)].

For Bs mesons, to the best of our knowledge, there is no experimental
information about λ so we will take it to be zero.
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Quantum correlations in neutrinos
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Foundations of Quantum Mechanics in Neutrinos

In nature, neutrinos are available in three flavors.

Owing to their non-zero mass, they oscillate from one flavor to another which
has been confirmed by a plethora of experiments, using both natural and
“man-made” neutrinos.

Neutrino oscillations are fundamentally three flavor oscillations. However, in
some cases, it can be reduced to effective two flavor oscillations.

Motivation

Neutrino system is particularly interesting as the effect of decoherence as
compared to other particles widely used in quantum information processing, is
minimal.

Also, the detection efficiency is much higher than that of the corresponding
detectors used in optical or electronic systems [Bramon et.al. (2006)].

Thus neutrino system has the potential to provide an alternative platform for
testing foundations of quantum mechanics.
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Foundations of Quantum Mechanics in Neutrinos

Quantum correlations in Neutrinos

The coherent time evolution of neutrino flavor eigenstates implies that there
is a linear superposition between the mass eigenstates which make up a
flavour state.

Thus neutrino oscillations are related to the multi-mode entanglement of
single-particle states which can be expressed in terms of flavor transition
probabilities.

Hence neutrino is an interesting candidate for study of quantum correlations.

Definition of the problem

We are interested in studying various facets of quantum correlations in neutrinos.
In particular, we intend to study:

The interplay between various aspects of quantum correlations such as
non-locality, entanglement and weaker measures such as discord.

To explore relation between neutrino mixing and coherences in the system.

Ashutosh Kumar Alok (IIT Jodhpur) Seminar@WHEPP-15, IISER Bhopal December 15, 2017 53 / 70



Neutrinos

The three flavour states (eigenstates of weak interaction, which are detectable in
lab) of neutrinos, νe , νµ and ντ mix via a 3× 3 unitary matrix to form the three
mass eigenstates (which are the propagation eigenstates) ν1, ν2 and ν3.

Neutrino oscillations occur only if the three corresponding masses, m1,m2 and m3,
are non-degenerate.

Of the three mass-squared differences ∆ij = m2
i −m2

j (where i , j = 1, 2, 3 with
i > j), only two are independent. Oscillation data tells us that ∆21 ≈ 0.03×∆32,
hence ∆31 ≈ ∆32.

In considering neutrino oscillations, in general, one should use the full three
flavour oscillation formulae.

However, in a number of cases, the three flavour formula reduces to an effective
two flavour formula, if one or both of the small parameters, ∆21/∆32 and θ13, are
set equal to zero.

For example, in long baseline accelerator experiments, both the above parameters
can be neglected in doing leading order calculations. Then the problem reduces to
that of two flavour mixing of νµ and ντ to form two mass eigenstates ν2 and ν3.
The corresponding oscillations are described by one mixing angle θ (≡ θ23 in three
flavour mixing) and one mass-squared difference ∆ (≡ ∆32 in three flavour
mixing).
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Neutrinos

In the case of two flavour mixing, the relation between the flavour and the mass
eigenstates is described by a 2× 2 rotation matrix, U(θ),(

να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
νj
νk

)
.

Each flavour state is given by a superposition of mass eigenstates,

|να〉 =
∑
j

Uαj |νj〉 ,

where α = µ or τ and j = 2, 3.
The time evolution of the mass eigenstates |νj〉 is given by

|νj(t)〉 = e−iEj t |νj〉 ,

where |νj〉 are the mass states at time t = 0.
Thus, we can write

|να(t)〉 =
∑
j

e−iEj tUαj |νj〉 .

The evolving flavour neutrino state |να〉 can also be projected on to the flavour
basis in the form

|να(t)〉 = Ũαα(t) |να〉+ Ũαβ(t) |νβ〉 ,
where |να〉 is the flavour state at time t = 0 and |Ũαα(t)|2 + |Ũαβ(t)|2 = 1.
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Mode entanglement in neutrinos

We can thus establish the following correspondence, using the occupation number
of neutrinos, with two-qubit states [Blasone et al. (2008, 2013, 2015)]

|να〉 ≡ |1〉α ⊗ |0〉β ≡ |10〉 , |νβ〉 ≡ |0〉α ⊗ |1〉β ≡ |01〉 .

The time evolution of flavor eigenstate can then be written as

|να(t)〉 = Ũαα(t) |1〉α ⊗ |0〉β + Ũαβ(t) |0〉α ⊗ |1〉β ,

where,

Ũαα(t) = cos2 θe−iE2t + sin2 θe−iE3t ,

Ũαβ(t) = sin θ cos θ(e−iE3t − e−iE2t) .

=⇒ The state |να(t)〉 has the form of a mode entangled single particle state.

Various measures of quantum correlations can now be determined using the
density matrix ρα(t) = |να(t)〉 〈να(t)| as the parameters of the density matrix,
mixing angle and mass squared difference, are known [Alok-Banerjee-Uma Sankar
(2014); Banerjee-Alok-Srikanth-Heismeyr (2015)].
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Quantum correlations in neutrinos

Non-locality

M(ρ) = 1 +
[
3 + cos 4θ + 2 cosφ sin2 2θ

]
sin2 2θ sin2 (φ/2) .

φ = ∆t
2E

M(ρ) is tied up with neutrino mixing.

In case of no mixing (θ = 0), M(ρ) = 1.

Concurrence

C = 2
√

sin4 θ + cos4 θ + 2 cos2 θ sin2 θ cosφ) sin 2θ sin (φ/2) .

In case of no mixing, there is no entanglement.
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Quantum correlations in neutrinos

Geometric discord

DG (ρ) =
2

3
sin2 2θ sin2 (φ/2)

[
3 + cos 4θ + 2 cosφ sin2 2θ

]
.

DG (ρ) for θ = 0 is 0, a classically allowed value of geometric discord.

Teleportation fidelity

Fmax =
2

3
+

1

3
sin 2θ sin (φ/2)

√
3 + cos 4θ + 2 sin2 2θ cosφ.

In the absence of mixing, Fmax = 2/3, the classical value of teleportation
fidelity.
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Quantum correlations in neutrinos
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Figure: The left panel of the top and bottom figure depicts various measures of quantum
correlations with respect to phase φ (≡ ∆t/2E) for the mixing angle θ = 45◦ and
θ = 10◦, respectively. The thin solid line in the left panel of the top and bottom figure,
PS , represents the neutrino survival probability. The right panel of the figure depicts the
magnitude of the off-diagonal elements of the density matrix.
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Quantum correlations in neutrinos
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Figure: The left panel of the figure depicts various quantum correlations with respect to
phase φ for the critical mixing angle θ = 22.5◦. The thin solid line in the left panel, PS ,
represents the neutrino survival probability. The right panel of the figure depicts the
magnitude of the off-diagonal elements of the density matrix.

Ashutosh Kumar Alok (IIT Jodhpur) Seminar@WHEPP-15, IISER Bhopal December 15, 2017 60 / 70



Quantum correlations in neutrinos

Bell’s inequality is always violated and hence the evolution of neutrinos is
highly non local in nature.

Teleportation fidelity is always greater than 2/3 thus obeying the usual
relation between Bell’s inequality violation and teleportation fidelity, as seen
in electronic and photonic systems.

It is quite remarkable that the measurement of neutrino oscillations due to a
non zero value of the mixing angle implies quantum correlations.

The quantum correlations are seen to be very closely tied to the neutrino
mixing angle.

There exists a critical value of the mixing angle π/8, for which the Bell’s
inequality violation is maximal over a broad range of the kinematic variable φ.

Also, it is interesting to note that the off diagonal order, introduced here, is
gaining prominence in a number of recent studies related to quantum
coherence [Girolami (2014), Bromely et.al. (2015), U. Singh et. al. (2015)].
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Neutrino Physics
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Neutrino

|ν1〉 , |ν2〉 , |ν3〉 =⇒ Massive states. In plane wave approximation, these states

move with the same momentum. These are the eigenstates of the Hamiltonian

H |νk〉 = Ek |νk〉 Ek =
√
~p2 + m2

k

i
d |νk〉
dt

= H |νk〉 Schrodinger equation

=⇒ |νk(t)〉 = e iEk t |νk(0)〉
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Neutrino Oscillations

Massive states → {|ν1〉 , |ν2〉 , |ν3〉};
Flavor states → {|νe〉 , |νµ〉 , |ντ 〉}

The general state of a neutrino can be expressed in flavor basis as:

Ψ(t) = νe(t) |νe〉+ νµ(t) |νµ〉+ ντ (t) |ντ 〉

Same state in propagation basis looks like:

Ψ(t) = ν1(t) |ν1〉+ ν2(t) |ν2〉+ ν3(t) |ν3〉

The coefficients in two representations are connected by a unitary matrix
called Pontecorvo Maki Nakagawa Sakata matrix (PMNS matrix)νe(t)

νµ(t)
ντ (t)

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1(t)
ν2(t)
ν3(t)

 .

or,
να(t) = Uνi (t). (1)
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A convenient parametrization for U(θ12, θ23, θ13, δ) is given by

U(θ12, θ23, θ13, δ) = c12c13 s12c13 s23e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s13s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


where cij = cos θij , sij = sin θij , θij being the mixing angles and δ the CP violating phase.

The mass eigenstates evolve as(
ν1(t)
ν2(t)
ν3(t)

)
=

e−iE1t 0 0

0 e−iE2t 0

0 0 e−iE3t

(ν1(0)
ν2(0)
ν3(0)

)
,

or,
νi (t) = E νi (0)

να(t) = U EU−1 να(0) = Uf να(0).
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So the flavor state at time t = 0 is connected to the flavor state at time t by(
νe(t)
νµ(t)
ντ (t)

)
=

(
a(t) d(t) g(t)
b(t) e(t) h(t)
c(t) f (t) k(t)

)(
νe(0)
νµ(0)
ντ (0)

)
.

Some elements

a(t) = (c12c13)2 e−iE1t + (s12c13)2 e−iE2t + s2
13 e−iE3t ,

b(t) = (−s12c23 − c12s13s23e
iδ)c12c13 e−iE1t

+ (c12c23 − s12s13s23e
iδ)s12c13 e−iE2t + c13s23s13e

iδ e−iE3t ,

c(t) = (s12s23 − c12s13c23e
iδ)(c12c13) e−iE1t

+ (−c12s23 − s12s13c23e
iδ)(s12c13) e−iE2t + (c13c23)(s13) e−iE3t .

Therefore, a neutrino starting in state νe at time t = 0, evolves to

|νe(t)〉 = a(t) |νe〉 + b(t) |νµ〉 + c(t) |ντ 〉

Survival probability of being in flvor e: Pe→e(t) = |〈νe |νe(t)〉|2 = |a(t)|2 ← no δ dependence

Transition probability from flavor e to µ: Pe→µ(t) = |〈νµ|νe(t)〉|2 = |b(t)|2

Transition probability from flavor e to τ : Pe→τ (t) = |〈ντ |νe(t)〉|2 = |c(t)|2
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Form of probabilities

Two flavor scenario

Pe→µ = sin2 θ sin2 [1.27∆m2 L(Km)

E(GeV )

]
VACUUM

Pe→µ = sin2 θ sin2

[
1.27

∆m2L(Km)

E(GeV )

√
sin2(2θ) +

(
cos(2θ)− 2EV

∆m2

)2
]
MATTER

Three flavor scenario (COMPLICATED FUNCTIONS)

Pe→µ = f (

PMNS parameters︷ ︸︸ ︷
θ12, θ23, θ13, δ,∆m21,∆m32,∆m31,E , L) VACUUM

Pe→µ = h(θ12, θ23, θ13, δ,∆m21,∆m32,∆m31,E , L,V ) MATTER

∆mjk = m2
j −m2

k
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Survival and Transitional Probabilities

Initial state |νe〉
Ψ(t) = a(t) |νe〉 + b(t) |νµ〉 + c(t) |ντ 〉

Survival probability: | 〈νe |Ψ(t)〉 |2 = |a(t)|2

Transition Prob. to νµ = | 〈νµ|Ψ(t)〉 |2 = |b(t)|2

Transition Prob. to ντ = | 〈ντ |Ψ(t)〉 |2 = |c(t)|2

Initial state |νµ〉
Ψ(t) = d(t) |νe〉 + e(t) |νµ〉 + f (t) |ντ 〉

Survival probability: | 〈νµ|Ψ(t)〉 |2 = |e(t)|2

Transition Prob. to νe = | 〈νe |Ψ(t)〉 |2 = |d(t)|2

Transition Prob. to ντ = | 〈ντ |Ψ(t)〉 |2 = |f (t)|2

Initial state |ντ 〉
Ψ(t) = g(t) |νe〉 + h(t) |νµ〉 + k(t) |ντ 〉

Survival probability: | 〈ντ |Ψ(t)〉 |2 = |k(t)|2

Transition Prob. to νe = | 〈νe |Ψ(t)〉 |2 = |g(t)|2

Transition Prob. to νµ = | 〈νµ|Ψ(t)〉 |2 = |h(t)|2
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Matter Effects

[Ohlsson-Snellman (2000)]

1 Uf (L) = φ
∑3

n=1 e
−iHmL 1

3λ2
n

+c1

[
(λ2

n + +c1)I + λnT̃ + T̃ 2
]
, where φ = e−i trHm

3
L, and the

Hamiltonian in mass basis is Hm = Hm + U−1Vf U.

2 The matrix T̃ = UTU−1, where T is a hermitian matrix given by

T =

AU2
e1 − 1

3A + 1
3 (E12 + E13) AUe1Ue2 AUe1Ue3

AUe1Ue2 AU2
e2 − 1

3A + 1
3 (E21 + E23)

 ,
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When neutrinos travel through a series of matter densities with matter
density parameters A1, A2, . . , An with thicknesses L1, L2, . . . , Ln, the
total evolution operator is simply given by

Utot
f (L) = Uf (L1) Uf (L2), . . . ,Uf (Ln),

where L =
∑n

i=1 Li and Uf (Li ) is calculated for density parameter, Ai .

Mantle Core Mantle approximation for earth
ρcore = 11.5 gm/cm3 =⇒ Acore = 4.35× 10−13eV
ρmantle = 4.5 gm/cm3 =⇒ Amantle = 1.70× 10−13eV
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