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Status of LBL Expts
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Accelerator Beams
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Neutrino OscillationsThree Flavor Effects in νµ ! νe  oscillation probability  

7/42 

θ13 Driven    

CP odd    

CP even    

Solar Term    

                          Cervera etal., hep-ph/0002108 
                            Freund etal., hep-ph/0105071  
See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]    

0.09 

0.009 

0.0009 

0.03 0.3 

changes sign with sgn(         ) 
   key to resolve hierarchy!  

 changes sign with polarity 
 causes fake CP asymmetry!  

Resolves 
  octant    

This channel suffers from: (Hierarchy – δCP) & (Octant – δCP)  degeneracy! How can we break them? 
  S. K. Agarwalla, PHENO1@IISERM, IISER, Mohali, India, 6th April, 2016 !

Sanjib Agarwal’s talk
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MINOS

MINOS, PRL 112, 191801, 2014
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FIG. 3: The 68% and 90% confidence intervals of allowed
values for 2sin2(2✓13)sin

2(✓23) as a function of � for the two
mass hierarchies.

data sample. We have used these data to place new con-
straints on the mixing angle ✓13 and have demonstrated
how such data will be used in the future to break the
degeneracy in the appearance probability created by the
ambiguity in the octant of ✓23, the neutrino mass hierar-
chy, and the value of the CP-violating phase �.

This work was supported by the US DOE; the UK
STFC; the US NSF; the State and University of Min-
nesota; the University of Athens, Greece; and Brazil’s
FAPESP, CNPq, and CAPES. We are grateful to the
Minnesota DNR, the crew of the Soudan Underground
Laboratory, and the personnel of Fermilab for their con-
tributions to this e↵ort. We thank Texas Advanced Com-
puting Center at The University of Texas at Austin for
the provision of computing resources.

⇤ Deceased.
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FIG. 4: The resulting values of the likelihood L, shown here
as �2�lnL, from a fit of � to our data using constraints from
reactor experiments [8–10], assuming various values of the
mass hierarchy and the sign of ✓23 � ⇡/4. The di↵erence is
taken with respect to the best-fitting solution. Values above
the horizontal dashed lines are disfavored at either 68% or
90% C.L.
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T2K

 (GeV)νE
0 1 2 3

 (
A

.U
.)

29
5k

m
µ
ν

Φ

0

0.5

1 °OA 0.0
°OA 2.0
°OA 2.5

0 1 2 3

) e
ν 

→
µ
ν

P(

0.05

0.1
 = 0CPδNH,  = 0CPδIH, 

/2π = CPδNH, /2π = CPδIH, 

0 1 2 3

)
µ
ν 

→
µ
ν

P(

0.5

1

 = 1.023θ22sin
 = 0.113θ22sin

2 eV-3 10× = 2.4 32
2m∆

Neutrino	oscillations	at	T2K
• Muon	(anti)neutrino	disappearance

• Location of	dip	determined	by Δm2
23

• Depth	of	dip	determined	by sin2(2θ23)

• Electron	(anti)neutrino	appearance
• Leading	term	depends	on sin2(θ23),	sin

2(θ13)	
and	Δm2

23

• Sub-leading	dependance on	δCP
• δCP =	π/2:	 fewer	neutrinos,	more	anti-neutrinos	

• δCP =	-π/2:	 more	neutrinos,	fewer	anti-neutrinos	

• Matter	effects	give	dependence	on	mass	hierarchy

22/09/2017P.	Dunne 4

νμ disappearance

νe appearance

(Not much)

Adapted from slide by P. Dunne, talk at NuFact 2017

Measures

Measures

Measures

Measures

Off-axis beam used to reduce backgrounds
Peaked at 0.6 GeV

0.6 GeV
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T2K Disappearance Data

25

TABLE XV. Event reduction for the ⌫

µ

CC selection at the far detector. The numbers of expected MC events divided into
four categories are shown after each selection criterion is applied. The MC expectation is based upon three-neutrino oscillations
with the parameters as shown in Tab. XIII.

⌫

µ

⌫

µ

⌫

µ

+ ⌫

µ

⌫

e

+ ⌫

e

⌫ + ⌫̄

⌫-beam mode MC total CCQE CCQE CC nonQE CC NC Data
interactions in FV 744.89 100.17 6.45 257.70 54.41 326.16 -
FCFV 431.85 78.75 4.85 196.28 53.25 98.72 438
single ringg 223.49 73.49 4.70 75.21 41.41 28.68 220
muon-likeh 156.56 72.22 4.65 70.06 0.47 9.16 150
p

µ

> 200MeV/ci 156.24 72.03 4.65 70.00 0.47 9.08 150
NMichel�e  1j 137.76 71.28 4.63 52.61 0.46 8.78 135

⌫̄-beam mode
interactions in FV 312.38 20.04 30.77 113.23 15.59 132.75 -
FCFV 180.48 15.04 24.95 83.26 15.19 42.05 170
single ring 96.06 13.52 24.28 35.41 10.98 11.87 94
muon-like 74.52 13.40 23.96 33.56 0.09 3.52 78
p

µ

> 200MeV/c 74.42 13.39 23.92 33.54 0.09 3.48 78
NMichel�e  1 68.26 13.18 23.85 27.79 0.09 3.35 66

g
There is only one reconstructed Cherenkov ring

h
The ring is µ-like

i
The reconstructed momentum, p

µ

, is greater than 200 MeV/c
j
There are less than two reconstructed Michel electrons
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FIG. 21. The reconstructed energy spectra of the observed ⌫

µ

in ⌫-mode (left) and ⌫

µ

in ⌫-mode (right) CC candidate event
samples assuming CCQE interaction kinematics. The data are shown as points with statistical error bars and the shaded, stacked
histograms are the MC predictions, and the rightmost bin includes overflow. The expectation is based on the parameters of
Tab. XIII.

from the initial FC event selection is negligible. The un-
certainty in the fiducial volume is estimated to be 1%
using the vertex distribution of cosmic ray muons which
have been independently determined to have stopped in-
side the ID. The uncertainty due to the Michel electron
tagging e�ciency is estimated by comparing cosmic-ray
stopped muon data with MC. The rate of falsely identi-

fied Michel electrons is estimated from MC and a 100%
uncertainty on that rate is assumed.

Other studies of systematic uncertainty in SK mod-
eling divide simulated events into categories according
to their final state topologies, with the criteria shown
in Tab. XVII. These topologies do not correspond ex-
actly with true interaction modes due to subsequent in-

T2K, 1707.01048 
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T2K Appearance DataPredicted	and	observed	Super-K	event	rates

• Other	oscillation	parameters	at	previous	best	fits:	maximal	θ23
• Number	of	events	observed	generally	agrees	with	oscillated	predictions
• e-like	sample	rates	are	most	consistent	with	δCP =	-π/2	hypothesis
• μ-like	sample	rates	consistent	within	statistical	and	systematic	errors
• CC1π	rate	shows	large	upwards	fluctuation

• p-value	for	fluctuation	of	this	size	in	at	least	1	of	5	samples:	11.9%
22/09/2017P.	Dunne 11

Predicted	Rates
Observed Rates

Sample δCP =	-π/2 δCP =	0 δCP =	π/2 δCP =	π

CCQE	1-Ring	e-like	!-mode 73.5 61.5 49.9 62.0 74

CC1π	1-Ring	e-like !-mode 6.92 6.01 4.87 5.78 15

CCQE	1-Ring	e-like	!̅-mode 7.93 9.04 10.04 8.93 7

CCQE	1-Ring	μ-like	!-mode 267.8 267.4 267.7 268.2 240

CCQE	1-Ring	μ-like	!̅-mode 63.1 62.9 63.1 63.1 68

23
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FIG. 19. The reconstructed energy spectra of the observed ⌫

e

in ⌫-mode (left) and ⌫

e

in ⌫-mode (right) CC candidate event
samples assuming CCQE interaction kinematics. The data are shown as points with statistical error bars and the shaded,
stacked histograms are the MC predictions. The expectation is based on the parameters of Tab. XIII.

TABLE XIV. Event reduction for the ⌫

e

CC selection at the far detector. The numbers of expected MC events divided into
five categories are shown after each selection criterion is applied. The MC expectation is based upon three-neutrino oscillations
with the parameters as shown in Tab. XIII.

⌫

µ

+ ⌫

µ

⌫

e

+ ⌫

e

⌫ + ⌫̄ ⌫

µ

! ⌫

e

⌫

µ

! ⌫

e

⌫-beam mode MC total CC CC NC CC CC Data
interactions in FV 744.89 364.32 18.55 326.16 0.39 35.47 -
FCFV 431.85 279.88 18.09 98.72 0.38 34.78 438
single ringa 223.49 153.40 11.15 28.68 0.32 29.95 220
electron-likeb 66.94 6.46 11.06 19.53 0.31 29.57 70
Evis > 100MeVc 61.78 4.59 11.01 16.81 0.31 29.06 66
NMichel�e = 0d 50.60 0.97 8.97 14.24 0.31 26.11 51
E

rec
⌫

< 1250MeVe 40.71 0.25 4.26 10.85 0.22 25.14 46
not ⇡0-likef 28.55 0.09 3.68 1.35 0.18 23.25 32

⌫̄-beam mode
interactions in FV 312.38 164.04 9.00 132.75 4.30 2.29 -
FCFV 180.48 123.24 8.75 42.05 4.20 2.24 170
single ring 96.06 73.21 5.51 11.87 3.74 1.73 94
electron-like 21.55 2.31 5.48 8.36 3.70 1.71 16
Evis > 100MeV 20.05 1.83 5.46 7.39 3.68 1.69 14
NMichel�e = 0 16.40 0.33 4.71 6.24 3.66 1.46 12
E

rec

⌫

< 1250MeV 11.40 0.08 1.89 4.83 3.42 1.19 9
not ⇡0-like 6.28 0.02 1.58 0.60 3.04 1.05 4

a
There is only one reconstructed Cherenkov ring

b
The ring is e-like

c
The visible energy, Evis, is greater than 100 MeV

d
There is no reconstructed Michel electron

e
The reconstructed energy, Erec

⌫

, is less than 1.25 GeV

f
The event is not consistent with a ⇡0

hypothesis

neutrino energy for the final CC1⇡+ candidate selection
along with that for the single-ring selection for compari-

son. Fig. 25 shows the reconstructed energy distribution
for the final sample. Five ⌫

e

CC1⇡+ candidates are re-

T2K, 1707.01048 
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FIG. 39. Contours in the sin2
✓13–�CP

plane using T2K-only data, obtained by analysing either the ⌫- or ⌫-mode appearance
datasets are compared for both orderings. Both ⌫- and ⌫̄-mode disappearance datasets were used in all fits. The yellow band
corresponds to the reactor value on sin2

✓13 from the PDG 2015 [75].
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FIG. 40. Allowed region at 90% confidence level for oscilla-
tion parameters sin2

✓23 and �m

2
32 using T2K data with the

reactor constraint (sin2(2✓13) = 0.085 ± 0.005). The normal
mass ordering is assumed and the T2K results are compared
with NO⌫A [86], MINOS [87], Super-K [88], and IceCube [89].

tion shows a less extreme fluctuation than at least 5%
of the toys MC for all the values of �

CP

and mass or-
dering, i.e. if the experiment is repeated many times
and the true value is �

CP

= �⇡/2 with normal ordering,
more than 5% of the experiments are expected to show
a more extreme statistical fluctuation than the current
T2K dataset over the whole range of �

CP

and mass or-
dering. From Fig. 45, the fraction of experiments that
would exclude �

CP

= 0,⇡ at 90% or 2� confidence level
can be estimated. Assuming a true value of �CP of -⇡/2
and normal ordering, 24.3% (21.3%) of toy MC experi-
ments exclude �CP = 0 (⇡) at 90% CL. The same can be
repeated for di↵erent values of �

CP

and mass ordering as
shown in Tab. XXVI.

TABLE XXVI. The fraction of toy experiments for which
�

CP

= 0,⇡ and normal and inverted ordering are excluded at
90% and 2� confidence is shown for di↵erent true values of
�

CP

and mass ordering. 10,000 toy experiments are used for
each set of values.

True: �
CP

= �⇡/2 — normal ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.243 0.131
⇡ Normal 0.216 0.105
0 Inverted 0.542 0.425
⇡ Inverted 0.559 0.436

True: �
CP

= 0 — normal ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.104 0.0490
⇡ Normal 0.130 0.0591
0 Inverted 0.229 0.137
⇡ Inverted 0.205 0.122

True: �
CP

= �⇡/2 — inverted ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.124 0.0515
⇡ Normal 0.102 0.0413
0 Inverted 0.290 0.194
⇡ Inverted 0.308 0.207

B. Bayesian analysis

1. Results without reactor constraints

This section describes the results obtained by the
Bayesian analysis when using only T2K data to estimate
the parameters sin2 ✓23, �m

2
32, sin2 ✓13 and �

CP

with
the MCMC method described in Sec. VIII B. In contrast
with the frequentist analysis presented in Sec. XIA, the
Markov chain walks in a parameter space where the sign
of �m

2
32 can flip, and results are presented for both mass

orderings. The best-fit point and ±1� credible interval
for each parameter, obtained with the KDE method, are

From Disappearance Data

T2K, 1707.01048 
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FIG. 39. Contours in the sin2
✓13–�CP

plane using T2K-only data, obtained by analysing either the ⌫- or ⌫-mode appearance
datasets are compared for both orderings. Both ⌫- and ⌫̄-mode disappearance datasets were used in all fits. The yellow band
corresponds to the reactor value on sin2

✓13 from the PDG 2015 [75].
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FIG. 40. Allowed region at 90% confidence level for oscilla-
tion parameters sin2

✓23 and �m

2
32 using T2K data with the

reactor constraint (sin2(2✓13) = 0.085 ± 0.005). The normal
mass ordering is assumed and the T2K results are compared
with NO⌫A [86], MINOS [87], Super-K [88], and IceCube [89].

tion shows a less extreme fluctuation than at least 5%
of the toys MC for all the values of �

CP

and mass or-
dering, i.e. if the experiment is repeated many times
and the true value is �

CP

= �⇡/2 with normal ordering,
more than 5% of the experiments are expected to show
a more extreme statistical fluctuation than the current
T2K dataset over the whole range of �

CP

and mass or-
dering. From Fig. 45, the fraction of experiments that
would exclude �

CP

= 0,⇡ at 90% or 2� confidence level
can be estimated. Assuming a true value of �CP of -⇡/2
and normal ordering, 24.3% (21.3%) of toy MC experi-
ments exclude �CP = 0 (⇡) at 90% CL. The same can be
repeated for di↵erent values of �

CP

and mass ordering as
shown in Tab. XXVI.

TABLE XXVI. The fraction of toy experiments for which
�

CP

= 0,⇡ and normal and inverted ordering are excluded at
90% and 2� confidence is shown for di↵erent true values of
�

CP

and mass ordering. 10,000 toy experiments are used for
each set of values.

True: �
CP

= �⇡/2 — normal ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.243 0.131
⇡ Normal 0.216 0.105
0 Inverted 0.542 0.425
⇡ Inverted 0.559 0.436

True: �
CP

= 0 — normal ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.104 0.0490
⇡ Normal 0.130 0.0591
0 Inverted 0.229 0.137
⇡ Inverted 0.205 0.122

True: �
CP

= �⇡/2 — inverted ordering
�

CP

Ordering 90% CL 2� CL
0 Normal 0.124 0.0515
⇡ Normal 0.102 0.0413
0 Inverted 0.290 0.194
⇡ Inverted 0.308 0.207

B. Bayesian analysis

1. Results without reactor constraints

This section describes the results obtained by the
Bayesian analysis when using only T2K data to estimate
the parameters sin2 ✓23, �m

2
32, sin2 ✓13 and �

CP

with
the MCMC method described in Sec. VIII B. In contrast
with the frequentist analysis presented in Sec. XIA, the
Markov chain walks in a parameter space where the sign
of �m

2
32 can flip, and results are presented for both mass

orderings. The best-fit point and ±1� credible interval
for each parameter, obtained with the KDE method, are

From Appearance Data

T2K, 1707.01048 
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FIG. 41. Comparison of the T2K data in ⌫

µ

(left) and ⌫

µ

(right) disappearance channels with the expected spectra obtained
with the T2K most probable values of the oscillation parameters and using the NO⌫A most probable values for sin2

✓23 (higher
octant) and �m

2
32 taken from Ref. [86].
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FIG. 42. A comparison of two-dimensional constant ��

2 contours in the �

CP

–sin2
✓13 plane using T2K data with the reactor

constraint, for both four-sample (red) and five-sample (black) analyses with normal (left) and inverted (right) mass ordering
hypotheses. The contours are produced by marginalizing the likelihood with respect to all parameters other than the parameters
of interest.

summarized in Tab. XXVII. The best fit point is the
mode of the four-dimensional histogram where the axes
are the oscillation parameters.

TABLE XXVII. Best-fit results and the 1� credible interval
of the T2K data fit without the reactor constraint with the
MCMC analyses including both mass orderings.

Parameter Best-fit ±1�
�

CP

-1.815 [-2.275; -0.628]
sin2

✓13 0.0254 [0.0210; 0.0350]
sin2

✓23 0.513 [0.460 ; 0.550]

�m

2
32 2.539⇥ 10�3

eV

2
/c

4 [�2.628;�2.544]⇥ 10�3
eV

2
/c

4

[2.436; 2.652]⇥ 10�3
eV

2
/c

4

The ±1� credible intervals, which have a 68.3% prob-
ability of containing the true value, are computed, for
each parameter, from the posterior probability density
marginalized over all the other parameters as shown in
Fig. 46. Fig. 46 also shows the correlations between the
oscillation parameters with the map of the marginal pos-
terior density probability and the credible intervals in the
space formed by two parameters.

The proportion of the MCMC points with sin2 ✓23 >

0.5 or < 0.5 gives the posterior probability of the octant.
Similarly, the relative proportion of steps with �m

2
32 >

or < 0 gives the posterior probability of each mass or-
dering. They are shown in Tab. XXVIII. A Bayes fac-
tor can be computed as a ratio of the posterior prob-
abilities [90]. The Bayes factor for normal ordering is

From T2K appearance Data and Daya Bay

T2K, 1707.01048 
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What can NOvA do?
M.D. Messier / Nuclear Physics B 908 (2016) 151–160 153

Fig. 1. The oscillation probabilities P(νµ → νe) and P(ν̄µ → ν̄e) for the NOvA experiment illustrating the dependence 
on the remaining unknowns; sin2 θ23, δCP, and choice of neutrino mass hierarchy. A possible NOvA measurement is 
overlaid to demonstrate how NOvA’s data might elucidate these remaining unknowns.

chosen to make an angle of 14.6 mrad with respect to the central beam axis to concentrate the 
neutrino flux near the oscillation maximum and to reduce backgrounds caused by feed down 
of high energy neutral-current (NC) interactions and by production of νe + ν̄e from three-body 
decays. The resulting spectrum peaks at 2 GeV, has a width of 30%, and in the peak is 97.6% 
pure νµ; ν̄µ contribute 1.7% and νe + ν̄e contribute 0.7% to the unoscillated event rates.

The NOvA detector design [24] builds on the concept first outlined in [25] and uses modules 
made from a custom, highly reflective, blend of polyvinyl chloride (PVC) [27] which contains a 
large mass of liquid scintillator [26] in 3.9 cm × 6.6 cm × 15.5 m unit cells. A looped 0.7 mm 
wavelength shifting fiber runs the full length of each cell with both ends terminating on a single 
pixel of an avalanche photodiode (APD). The APDs have high quantum efficiency, ≃ 80%, which 
is crucial for seeing the long-wavelength light which is most efficiently transmitted from the far 
end of a cell. This design yields roughly 29 photoelectrons per cell for a normally incident muon 
track passing at a distance of 15 m from the readout giving a per-cell detection efficiency of 
better than 90%.

The detector has a total 9 kt of liquid scintillator contained in a 5 kt plastic structure, 15.5 m 
high, 15.5 m wide, and 60 m long segmented into 344,000 channels which provide x and y read-
out in alternating planes. The detector meets the goals of achieving a large detector mass using 
low Z materials which are optimum for resolving the details of electromagnetic shower shapes, 
while also achieving a high degree of segmentation which improves neutrino event reconstruc-
tion and allows the detector to operate on the surface where the cosmic-ray rate is 140 kHz. 
Construction of the detector began in July 2012 and was completed in November 2014. Fig. 2
highlights two steps from the assembly of the far detector.
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shows the measured energy spectrum along with the best-fit
prediction, with the ratio to the prediction in the absence
of oscillations shown in the lower panel. The data are
fit for oscillations using 19 energy bins of 0.25-GeV width
between 0.25–5.0 GeV. The fit uses a log-likelihood
minimization with systematic uncertainties profiled using
Gaussian penalty terms. The oscillation parameters not
directly measured in this analysis are also profiled over,
using uncertainties taken from world averages [33]. Our
best fit is quoted at δCP ¼ 3π=2, which is degenerate with
δCP ¼ π=2. The disappearance probability is only mildly
dependent on the value of δCP and the effect of letting δCP
vary in the ½0; 2π# range is included in the uncertainties.
The best fit to the data gives Δm2

32 ¼ ðþ2.67& 0.11Þ ×
10−3 eV2 and sin2 θ23 at the two statistically degenerate
values 0.404þ0.030

−0.022 and 0.624þ0.022
−0.030 both at the 68% C.L. in

the normal hierarchy (NH). For the inverted hierarchy,
Δm2

32¼ð−2.72&0.11Þ×10−3 eV2 and sin2θ23¼0.398þ0.030
−0.022

or 0.618þ0.022
−0.030 at 68% C.L. The best fit has a χ2=d:o:f: ¼

41.6=17, which arises mainly from bins in the tail of the
energy spectrum that contain little information about the
three-flavor oscillations. Restricting the fit to energies
below 2.5 GeV reduces the χ2=d:o:f: to 3.2=7 and does
not significantly change the fit results.

Maximal mixing, where sin2 θ23 ¼ 0.5, is disfavored by
the data at 2.6σ. Fixing sin2 θ23 ¼ 0.5 gives a best fit of
Δm2

32 ¼ 2.48 × 10−3 eV2 (NH) with a prediction of 77.7
events. Figure 2 illustrates the difference between the
energy spectrum for the maximal mixing prediction, in
dashed green, and the best fit to our data, in red, for which
the mixing is nonmaximal. The 1–2 GeV region is where
the oscillation maximum occurs and the events in that
range provide the most information about the mixing angle.
Visual scanning of the events in this region along with
studies of their geometric location and kinematic variables
gave results consistent with expectations.

TABLE I. Sources of uncertainty and their estimated average
impact on the sin2 θ23 and Δm2

32 measurements. For this table, the
impact is quantified using the increase in the one-dimensional
68% C.L. interval, relative to the size of the interval when
only statistical uncertainty is included in the fit. Simulated data
were used and oscillated with Δm2

32 ¼ 2.67 × 10−3 eV2 and
sin2 θ23 ¼ 0.626.

Source of uncertainty
Uncertainty in
sin2θ23ð×10−3Þ

Uncertainty in
Δm2

32 ð×10−6 eV2Þ
Absolute muon energy
scale (&2%)

þ9= − 8 þ3= − 10

Relative muon energy
scale (&2%)

þ9= − 9 þ23= − 14

Absolute hadronic energy
scale (&5%)

þ5= − 5 þ7= − 3

Relative hadronic energy
scale (&5%)

þ10= − 11 þ29= − 19

Normalization (&5%) þ5= − 5 þ4= − 8
Cross sections and
final-state interactions

þ3= − 3 þ12= − 15

Neutrino flux þ1= − 2 þ4= − 7
Beam background
normalization (&100%)

þ3= − 6 þ10= − 16

Scintillation model þ4= − 3 þ2= − 5
δCP ð0 − 2πÞ þ0.2= − 0.3 þ10= − 9

Total systematic
uncertainty

þ17= − 19 þ50= − 47

Statistical uncertainty þ21= − 23 þ93= − 99
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FIG. 2. Top: Comparison of the reconstructed energy spectrum
of the FD data (black dots) and best-fit prediction (red). The
systematic uncertainty band is shaded red. Combined beam and
cosmic backgrounds are shown by the dashed blue histogram.
The prediction assuming maximal mixing is shown in dashed
green. Bottom: The ratio to no oscillations for data and MC
calculations after background subtraction.
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shows the measured energy spectrum along with the best-fit
prediction, with the ratio to the prediction in the absence
of oscillations shown in the lower panel. The data are
fit for oscillations using 19 energy bins of 0.25-GeV width
between 0.25–5.0 GeV. The fit uses a log-likelihood
minimization with systematic uncertainties profiled using
Gaussian penalty terms. The oscillation parameters not
directly measured in this analysis are also profiled over,
using uncertainties taken from world averages [33]. Our
best fit is quoted at δCP ¼ 3π=2, which is degenerate with
δCP ¼ π=2. The disappearance probability is only mildly
dependent on the value of δCP and the effect of letting δCP
vary in the ½0; 2π# range is included in the uncertainties.
The best fit to the data gives Δm2

32 ¼ ðþ2.67& 0.11Þ ×
10−3 eV2 and sin2 θ23 at the two statistically degenerate
values 0.404þ0.030

−0.022 and 0.624þ0.022
−0.030 both at the 68% C.L. in

the normal hierarchy (NH). For the inverted hierarchy,
Δm2

32¼ð−2.72&0.11Þ×10−3 eV2 and sin2θ23¼0.398þ0.030
−0.022

or 0.618þ0.022
−0.030 at 68% C.L. The best fit has a χ2=d:o:f: ¼

41.6=17, which arises mainly from bins in the tail of the
energy spectrum that contain little information about the
three-flavor oscillations. Restricting the fit to energies
below 2.5 GeV reduces the χ2=d:o:f: to 3.2=7 and does
not significantly change the fit results.

Maximal mixing, where sin2 θ23 ¼ 0.5, is disfavored by
the data at 2.6σ. Fixing sin2 θ23 ¼ 0.5 gives a best fit of
Δm2

32 ¼ 2.48 × 10−3 eV2 (NH) with a prediction of 77.7
events. Figure 2 illustrates the difference between the
energy spectrum for the maximal mixing prediction, in
dashed green, and the best fit to our data, in red, for which
the mixing is nonmaximal. The 1–2 GeV region is where
the oscillation maximum occurs and the events in that
range provide the most information about the mixing angle.
Visual scanning of the events in this region along with
studies of their geometric location and kinematic variables
gave results consistent with expectations.

TABLE I. Sources of uncertainty and their estimated average
impact on the sin2 θ23 and Δm2

32 measurements. For this table, the
impact is quantified using the increase in the one-dimensional
68% C.L. interval, relative to the size of the interval when
only statistical uncertainty is included in the fit. Simulated data
were used and oscillated with Δm2

32 ¼ 2.67 × 10−3 eV2 and
sin2 θ23 ¼ 0.626.

Source of uncertainty
Uncertainty in
sin2θ23ð×10−3Þ

Uncertainty in
Δm2

32 ð×10−6 eV2Þ
Absolute muon energy
scale (&2%)

þ9= − 8 þ3= − 10

Relative muon energy
scale (&2%)

þ9= − 9 þ23= − 14

Absolute hadronic energy
scale (&5%)

þ5= − 5 þ7= − 3

Relative hadronic energy
scale (&5%)

þ10= − 11 þ29= − 19

Normalization (&5%) þ5= − 5 þ4= − 8
Cross sections and
final-state interactions

þ3= − 3 þ12= − 15

Neutrino flux þ1= − 2 þ4= − 7
Beam background
normalization (&100%)

þ3= − 6 þ10= − 16

Scintillation model þ4= − 3 þ2= − 5
δCP ð0 − 2πÞ þ0.2= − 0.3 þ10= − 9

Total systematic
uncertainty

þ17= − 19 þ50= − 47
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FIG. 2. Top: Comparison of the reconstructed energy spectrum
of the FD data (black dots) and best-fit prediction (red). The
systematic uncertainty band is shaded red. Combined beam and
cosmic backgrounds are shown by the dashed blue histogram.
The prediction assuming maximal mixing is shown in dashed
green. Bottom: The ratio to no oscillations for data and MC
calculations after background subtraction.
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NOvA, PRL 118, 151802, 2017 

Maximal theta23 mixing is ruled out at 2.6 sigma 
�m2

32 = (2.67± 0.11)⇥ 10�3eV 2, sin2 ✓23 = 0.404+0.030
�0.022 and 0.624+0.022

0.030
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Inverted hiearchy with theta23 in 
lower octant disfavoured at 93% C.L. 

From Appearance + Disappearance Data
33 candidate     events with                (syst) expected backgrounds ⌫e 8.2± 0.8
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FIG. 2: Total number of selected ⌫e candidate events expected
at the FD. The blue represents Normal Hierarchy (NH) and
the orange Inverted Hierarchy (IH). The bands correspond to
the range sin2

✓23 = 0.40 (lower edge) to 0.62 (upper edge),
with the solid line marking maximal mixing. The x-axis gives
the value of the CP phase, while all other parameters are held
fixed at the best fit values found by NOvA’s latest analysis of
⌫µ disappearance [30].
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FIG. 3: Reconstructed energy of selected FD events in three
bins of the CVN classifier variable. Black points show the
data, the red line shows the predicted spectrum at the best fit
point in Normal Hierarchy (NH), with the blue area showing
the total expected background.

considered include neutrino flux, modeling of neutrino in-
teractions and detector response. The overall e↵ect of the
uncertainties summed in quadrature on the total event
count is 5.0% (10.5%) on the signal (background). The
statistical uncertainties of 20.1% (34.9%) on the signal
(background) therefore dominate.

After the event selection criteria and analysis proce-
dures were finalized, inspection of the FD data revealed
33 ⌫e candidates, of which 8.2 ± 0.8 (syst.) events are
predicted to be background [42]. Figure 3 shows a com-
parison of the event distribution with the expectations at
the best fit point as a function of the classifier variable
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32 > 0) and the bottom panel to inverted
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2
32 < 0). The color intensity indicates the con-

fidence level at which particular parameter combinations are
allowed.

and reconstructed neutrino energy.
To extract oscillation parameters, the ⌫e CC energy

spectrum in bins of event classifier is fit simultaneously
with the FD ⌫µ CC energy spectrum [30]. The NOvA ⌫µ
disappearance result constrains sin2 ✓23 around degener-
ate best fit points of 0.404 and 0.624. The likelihood be-
tween the observed spectra and the Poisson expectation
in each bin is computed as a function of the oscillation pa-
rameters |�m2

32|, ✓23, ✓13, �CP , and the mass hierarchy.
Each source of systematic uncertainty is incorporated
into the fit as a nuisance parameter, which varies the pre-
dicted FD spectrum according to the shifts determined
from systematically shifted samples. Where systematic
uncertainties are common between the two data sets, the
nuisance parameters associated with the e↵ect are corre-
lated appropriately. Gaussian penalty terms are applied
to represent the estimates of the 1� ranges of these pa-
rameters, and the knowledge of sin2 2✓13 = 0.085± 0.005
from reactor experiments [38].
Figure 4 shows the regions of (sin2 ✓23, �CP ) space al-

lowed at various confidence levels. The likelihood surface
is profiled over the parameters |�m2

32| and ✓13 while the
solar parameters �m2

21 and ✓12 are held fixed. The sig-
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with the solid line marking maximal mixing. The x-axis gives
the value of the CP phase, while all other parameters are held
fixed at the best fit values found by NOvA’s latest analysis of
⌫µ disappearance [30].
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considered include neutrino flux, modeling of neutrino in-
teractions and detector response. The overall e↵ect of the
uncertainties summed in quadrature on the total event
count is 5.0% (10.5%) on the signal (background). The
statistical uncertainties of 20.1% (34.9%) on the signal
(background) therefore dominate.

After the event selection criteria and analysis proce-
dures were finalized, inspection of the FD data revealed
33 ⌫e candidates, of which 8.2 ± 0.8 (syst.) events are
predicted to be background [42]. Figure 3 shows a com-
parison of the event distribution with the expectations at
the best fit point as a function of the classifier variable
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nuisance parameters associated with the e↵ect are corre-
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to represent the estimates of the 1� ranges of these pa-
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from reactor experiments [38].
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considered include neutrino flux, modeling of neutrino in-
teractions and detector response. The overall e↵ect of the
uncertainties summed in quadrature on the total event
count is 5.0% (10.5%) on the signal (background). The
statistical uncertainties of 20.1% (34.9%) on the signal
(background) therefore dominate.

After the event selection criteria and analysis proce-
dures were finalized, inspection of the FD data revealed
33 ⌫e candidates, of which 8.2 ± 0.8 (syst.) events are
predicted to be background [42]. Figure 3 shows a com-
parison of the event distribution with the expectations at
the best fit point as a function of the classifier variable
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with the FD ⌫µ CC energy spectrum [30]. The NOvA ⌫µ
disappearance result constrains sin2 ✓23 around degener-
ate best fit points of 0.404 and 0.624. The likelihood be-
tween the observed spectra and the Poisson expectation
in each bin is computed as a function of the oscillation pa-
rameters |�m2

32|, ✓23, ✓13, �CP , and the mass hierarchy.
Each source of systematic uncertainty is incorporated
into the fit as a nuisance parameter, which varies the pre-
dicted FD spectrum according to the shifts determined
from systematically shifted samples. Where systematic
uncertainties are common between the two data sets, the
nuisance parameters associated with the e↵ect are corre-
lated appropriately. Gaussian penalty terms are applied
to represent the estimates of the 1� ranges of these pa-
rameters, and the knowledge of sin2 2✓13 = 0.085± 0.005
from reactor experiments [38].
Figure 4 shows the regions of (sin2 ✓23, �CP ) space al-

lowed at various confidence levels. The likelihood surface
is profiled over the parameters |�m2
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Fig. 1. CP Sensitivity of T2K for NH-LO.

ongoing accelerator base long-baseline experiment NO⌫A [3] in Fermilab and the
proposed atmospheric neutrino experiment ICAL@INO [4] in India to show that
the maximum CP sensitivity of T2K comes from the dominant neutrino run.

2 Results and Discussions

For the simulation of T2K experiment we consider a total exposure of 8⇥ 1021

protons of target (pot). We have divided this exposure in di↵erent proportion of
neutrino and antineutrino running in units of 1021 pot.

In Fig. 1, we have plotted the CP violation discovery potential of T2K for
NH (�m2

31 = 0.0024 eV2)-LO (✓23 = 39�). From the figure we see that when
octant is known (left panel), the best sensitivity comes from the pure neutrino
run i.e., 8+0 configuration. But when octant is unknown (right panel), 8+0 gives
the worst sensitivity. As the proportion of antineutrinos increases, CP sensitivity
gets improved. The maximum sensitivity is for 5+3 and further increase of an-
tineutrinos decreases the sensitivity. This is because for 5+3, the wrong-octant
solution is completely removed and further addition of antineutrinos reduces the
statistics and hence the decrease in the sensitivity.

In Fig. 2 we plotted the same but for all the four combinations of hierarchy
and octant assuming octant is unknown. IH corresponds to �m2

31 = �0.0024
eV2 and HO corresponds to ✓23 = 51�. From this figure we see that apart from
�90� - NH - LO and +90� - IH - HO, 8+0 configuration of T2K gives the best CP
sensitivity. Thus to get a handle over these two situations, in Fig. 3 we plotted
the same as Fig. 2 but for the combination of T2K+NO⌫A+ICAL.

For NO⌫A we assume a three years running in both neutrino and antineutrino
mode and for ICAL we consider a 50kt iron calorimeter detector running for 10
years. From the figure we see that when NO⌫A and ICAL are combined with
the T2K data then the best CP sensitivity comes from the 7+1 configuration of
T2K.

M. Ghosh, 1512.02226
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when the true octant is LO, we notice that, for δCP = −90◦,
pure neutrino run of T2K gives the worst sensitivity and addi-
tion of antineutrinos help in improving the CP sensitivity. For
the T2K combination (5+3) the sensitivity becomes maximum
and then the χ2 falls with the further addition of antineutrinos
[38]. This is because, neutrinos suffer from octant degeneracy
in (LO,LHP) but antineutrinos do not. Thus at this true value,
addition of antineutrinos help in improving the CP sensitivity.
But once the degeneracy is removed and the χ2 minima shifts
into the correct octant, further addition of antineutrino causes
a decrease in statistics and hence the sensitivity and as a result
we see (5+3) is better than (4+4). But the situation is different

when the true octant is HO (bottom right panel). As neutrinos
do not have octant degeneracy at this point, pure neutrino run
gives the maximum sensitivity while addition of antineutrinos
only reduces sensitivity.
Now let us discuss the role of antineutrinos when the true

hierarchy is inverted. In Fig. 2, we have plotted the same
curves that of Fig. 1 but assuming the true hierarchy as IH. In
all the panels we identify the drop in the χ2 sensitivity in the
the LHP due the hierarchy-δCP degeneracy. As in NH, here
it is noticed that for the cases when octant is known (top left
and bottom left panels) antineutrinos do not help in the CP
sensitivity but when the octant is unknown adding antineutri-

The anti-nu run helps here since the flux does not peak at the osc max
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Fig. 2. CP Sensitivity of T2K for all the four combinations of hierarchy and octant.
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For further details see Ref. [5] on which this work is based upon.
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Conclusions

The DUNE Far Detector

The 40-kton (fiducial) detector is constructed of four modules with a
total mass of 17.4 kton each.
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Figure 3.5: ‹e and ‹̄e appearance spectra: Reconstructed energy distribution of selected ‹e CC-like
events assuming a 150 kt · MW · year exposure in the neutrino-beam mode (left) and antineutrino-
beam mode (right), for a total 300 kt · MW · year exposure. The plots assume normal mass hierarchy
and ”CP = 0. The spectra are shown for both the CDR reference beam design and the optimized beam
design as described in Section 3.9.1.
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Figure 3.6: ‹µ and ‹̄µ disappearance spectra: Reconstructed energy distribution of selected ‹µ CC-like
events assuming a 150 kt · MW · year exposure in the neutrino-beam mode (left) and antineutrino-beam
mode (right), for a total 300 kt · MW · year exposure. The plots assume normal mass hierarchy and
”CP = 0. The spectra are shown for both the CDR reference beam design and the optimized beam
design as described in Section 3.9.1.

Volume 2: The Physics Program for DUNE at LBNF LBNF/DUNE Conceptual Design Report

Chapter 3: Long-Baseline Neutrino Oscillation Physics 3–17

Reconstructed Energy (GeV)
1 2 3 4 5 6 7 8

Ev
en

ts
/0

.2
5 

G
eV

0

20

40

60

80

100

120

) CCeν+eνSignal (
) CCeν+eνBeam (

NC
) CCτν+τν(
) CCµν+µν(

CDR Reference Design
Optimized Design

 appearanceeνDUNE 
 modeν150 kt-MW-yr 
=0CPδNormal MH, 

)=0.4523θ(2sin

Reconstructed Energy (GeV)
1 2 3 4 5 6 7 8

Ev
en

ts
/0

.2
5 

G
eV

0

5

10

15

20

25

30

35

) CCeν+eνSignal (
) CCeν+eνBeam (

NC
) CCτν+τν(
) CCµν+µν(

CDR Reference Design
Optimized Design

 appearanceeνDUNE 
 modeν150 kt-MW-yr 
=0CPδNormal MH, 

)=0.4523θ(2sin

Figure 3.5: ‹e and ‹̄e appearance spectra: Reconstructed energy distribution of selected ‹e CC-like
events assuming a 150 kt · MW · year exposure in the neutrino-beam mode (left) and antineutrino-
beam mode (right), for a total 300 kt · MW · year exposure. The plots assume normal mass hierarchy
and ”CP = 0. The spectra are shown for both the CDR reference beam design and the optimized beam
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Figure 3.6: ‹µ and ‹̄µ disappearance spectra: Reconstructed energy distribution of selected ‹µ CC-like
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Sensitivities to the neutrino mass hierarchy and the degree of CP violation are obtained by simul-
taneously fitting the ‹µ æ ‹µ, ‹̄µ æ ‹̄µ, ‹µ æ ‹e, and ‹̄µ æ ‹̄e oscillated spectra. It is assumed
that 50% of the total exposure comes in neutrino beam mode and 50% in antineutrino beam mode.
A 50%/50% ratio of neutrino to antineutrino data has been shown to produce a nearly optimal
sensitivity, and small deviations from this (e.g., 40%/60%, 60%/40%) produce negligible changes
in the sensitivity.

The neutrino oscillation parameters are all allowed to vary, constrained by a Gaussian prior with 1‡
width as given by the relative uncertainties shown in Table 3.4. The e�ect of systematic uncertainty
is approximated using signal and background normalization uncertainties, which are treated as
100% uncorrelated among the four samples. The baseline systematic uncertainty estimates and
the e�ect of considering larger signal and background normalization uncertainties, as well as some
energy-scale uncertainties are discussed in Section 3.6.

In these fits, experimental sensitivity is quantified using a test statistic, �‰2, which is calculated by
comparing the predicted spectra for alternate hypotheses. These quantities are defined, di�erently
for neutrino mass hierarchy and CP-violation sensitivity, to be:

�‰2
MH = ‰2

IH ≠ ‰2
NH (true normal hierarchy), (3.6)

�‰2
MH = ‰2

NH ≠ ‰2
IH (true inverted hierarchy), (3.7)

�‰2
CP V = Min[�‰2

CP (”test
CP = 0), �‰2

CP (”test
CP = fi)], where (3.8)

�‰2
CP = ‰2

”test
CP

≠ ‰2
”true

CP
. (3.9)

Since the true value of ”CP is unknown, a scan is performed over all possible values of ”true
CP . Both

the neutrino mass hierarchy and the ◊23 octant are also assumed to be unknown and are varied in
the fits, with the lowest value of �‰2 thus obtained used to estimate the sensitivities.

A “typical experiment” is defined as one with the most probable data given a set of input parame-
ters, i.e., in which no statistical fluctuations have been applied. In this case, the predicted spectra
and the true spectra are identical; for the example of CP violation, ‰2

”true
CP

is identically zero and
the �‰2

CP value for a typical experiment is given by ‰2
”test

CP
.

3.3 Mass Hierarchy

The 1300≠km baseline establishes one of DUNE’s key strengths: sensitivity to the matter e�ect.
This e�ect leads to a large asymmetry in the ‹µ æ ‹e versus ‹̄µ æ ‹̄e oscillation probabilities, the
sign of which depends on the mass hierarchy (MH). At 1300 km this asymmetry is approximately
±40% in the region of the peak flux; this is larger than the maximal possible CP-violating asym-
metry associated with ”CP, meaning that both the MH and ”CP can be determined unambiguously
with high confidence within the same experiment using the beam neutrinos. DUNE’s goal is to
determine the MH with a significance of at least

Ò
�‰2 = 5 for all ”CP values using beam neutrinos.

Concurrent analysis of the corresponding atmospheric-neutrino samples will improve the precision
with which the MH is resolved.

Volume 2: The Physics Program for DUNE at LBNF LBNF/DUNE Conceptual Design Report

Chapter 3: Long-Baseline Neutrino Oscillation Physics 3–28

π/
CP

δ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

2
χ 

∆
 =

 
σ

0

1

2

3

4

5

6

7

8

CP Violation Sensitivity

π/
CP

δ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

2
χ 

∆
 =

 
σ

0

1

2

3

4

5

6

7

8
DUNE Sensitivity
Normal Hierarchy

300 kt-MW-years
 = 0.08513θ22sin

 = 0.4523θ2sin

σ3

σ5

CDR Reference Design

Optimized Design

CP Violation Sensitivity

π/
CP

δ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

2
χ 

∆
 =

 
σ

0

1

2

3

4

5

6

7

8

CP Violation Sensitivity

π/
CP

δ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

2
χ 

∆
 =

 
σ

0

1

2

3

4

5

6

7

8
DUNE Sensitivity
Inverted Hierarchy

300 kt-MW-years
 = 0.08513θ22sin

 = 0.5823θ2sin

σ3

σ5

CDR Reference Design

Optimized Design

CP Violation Sensitivity

Figure 3.13: The significance with which the CP violation can be determined as a function of the value
of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right). The
shaded region represents the range in sensitivity due to potential variations in the beam design.

Table 3.7: The minimum exposure required to determine CP violation with a significance of 3‡ for 75%
of ”CP values or 5‡ for 50% of ”CP values for the CDR reference beam design and the optimized beam
design.

Significance CDR Reference Design Optimized Design
3‡ for 75% of ”CP values 1320 kt · MW · year 850 kt · MW · year
5‡ for 50% of ”CP values 810 kt · MW · year 550 kt · MW · year
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Figure 3.13: The significance with which the CP violation can be determined as a function of the value
of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right). The
shaded region represents the range in sensitivity due to potential variations in the beam design.

Table 3.7: The minimum exposure required to determine CP violation with a significance of 3‡ for 75%
of ”CP values or 5‡ for 50% of ”CP values for the CDR reference beam design and the optimized beam
design.

Significance CDR Reference Design Optimized Design
3‡ for 75% of ”CP values 1320 kt · MW · year 850 kt · MW · year
5‡ for 50% of ”CP values 810 kt · MW · year 550 kt · MW · year
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        Uncertainty on CP phase 
 
 
                         Aim:  
 
To achieve a precision comparable 
               to the quark sector 

  S. K. Agarwalla, PHENO1@IISERM, IISER, Mohali, India, 6th April, 2016 !
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Figure 3.7 shows the significance with which the MH can be determined as a function of the value
of ”CP, for an exposure of 300 kt · MW · year, which corresponds to seven years of data (3.5 years in
neutrino mode plus 3.5 years in antineutrino mode) with a 40-kt detector and a 1.07-MW 80-GeV
beam. For this exposure, the MH is determined with a minimum significance of

Ò
�‰2 = 5 for

100% of the ”CP values for the optimized beam design and nearly 100% of ”CP values for the CDR
reference beam design. Figure 3.8 shows the significance with which the MH can be determined for
0% (most optimistic), 50% and 100% of ”CP values as a function of exposure. Minimum exposures
of approximately 400 kt · MW · year and 230 kt · MW · year are required to determine the MH with
a significance of

Ò
�‰2 = 5 for 100% of ”CP values for the CDR reference beam design and the

optimized beam design, respectively.
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Figure 3.7: The significance with which the mass hierarchy can be determined as a function of the
value of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right).
The shaded region represents the range in sensitivity due to potential variations in the beam design.

Figures 3.9, 3.10, and 3.11 show the variation in the MH sensitivity due to di�erent values of ◊23,
◊13, and �m2

31 within the allowed ranges. The value of ◊23 has the biggest impact on the sensitivity,
and the least favorable scenario corresponds to a true value of ”CP in which the MH asymmetry
is maximally o�set by the leptonic CP asymmetry, and where, independently, sin2 ◊23 takes on a
value at the low end of its experimentally allowed range.

Studies have indicated that special attention must be paid to the statistical interpretation of MH
sensitivities [21, 22]. In general, if an experiment is repeated many times, a distribution of �‰2

values will appear due to statistical fluctuations. It is usually assumed that the �‰2 metric follows
the expected chi-squared function for one degree of freedom, which has a mean of �‰2 and can be
interpreted using a Gaussian distribution with a standard deviation of

Ò
|�‰2|. In assessing the

MH sensitivity of future experiments, it is common practice to generate a simulated data set (for
an assumed true MH) that does not include statistical fluctuations. In this typical case, �‰2 is
reported as the expected sensitivity, where �‰2 is representative of the mean value of �‰2 that
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Figure 3.7 shows the significance with which the MH can be determined as a function of the value
of ”CP, for an exposure of 300 kt · MW · year, which corresponds to seven years of data (3.5 years in
neutrino mode plus 3.5 years in antineutrino mode) with a 40-kt detector and a 1.07-MW 80-GeV
beam. For this exposure, the MH is determined with a minimum significance of

Ò
�‰2 = 5 for

100% of the ”CP values for the optimized beam design and nearly 100% of ”CP values for the CDR
reference beam design. Figure 3.8 shows the significance with which the MH can be determined for
0% (most optimistic), 50% and 100% of ”CP values as a function of exposure. Minimum exposures
of approximately 400 kt · MW · year and 230 kt · MW · year are required to determine the MH with
a significance of

Ò
�‰2 = 5 for 100% of ”CP values for the CDR reference beam design and the

optimized beam design, respectively.
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Figure 3.7: The significance with which the mass hierarchy can be determined as a function of the
value of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right).
The shaded region represents the range in sensitivity due to potential variations in the beam design.

Figures 3.9, 3.10, and 3.11 show the variation in the MH sensitivity due to di�erent values of ◊23,
◊13, and �m2

31 within the allowed ranges. The value of ◊23 has the biggest impact on the sensitivity,
and the least favorable scenario corresponds to a true value of ”CP in which the MH asymmetry
is maximally o�set by the leptonic CP asymmetry, and where, independently, sin2 ◊23 takes on a
value at the low end of its experimentally allowed range.

Studies have indicated that special attention must be paid to the statistical interpretation of MH
sensitivities [21, 22]. In general, if an experiment is repeated many times, a distribution of �‰2

values will appear due to statistical fluctuations. It is usually assumed that the �‰2 metric follows
the expected chi-squared function for one degree of freedom, which has a mean of �‰2 and can be
interpreted using a Gaussian distribution with a standard deviation of

Ò
|�‰2|. In assessing the

MH sensitivity of future experiments, it is common practice to generate a simulated data set (for
an assumed true MH) that does not include statistical fluctuations. In this typical case, �‰2 is
reported as the expected sensitivity, where �‰2 is representative of the mean value of �‰2 that
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Sensitivities to the neutrino mass hierarchy and the degree of CP violation are obtained by simul-
taneously fitting the ‹µ æ ‹µ, ‹̄µ æ ‹̄µ, ‹µ æ ‹e, and ‹̄µ æ ‹̄e oscillated spectra. It is assumed
that 50% of the total exposure comes in neutrino beam mode and 50% in antineutrino beam mode.
A 50%/50% ratio of neutrino to antineutrino data has been shown to produce a nearly optimal
sensitivity, and small deviations from this (e.g., 40%/60%, 60%/40%) produce negligible changes
in the sensitivity.

The neutrino oscillation parameters are all allowed to vary, constrained by a Gaussian prior with 1‡
width as given by the relative uncertainties shown in Table 3.4. The e�ect of systematic uncertainty
is approximated using signal and background normalization uncertainties, which are treated as
100% uncorrelated among the four samples. The baseline systematic uncertainty estimates and
the e�ect of considering larger signal and background normalization uncertainties, as well as some
energy-scale uncertainties are discussed in Section 3.6.

In these fits, experimental sensitivity is quantified using a test statistic, �‰2, which is calculated by
comparing the predicted spectra for alternate hypotheses. These quantities are defined, di�erently
for neutrino mass hierarchy and CP-violation sensitivity, to be:

�‰2
MH = ‰2

IH ≠ ‰2
NH (true normal hierarchy), (3.6)

�‰2
MH = ‰2

NH ≠ ‰2
IH (true inverted hierarchy), (3.7)

�‰2
CP V = Min[�‰2

CP (”test
CP = 0), �‰2

CP (”test
CP = fi)], where (3.8)

�‰2
CP = ‰2

”test
CP

≠ ‰2
”true

CP
. (3.9)

Since the true value of ”CP is unknown, a scan is performed over all possible values of ”true
CP . Both

the neutrino mass hierarchy and the ◊23 octant are also assumed to be unknown and are varied in
the fits, with the lowest value of �‰2 thus obtained used to estimate the sensitivities.

A “typical experiment” is defined as one with the most probable data given a set of input parame-
ters, i.e., in which no statistical fluctuations have been applied. In this case, the predicted spectra
and the true spectra are identical; for the example of CP violation, ‰2

”true
CP

is identically zero and
the �‰2

CP value for a typical experiment is given by ‰2
”test

CP
.

3.3 Mass Hierarchy

The 1300≠km baseline establishes one of DUNE’s key strengths: sensitivity to the matter e�ect.
This e�ect leads to a large asymmetry in the ‹µ æ ‹e versus ‹̄µ æ ‹̄e oscillation probabilities, the
sign of which depends on the mass hierarchy (MH). At 1300 km this asymmetry is approximately
±40% in the region of the peak flux; this is larger than the maximal possible CP-violating asym-
metry associated with ”CP, meaning that both the MH and ”CP can be determined unambiguously
with high confidence within the same experiment using the beam neutrinos. DUNE’s goal is to
determine the MH with a significance of at least

Ò
�‰2 = 5 for all ”CP values using beam neutrinos.

Concurrent analysis of the corresponding atmospheric-neutrino samples will improve the precision
with which the MH is resolved.
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Figure 3.18: The significance with which DUNE can resolve the ◊23 octant as a function of the true
value of ◊23. The green shaded band around the curve represents the range in sensitivity due to potential
variations in the beam design and in the true value of ”CP. The yellow shaded regions indicate the
current 1‡ and 3‡ bounds on the value of ◊23 from a global fit. The same exposure that gives a 3‡
measurement of CP violation for 75% of the values of ”CP is assumed. See Figure 3.14 for the possible
range of exposure to achieve this significance.
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In the previous study performed in 2011 [1], the sensitivity was evaluated for a range of ✓
13

values because the
exact value of ✓

13

was not known at that time, although T2K collaboration had already reported an indication
of electron neutrino appearance [10]. Now that the value of ✓

13

is known more precisely thanks to the reactor
experiments [32–36], the sensitivity has been revised with the latest knowledge of the oscillation parameters. In
addition, the analysis method has been updated using a framework developed for the sensitivity study by T2K
reported in [44]. A binned likelihood analysis based on the reconstructed neutrino energy distribution is performed
using both ⌫e (⌫e) appearance and ⌫µ (⌫µ) disappearance samples simultaneously. In addition to sin2 2✓

13

and �CP ,
other parameters that were fixed in the previous study, sin2 ✓

23

and �m2

32

, are also included in the fit. Table XVIII
shows the nominal oscillation parameters used in the study presented in this document, and the treatment during the
fitting. Systematic uncertainties are estimated based on the experience and prospects of the T2K experiment, and
implemented as a covariance matrix which takes into account the correlation of uncertainties.

An integrated beam power of 7.5 MW⇥107 sec is assumed in this study. It corresponds to 1.56⇥ 1022 protons on
target with 30GeV J-PARC beam. The ratio of neutrino and anti-neutrino running time is assumed to be 1:3 so that
the expected number of events are approximately the same for neutrino and anti-neutrino modes.

TABLE XVIII. Oscillation parameters used for the sensitivity analysis and treatment in the fitting. The nominal values are
used for figures and numbers in this section, unless otherwise stated.

Parameter sin2 2✓13 �CP sin2 ✓23 �m2
32 mass hierarchy sin2 2✓12 �m2

12

Nominal 0.10 0 0.50 2.4⇥ 10�3 eV2 Normal or Inverted 0.8704 7.6⇥ 10�5 eV2

Treatment Fitted Fitted Fitted Fitted Fixed Fixed Fixed

B. Expected observables at Hyper-K

The neutrino flux presented in Sec. III C is used as an input to the simulation. Interactions of neutrinos in the
Hyper-K detector are simulated with the NEUT program library [95–97], which is used in both Super-K and T2K.
The response of the detector is simulated using the Super-K full Monte Carlo simulation based on the GEANT3
package [55]. The simulation is based on the SK-IV configuration with the upgraded electronics and DAQ system.
Events are reconstructed with the Super-K reconstruction software. As described in Sec. II F, the performance of
Hyper-K detector for neutrinos with J-PARC beam energy is expected to be similar to that of Super-K. Thus, the
Super-K full simulation gives a realistic estimate of the Hyper-K performance.

The criteria to select ⌫e and ⌫µ candidate events are based on those developed for and established with the Super-
K and T2K experiments. Fully contained (FC) events with a reconstructed vertex inside the fiducial volume (FV)
and visible energy (E

vis

) greater than 30MeV are selected as FCFV neutrino event candidates. In order to enhance
charged current quasielastic (CCQE, ⌫l + n ! l� + p or ⌫l + p ! l+ + n) interaction, a single Cherenkov ring is
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FIG. 25. Oscillation probabilities as a function of the neutrino energy for ⌫µ ! ⌫e (left) and ⌫µ ! ⌫e (right) transitions with
L=295 km and sin2 2✓13 = 0.1. Black, red, green, and blue lines correspond to �CP = 0, 1

2⇡,⇡, and � 1
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(dashed) line represents the case for a normal (inverted) mass hierarchy.
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FIG. 27. Reconstructed neutrino energy distribution of the ⌫e candidate events.

required.
Assuming a CCQE interaction, the neutrino energy (Erec

⌫ ) is reconstructed from the energy of the final state charged
lepton (E`) and the angle between the neutrino beam and the charged lepton directions (✓`) as

Erec

⌫ =
2(mn � V )E` +m2

p � (mn � V )2 �m2

`

2(mn � V � E` + p` cos ✓`)
, (9)

where mn,mp,m` are the mass of neutron, proton, and charged lepton, respectively, p` is the charged lepton momen-
tum, and V is the nuclear potential energy (27MeV).

Then, to select ⌫e/⌫e candidate events the following criteria are applied; the reconstructed ring is identified as
electron-like (e-like), E

vis

is greater than 100MeV, there is no decay electron associated to the event, and Erec

⌫ is less
than 1.25GeV. Finally, in order to reduce the background from mis-reconstructed ⇡0 events, additional criteria using
a reconstruction algorithm recently developed for T2K (fiTQun, see Sec. II F) is applied. With a selection based on
the reconstructed ⇡0 mass and the ratio of the best-fit likelihoods of the ⇡0 and electron fits as used in T2K [11], the
remaining ⇡0 background is reduced to about 30% compared to the previous study [1].

Figure 27 shows the reconstructed neutrino energy distributions of ⌫e events after all the selections. The expected
number of ⌫e candidate events is shown in Table XIX for each signal and background component. In the neutrino
mode, the dominant background component is intrinsic ⌫e contamination in the beam. The mis-identified neutral
current ⇡0 production events, which was one of the dominant background components in the previous study, are
suppressed thanks to the improved ⇡0 rejection. In the anti-neutrino mode, in addition to ⌫e and ⌫µ, ⌫e and ⌫µ
components have non-negligible contributions due to larger fluxes and cross-sections compared to their counterparts
in the neutrino mode.

For the ⌫µ/⌫µ candidate events the following criteria are applied; the reconstructed ring is identified as muon-like

HK LOI, arXiv:1412.4673
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%  Hyper-K is off-axis, narrow-band beam, 295 km baseline  
%  10 years @ 750 kW or 5 years at 1.5 MW 
%  Assume Mass Hierarchy is already known 
%  Beam sharing: neutrinos:anti-neutrinos = 1:3 
%  CPV coverage: 76% at 3σ or 58% at 5σ 

HK LOI, arXiv:1412.4673

Off-axis narrow beam from Tokai to HK at 295 km
Fuducial mass of HK is 560 kton 
5 years at 1.5 MW, nu:antinu is 1:3
74% CP coverage at 3 sigma, 58% CP coverage at 5 sigma

Marginalisation over hierarchy not done
CP precision < 19o fo 5 sigma

More in Deepthi’s talk
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Lund ESS 

Figure 8. Location of the ESS site and the sites of several deep (> 1000 m) underground mines.
The distance (L) from ESS-Lund and the depth (D) of each mine is indicated below the name of
the mine.

260 km. This depository is only 500 m deep, but can be extended down to below 1000 m.

There are more active and inactive mines further north in Sweden. Among the active

mines there are Renström 1240 m deep and Kristineberg 1350 m deep, both at 1090 km

from Lund. The Pyhsälmi mine in Finland, which has been studied as detector site for

a long baseline beam from the SPS accelerator at CERN, is 1440 m deep and situated

1140 km from Lund. According to the current status of our optimization calculations,

Oskarshamn, Zinkgruvan and Garpenberg lie within the optimal baseline range for CP

violation measurements.

6 Conclusion

The currently planned and approved European Spallation Source proton linac will be

ready in 2019. Providing it with an extra H� source, an additional 5 MW radiofrequency

power source, an accumulator ring, a neutrino target with horn and a decay tunnel, would

make possible the production of a neutrino beam of about 350 MeV mean energy derived

from 1023, 2.5 GeV protons on target per year in concurrent operation with spallation

– 9 –

mass hierarchy is not assumed to be known. These parameters are included in the fit

assuming a prior knowledge with an accuracy of 10% for ✓12 and ✓23, 5% for �m2
31 and

3% for �m2
12 at 1 � level. The error in sin22✓13 has been set to 0.011 (= the Day Bay

statistical and systematic errors added in quadrature). A systematic uncertainty of 5%

was assumed for the neutrino flux normalization and a 10% systematic uncertainty for the

background. The data collection period used is 2 years of neutrino running plus 8 years

of antineutrino running. Fig. 3 shows the electron and antielectron neutrino spectra as

detected by MEMPHYS for a baseline length of 150 km, which is before the first maximum

is attained. Also shown are the contributions from various background sources. The

neutrino mean energy is approximately 350 MeV with a large FWHM of about 300 MeV

and a tail towards higher energies.
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Figure 3. Electron neutrino and antineutrino energy spectra including background contribution as
detected by MEMPHYS for 2 years of neutrino running (left) plus 8 years of antineutrino running
(right) and a baseline length of 150 km.

The GLOBES code has been used to calculate the number of detected electron neu-

trinos and antineutrinos for values of � ranging from 0 to 360 degrees and for di↵erent

baseline lengths L. For fixed baseline length L and for each value of delta the number of

events was generated and the �2 was computed for delta = 0 and � = ⇡ in the two neutrino

mass hierarchy orderings, marginalized over all other oscillation parameters within their

corresponding priors. The smallest of these four values (the best fit to a CP conserving

value) was recorded. The square root of this number provided the significance in terms of

standard deviations � with which CP violation could be discovered. This calculation was

carried for a series of di↵erent baseline lengths. In Fig. 4, 5 and 6 di↵erent projections of

the results of these calculations are displayed.

In Fig. 4 is shown the significance in terms of number of standard deviations � with

which CP violation could be discovered as a function of the value of � from 0� to 360�. The

di↵erent curves represent di↵erent distances L = 150, 250, 350, 550 and 1000 km. The two

horizontal lines have been drawn at the significance levels 3 � and 5 �.

– 5 –

1 Introduction

The magnitude of CP violation as observed in the quark sector is not enough for the Stan-

dard Model to explain the dominance of matter over antimatter in the Universe. Following

the discovery of neutrino oscillations, and thereby of neutrino mixing, it has become an

important task to discover and measure CP violation in the neutrino sector, as this could

be related to the generation of the matter dominance.

Most of the parameters in the neutrino mixing matrix have by now been measured with

good precision. The latest mixing angle discovered to be non-zero by several experiments

[1–4] was the mixing angle ✓13. The currently most precise single measurement of sin22✓13
is 0.089±0.010(stat)±0.005(syst) [4]. The only two remaining undetermined neutrino os-

cillation parameters are the neutrino mass ordering and the CP violating phase angle �. In

the expression for the ⌫µ!⌫e probability, sin22✓13 multiplies the CP violating parameter.

The relatively large measured value for sin22✓13 now opens the possibility to discover and

measure CP violation in the neutrino sector using a high intensity “conventional” neutrino

Super Beam experiment. As to the Neutrino mass hierarchy ordering, presently approved

projects could only give an indication about this parameter.

We propose to use the 2.5 GeV proton linear accelerator of the European Spallation

Source (ESS) [5] in Lund, Sweden (Fig. 1), currently under construction, to generate a low

energy high intensity ⌫µ beam, similar to the CERN Super Beam from the CERN Super

Proton Linac [6] proposed by the FP7 EUROnu Design Study [7]. The power of the ESS

proton beam for neutron production will be 5 MW. The ESS proton linac will thereby,

when it is taken into operation in 2019, become the most powerful neutron source in the

world and remain so for a number of years.

Spokes Medium β High β DTLMEBTRFQLEBTSource HEBT & Upgrade Target

2 m 5 m 1 m 19 m 75 m 117 m 200 m 163 m

75 keV 3 MeV 50 MeV 191 MeV 653 MeV 2500 MeV

352.21 MHz 704.42 MHz

Figure 1. Schematic drawing of the 2.5 GeV proton linear accelerator of the European Spallation
Source (ESS).

The present proposal is to increase the power generation capacity of the ESS linear

accelerator by another 5 MW to make possible the production of 1023 protons per year for

neutrino production, concurrently with the production of protons for neutron spallation.

As detector for the appearing ⌫e we propose to use a large water tank Cherenkov

detector located underground in a mine at a depth of at least 1000 m (3000 m water

equivalent). In this paper we estimate what range of CP phase angles would allow for a

discovery of CP violation and address, in particular, the question of at which distance from

the neutrino source the detector should be placed to maximize this range, and also what

sensitivity to the mass hierarchy could be achieved.

– 2 –
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Figure 4. The significance in terms of number of standard deviations � with which CP violation
could be discovered for �-values from 0� to 360� and for L = 150, 250, 350, 550 and 1000 km.
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Figure 5. The significance in terms of number of standard deviations � with which CP violation
can be discovered as function of the fraction of the full � range for L = 100, 200, 300, 400, 500, 600
800 and 1000 km.

In Fig. 5 is shown the significance in terms of number of standard deviations � with

which CP violation can be discovered as function of the fraction of the full � range 0�-

360� within which CP violation can be discovered. The di↵erent curves represent di↵erent

distances L = 100, 200, 300, 400, 500, 600, 800 and 1000 km. The two horizontal lines

have been drawn at the significance levels 3 � and 5 �.

In Fig. 6 is shown the fraction of the full � range 0�-360� within which CP violation

can be discovered as function of the baseline length in km. According to the results of

– 6 –

L=540 km, 70% CP coverage at 3 sig, 45% CP coverage at 5 sig
L=200 km, 60% CP coverage at 3 sig, 32% CP coverage at 5 sig

ESSnuSB, arXiv:1309.7022
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Figure 5: Octant resolution potential as a function of sin2 ✓23(true) for the ESS⌫SB set-up. NH has

been assumed as the true hierarchy. The variation in the assumed value of �CP(true) leads to the formation

of the band. Results corresponding to various run-plans and the assumed baseline for ESS⌫SB set-up have

been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km from top to bottom and the

columns correspond to 2⌫ + 8⌫̄, 5⌫ + 5⌫̄ and 7⌫ + 3⌫̄ years of running, from left to right. The horizontal

black lines show 1� and 2� confidence level values.
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Figure 5: Octant resolution potential as a function of sin2 ✓23(true) for the ESS⌫SB set-up. NH has

been assumed as the true hierarchy. The variation in the assumed value of �CP(true) leads to the formation

of the band. Results corresponding to various run-plans and the assumed baseline for ESS⌫SB set-up have

been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km from top to bottom and the

columns correspond to 2⌫ + 8⌫̄, 5⌫ + 5⌫̄ and 7⌫ + 3⌫̄ years of running, from left to right. The horizontal

black lines show 1� and 2� confidence level values.
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Figure 5: Octant resolution potential as a function of sin2 ✓23(true) for the ESS⌫SB set-up. NH has

been assumed as the true hierarchy. The variation in the assumed value of �CP(true) leads to the formation

of the band. Results corresponding to various run-plans and the assumed baseline for ESS⌫SB set-up have

been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km from top to bottom and the

columns correspond to 2⌫ + 8⌫̄, 5⌫ + 5⌫̄ and 7⌫ + 3⌫̄ years of running, from left to right. The horizontal

black lines show 1� and 2� confidence level values.
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Figure 5: Octant resolution potential as a function of sin2 ✓23(true) for the ESS⌫SB set-up. NH has

been assumed as the true hierarchy. The variation in the assumed value of �CP(true) leads to the formation

of the band. Results corresponding to various run-plans and the assumed baseline for ESS⌫SB set-up have

been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km from top to bottom and the

columns correspond to 2⌫ + 8⌫̄, 5⌫ + 5⌫̄ and 7⌫ + 3⌫̄ years of running, from left to right. The horizontal

black lines show 1� and 2� confidence level values.
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Impact of Invisible 
Neutrino Decay

FIG. 3: The appearance (left-panels) and disappearance (right-panels) channel neutrino probabil-

ities as a function of neutrino energy. The different lines are described in the legends and also in

the text. The top panels show the effect of ν3 decay for a larger value of τ3/m3 while the bottom

panels show the effect for a smaller value of τ3/m3.

of decay on the probabilities for τ3/m3 = 1.2 × 10−11 s/eV while the bottom-panels show

the effect when τ3/m3 = 1.0 × 10−12 s/eV. The solid lines and the short-dashed lines show

the probabilities for the standard stable case. The blue solid lines in all the four panels

are for θ23 = 42◦ and θ13 = 8.5◦ and no decay. The change in the probabilities when

decay is switched on for the same set of oscillation parameters is shown in all the panels

9
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Impact of Invisible 
Neutrino Decay

FIG. 6: The probabilities Pµµ (blue lines) and Pµe (magenta lines), shown as a function of ✓23. The

plots have been drawn for the DUNE baseline and E = 2.5 GeV, taking all oscillation parameters

as mentioned in section III. The left and right panels are identical apart from the horizontal and

vertical lines which show the probabilities for the cases when the data is generated at ✓23 = 42�

(left panel) and ✓23 = 49.3� (right panel). The solid curves show the probabilities for the standard

case while the dashed curves are for the case for unstable ⌫3 with ⌧3/m3 = 1.2⇥ 10�11 s/eV. The

probabilities are shown for the full three-generation framework including earth matter e↵ect. The

black dot shows the point at which data is generated for the decay case, while the green dots show

the points which give the same Pµµ as the black dot, but for the standard case. The red dots show

the Pµµ for the data generated for the standard case at ✓23 = 42� (left panel) and ✓23 = 49.3�

(right panel) and the corresponding fake minima when fitted by the standard case.

the exact numerical results shown in Fig. 6 come from earth matter e↵ects mainly.

The solid red curves in Fig. 5 showing the �

2 vs. ✓23(test) for the standard oscillation

case match well with the solid blue probability curves in Fig. 6. For the left panel, data is

generated at ✓23 = 42� and the absolute and fake minima come at ✓23(test) = 42� and 49.5�,

respectively. On the other hand for the right panel, data is generated at ✓23 = 49.3� and

the absolute and fake minima come at ✓23(test) = 49.3� and 43.0�, respectively. Note that

since Pµµ is nearly matched at the true and fake minima points, the disappearance data

would return a �

2 ' 0 at both the true as well as fake minima points giving an exact octant

15

FIG. 5: �2 as a function of ✓23(test). The left, middle and right panels are for the cases when the

data is generated at ✓23 = 42�, ✓23 = 48� and ✓23 = 49.3�, respectively. The dark red solid curves

are for the standard case when both data and fit are done within the three-generation framework of

stable neutrinos. The green dashed curves are for the case when the data is generated for unstable

⌫3 with ⌧3/m3 = 1.2⇥ 10�11 s/eV but it is fitted assuming stable neutrinos.

due to three-generation e↵ects coming from the non-zero ✓13 [50]. The values of ✓23 in HO

and LO that correspond to the same e↵ective mixing angle ✓µµ and which gives the same

Pµµ are given as [50]

sin ✓LO23 =
sin ✓LOµµ

cos ✓13
; sin ✓HO

23 =
sin ✓HO

µµ

cos ✓13
(4)

✓

LO
µµ = 90� � ✓

HO
µµ , (5)

which gives ✓23 = 49.3� as the mixing angle that gives the same Pµµ as ✓23 = 42� instead of

✓23 = 48�, as we would expect in the two-generation case. In order to further illustrate this

point, we show in Fig. 6 the survival probability Pµµ (blue lines) as a function of ✓23 for the

standard case (solid line) and decay case (dashed line). Also shown are the corresponding

oscillation probability Pµe (magenta lines) for the standard case (solid line) and decay case

(dashed line). The plots have been drawn for the DUNE baseline and E = 2.5 GeV, taking

all oscillation parameters as mentioned in section III. The energy 2.5 GeV corresponds to

oscillation maximum at the DUNE baseline where the DUNE flux peaks. We note that for

the standard oscillations case, Pµµ ' 0 corresponds to a value of ✓23 ' 46� and not 45� as in

the two-generation case. We also note that Pµµ at ✓23 = 42� in LO is matched by the Pµµ at

✓23 ' 49.9� in HO, the small di↵erence between the value of ✓HO
23 derived from Eq. (5) and

14

dashed lines is hidden below the red dashed lines in the top panels. In the lower panels,

since the ⌫3 lifetime is chosen to be significantly smaller, we see a more drastic e↵ect of ✓23.

In the lower panels the with decay case for Pµe at ✓23 = 42� can be somewhat matched by

the no decay case if we take a much reduced ✓23 = 28�. However, the disappearance channel

is not matched between the red long-dashed and green short-dashed line for the value of ✓23

that is needed to match the appearance channel for the decay and no decay cases.

This correlation between ⌧3/m3 and ✓23 in Pµe can be understood as follows. No decay

corresponds to infinite ⌧3/m3. As we reduce ⌧3/m3, ⌫3 starts to decay into invisible states

reducing the net Pµe around the oscillation maximum. This reduction increases as we con-

tinue to lower ⌧3/m3. On the other hand, it is well known that Pµe increases linearly with

sin2
✓23 at leading order. Therefore, it is possible to obtain a given value of Pµe either by

reducing ⌧3/m3 or by reducing sin2
✓23. Therefore, it will be possible to compensate the

decrease in Pµe due to decay by increasing the value of sin2
✓23. Hence, if we generate the

appearance data taking decay, we will be able to fit it with a theory for stable neutrinos by

suitably reducing the value of sin2 ✓23.

The correlation between ⌧3/m3 and ✓23 for the survival channel on the other hand is

complicated. For simplicity, let us understand that within the two-generation framework

first, neglecting matter e↵ects. The e↵ect of three-generations will be discussed a little later

and the e↵ect of earth matter is not crucial for the DUNE energies in this discussion. The

survival probability in the two-generation approximation is given by [35]

P

2G
µµ =

h
cos2 ✓23 + sin2

✓23e
�m3L

⌧3E

i2
� sin2 2✓23e

� m3L
2⌧3E sin2

✓
�m

2
31L

4E

◆
. (3)

The Eq. (3) shows that decay a↵ects both the oscillatory term as well as the constant term

in Pµµ, causing both to reduce. Therefore, it is not di�cult to see that with decay included,

the value of ✓23 should be increased to get the same Pµµ as in the no decay case. Hence,

in this case again if we generate the disappearance data taking decay, we will be able to fit

it with a theory for stable neutrinos by suitably reducing the value of ✓23. However, note

that the dependence of Pµµ on ✓23 and ⌧3/m3 is di↵erent from the dependence of Pµe on

✓23 and ⌧3/m3 and hence we never get the same fitted value of ✓23 for the two channels.

This is evident in Fig. 3 where in the lower panel the appearance probability fits between

decay case and ✓23 = 42� and no decay case and ✓23 = 28�. However, this does not fit the

disappearance probability simultaneously. One can check that the above understanding of

12
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FIG. 5: �2 as a function of ✓23(test). The left, middle and right panels are for the cases when the

data is generated at ✓23 = 42�, ✓23 = 48� and ✓23 = 49.3�, respectively. The dark red solid curves

are for the standard case when both data and fit are done within the three-generation framework of

stable neutrinos. The green dashed curves are for the case when the data is generated for unstable

⌫3 with ⌧3/m3 = 1.2⇥ 10�11 s/eV but it is fitted assuming stable neutrinos.

due to three-generation e↵ects coming from the non-zero ✓13 [50]. The values of ✓23 in HO

and LO that correspond to the same e↵ective mixing angle ✓µµ and which gives the same

Pµµ are given as [50]

sin ✓LO23 =
sin ✓LOµµ

cos ✓13
; sin ✓HO

23 =
sin ✓HO

µµ

cos ✓13
(4)

✓

LO
µµ = 90� � ✓

HO
µµ , (5)

which gives ✓23 = 49.3� as the mixing angle that gives the same Pµµ as ✓23 = 42� instead of

✓23 = 48�, as we would expect in the two-generation case. In order to further illustrate this

point, we show in Fig. 6 the survival probability Pµµ (blue lines) as a function of ✓23 for the

standard case (solid line) and decay case (dashed line). Also shown are the corresponding

oscillation probability Pµe (magenta lines) for the standard case (solid line) and decay case

(dashed line). The plots have been drawn for the DUNE baseline and E = 2.5 GeV, taking

all oscillation parameters as mentioned in section III. The energy 2.5 GeV corresponds to

oscillation maximum at the DUNE baseline where the DUNE flux peaks. We note that for

the standard oscillations case, Pµµ ' 0 corresponds to a value of ✓23 ' 46� and not 45� as in

the two-generation case. We also note that Pµµ at ✓23 = 42� in LO is matched by the Pµµ at

✓23 ' 49.9� in HO, the small di↵erence between the value of ✓HO
23 derived from Eq. (5) and

14

FIG. 7: The plots show the expected 3� C.L. contours in the ✓23 � ✓13 plane for the case when

the data is simulated at ✓23 = 42� (left panel), ✓23 = 48� (middle panel), and ✓23 = 49.3� (right

panel). The value of ✓13 = 8.5� in all panels. The black stars show the data points in the plane.

The dark red solid curves show the expected 3� contour for the standard scenario in absence of

decay in data and theory. The green dashed curves show the 3� contour for the case when the

data corresponds to a decaying ⌫3 with ⌧3/m3 = 1.2 ⇥ 10�11 s/eV, which is fitted with a theory

where all neutrinos are taken as stable.

the ✓23 � ✓13 plane. The expected contours correspond to 3� C.L. The dark red solid lines

are obtained for the standard case when neutrinos are taken as stable in both the data as

well as the fit. The green dashed ones are obtained when we simulate the data assuming

an unstable ⌫3 with ⌧3/m3 = 1.2 ⇥ 10�11 s/eV, but fit it with the standard case assuming

stable neutrinos. The contours are marginalized over test values of �CP and �m

2
31 within

their current 3� ranges. The impact of decay is visible in all panels. Though the contours

change in both mixing angles, the impact on ✓23(test) is seen to be higher than the impact

on ✓13(test). As we had seen in details above in Fig. 5, the green contours are shifted to

lower values of ✓23 in both the left and right panels. The one-to-one correspondence between

the allowed ✓23(test) values at 3� between this figure and Fig. 5 can be seen. The mild anti-

correlation between the allowed values of ✓23(test) and ✓13(test) for the green dashed lines

comes mainly from the appearance channel which depends on the product of sin2 ✓23 sin
2 2✓13

at leading order. This anti-correlation is seen to be more pronounced for the middle and right

panels because for these cases the ✓23 sensitivity of the data falls considerably in presence

of decay and the �

2 drops.
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Impact of Invisible 
Neutrino Decay

FIG. 8: Expected octant sensitivity at DUNE. The dark red solid curve is for standard case

of stable neutrinos. The green dashed curve is for the case when ⌫3 is taken as unstable with

⌧3/m3 = 1.2⇥ 10�11 s/eV in the data, but in the fit we keep it to be stable.

The Fig. 8 shows the octant sensitivity for 5+5 years of (⌫ + ⌫̄) running of DUNE. The

dark-red solid curve shows the octant sensitivity for the standard case with stable neutrinos.

The green dashed curve is for the case when ⌫3 is taken as unstable with ⌧3/m3 = 1.2⇥10�11

s/eV in the data, but in the fit we keep it to be stable. We note that the octant sensitivity

of DUNE improves for the green dashed line in the lower octant, but in the higher octant it

deteriorates. This is consistent with our observations in Fig. 5. For detailed explanation of

this, we refer the reader to the detailed discussion above.

C. CP-violation and Mass Hierarchy Sensitivity

In Fig. 9 we show the expected CP-violation sensitivity at DUNE. As before, the dark

red solid curve is for standard case of stable neutrinos. The green dashed curve is for the

case when ⌫3 is taken as unstable with ⌧3/m3 = 1.2 ⇥ 10�11 s/eV in the data, but in the

fit we keep it to be stable. The data was generated at the values of oscillation parameters

given in section III and ✓23 = 42�. Decay in the data is seen to bring nearly no change to

19

FIG. 9: Expected CP-violation sensitivity at DUNE. The dark red solid curve is for standard case

of stable neutrinos. The green dashed curve is for the case when ⌫3 is taken as unstable with

⌧3/m3 = 1.2⇥ 10�11 s/eV in the data, but in the fit we keep it to be stable.

FIG. 10: Expected mass hierarchy sensitivity at DUNE. The dark red solid curve is for standard

case of stable neutrinos. The green dashed curve is for the case when ⌫3 is taken as unstable with

⌧3/m3 = 1.2⇥ 10�11 s/eV in the data, but in the fit we keep it to be stable. The left panel is for

NH true while the right panel is for IH true.

20

FIG. 9: Expected CP-violation sensitivity at DUNE. The dark red solid curve is for standard case

of stable neutrinos. The green dashed curve is for the case when ⌫3 is taken as unstable with

⌧3/m3 = 1.2⇥ 10�11 s/eV in the data, but in the fit we keep it to be stable.

FIG. 10: Expected mass hierarchy sensitivity at DUNE. The dark red solid curve is for standard

case of stable neutrinos. The green dashed curve is for the case when ⌫3 is taken as unstable with

⌧3/m3 = 1.2⇥ 10�11 s/eV in the data, but in the fit we keep it to be stable. The left panel is for

NH true while the right panel is for IH true.
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NSI
III. NSIS WITH THREE NEUTRINO FLAVORS

The phenomenological consequences of NSIs have been investigated in great detail in the

literature. The widely studied operators responsible for NSIs can be written as [12, 80–82]

LNSI = −2
√
2GF ε

ff ′C
αβ (ναγ

µPLνβ)
(

fγµPCf
′
)

, (9)

where εff
′C

αβ are NSI parameters, α, β = e, µ, τ , f, f ′ = e, u, d and C = L,R. If f ̸= f ′,

the NSIs are charged-current like, whereas if f = f ′, the NSIs are neutral-current like

and the NSI parameters are defined as εfCαβ ≡ εffCαβ . Note that the operators (9) are non-

renormalizable and they are also not gauge invariant. Thus, using the NSI operators in

equation (9), which lead to a so-called dimension-6 operator after heavy degrees of freedom

are integrated out, and the well-known relation GF/
√
2 ≃ g2W/(8m2

W ),4 we find that the

effective NSI parameters are (see, e.g., [83–85] for discussions)

ε ∝
m2

W

m2
X

, (10)

where mW = (80.385 ± 0.015)GeV ∼ 0.1TeV is the W boson mass and mX is the mass

scale at which the NSIs are generated [10]. Note that the characteristic proportionality

relation (10) is at least valid for energies below the new physics scale mX , where the NSI

operators are effective. If the new physics scale, i.e. the NSI scale, is of the order of 1(10) TeV,

then one obtains effective NSI parameters of the order of εαβ ∼ 10−2(10−4).

In principle, NSIs can affect both (i) production and detection processes and (ii) propa-

gation in matter and (iii) one can have combinations of both effects. In the following, we will

first study production and detection NSIs, including the so-called zero-distance effect, and

then matter NSIs. In addition, we will present mappings with NSIs and discuss approximate

formulae for two neutrino flavors.

A. Production and detection NSIs and the zero-distance effect

In general, production and detection processes, which are based on charged-current in-

teraction processes, can be affected by charged-current like NSIs. For a realistic neutrino

4 The quantity gW is the coupling constant of the weak interaction.

10

If  there exist effective operators of  the form

then they will modify neutrino evolution inside matter

obtain

P (νs
α → νd

β ;L = 0) =
∑

i,j

J i
αβJ

j∗
αβ , (15)

which means that a neutrino flavor transition would already happen at the source before

the oscillation process has taken place. This is known as the zero-distance effect [96]. It

could be measured with a near detector close to the source. In the case that εs = εd = 0,

i.e. without production and detection NSIs, the first term reduces to

∑

i,j

J i
αβJ

j∗
αβ =

∑

i,j

U∗
αiUβiUαjU

∗
βj = δαβ , (16)

which is the first term in equation (6). Note that equation (13) is also usable to describe

neutrino oscillations with a non-unitary mixing matrix, e.g. in the minimal unitarity violation

model [89].

B. Matter NSIs

In order to describe neutrino propagation in matter with NSIs (assuming no effect of

production and detection NSIs, which were discussed in section IIIA), the simple effective

matter potential in equation (3) needs to be extended. Similar to standard matter effects,

NSIs can affect the neutrino propagation by coherent forward scattering in Earth matter.

The Earth matter effects are more or less involved depending on the specific terrestrial

neutrino oscillation experiment. In other words, the Hamiltonian in equation (3) is replaced

by an effective Hamiltonian, which governs the propagation of neutrino flavor states in

matter with NSIs, namely [12, 68–70]

Ĥ =
1

2E

[

Udiag(m2
1, m

2
2, m

2
3)U

† + diag(A, 0, 0) + Aεm
]

, (17)

where the matrix εm contains the (effective) matter NSI parameters εαβ (α, β = e, µ, τ),

which are defined as

εαβ ≡
∑

f,C

εfCαβ
Nf

Ne

(18)

with the parameters εfCαβ being entries of the Hermitian matrix εfC and giving the strengths

of the NSIs and the quantity Nf being the number density of a fermion of type f . Unlike εs

and εd, εm = (εαβ) is a Hermitian matrix describing NSIs in matter, where the superscript

12

These epsilon parameters are called matter NSIs

The corresponding epsilon parameters in an effective charged current  
operator are called source/detector NSIs
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and similarly at the detector,

⟨νd
β| = ⟨νβ|+

∑

γ=e,µ,τ

εdγβ⟨νγ| . (5)

The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |

and nine phases ϕs/d
αβ .

The NC-like operators affect the propagation of neutrinos through matter, inducing more

terms similar to the matter potential. The modified time-evolution equation is

i
d

dt

⎡

⎢

⎢

⎢

⎣

νe

νµ

ντ

⎤

⎥

⎥

⎥

⎦

=
1

2E

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

U †

⎡

⎢

⎢

⎢

⎣

0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

⎤

⎥

⎥

⎥

⎦

U + A

⎡

⎢

⎢

⎢

⎣

1 + εmee εmeµ εmeτ

εmµe εmµµ εmµτ

εmτe εmτµ εmττ

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎡

⎢

⎢

⎢

⎣

νe

νµ

ντ

⎤

⎥

⎥

⎥

⎦

. (6)

The entry 1 in the e− e position of the matter effect matrix stands for the standard matter

effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows

|εs/dαβ | <

⎡

⎢

⎢

⎢

⎣

0.041 0.025 0.041

0.026 0.078 0.013

0.12 0.018 0.13

⎤

⎥

⎥

⎥

⎦

. (7)

For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds

|εmαβ| <

⎡

⎢

⎢

⎢

⎣

4.2 0.3 3.0

0.3 − 0.04

3.0 0.04 0.15

⎤

⎥

⎥

⎥

⎦

. (8)
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⎥

⎥
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⎪
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⎢

⎢
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see also Ohlsson (2013) and references therein
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phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows
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⎦
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For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds
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and similarly at the detector,

⟨νd
β| = ⟨νβ|+

∑

γ=e,µ,τ

εdγβ⟨νγ| . (5)

The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |

and nine phases ϕs/d
αβ .
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terms similar to the matter potential. The modified time-evolution equation is
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effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows
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For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds
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FIG. 1. Variation in the neutrino oscillation probability Pµe as a function of neutrino energy E with some

of the NSI parameters varied in their allowed range. The central dark curve corresponds to the case of no

NSIs. The values of the standard oscillation parameters used in generating these figures are θ12 = 33.5◦,

θ13 = 8.48◦, θ23 = 42◦, δ = −90◦, ∆m2
21 = 7.50× 10−5 eV2 and ∆m2

31 = 2.45× 10−3 eV2.
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Figure 2: Combined e↵ect of three NSI terms ("eµ, "e⌧ , "ee) in the electron appearance and muon disap-
pearance probability as a function of � (for fixed E and L for DUNE, NOvA and T2K). The solid black
curve represents SI while the dashed black curve represents NSI for the particular choice of absolute value
of NSI parameters as mentioned in the legend. The grey band shows the spread when in addition the NSI
phases are varied in the allowed range i.e., �eµ,�e⌧ 2 [�⇡,⇡].

where the sin � term is absent in this case. In addition to the linear polynomials of
cos � in this case, there are quadratic terms such as cos 2� (and sin 2�) in P

µµ

for the
case of constant or symmetric (asymmetric) matter density profile, but the coe�cient
of such terms are small in comparison to a

µµ

and c
µµ

which is why we do not explicitly
mention those here. For antineutrinos, � ! �� and the coe�cients in vacuum and
normal matter can be found in Ref. [57].

It is interesting to note that in presence of matter with SI, the form of Eqs. 10-11 remain
intact with the coe�cients suitably redefined to account for their dependence on density
of Earth matter. The CP odd and even terms in Eq. 10 and 11 serve as useful guide to
measure e↵ects due to CP violation.

Let us now discuss the case of NSI which is di↵erent from SI in the sense that it not only
introduces SI matter-like fake CP violating e↵ects arising from the moduli of the NSI terms
but also additional genuine CP phases over and above SI phase (�). Of course, the genuine
and fake CP violating e↵ects are inter-related. The argument of Kimura et al. [56, 57] was
generalised to the case of NSI [58, 59]. In [58] (for non-zero values of "

e⌧

, "
ee

, "
⌧⌧

), it was
shown that the CP dependence of probability given by Eq. 10 and 11 remains intact even in
presence of NSI as long as we make appropriate replacement for the e↵ective CP violating

6
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where A stands for the standard matter potential, �ij = (�m2
ij/2E), and P std

µµ is the

oscillation probability in absence of NSI. Note the di↵erent combination of oscillatory

phases in the terms in Eq. 4.2. The second term in principle should be subleading with

respect to the first term, since it depends quadratically on a combination of �✓23 (⇠ 0.05, in

our case) and ", as opposed to the first term which is linear. However, for energies matching

the oscillation peak, the first term will be strongly suppressed with the oscillatory phase.
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Figure 3. Left: Results from a fit in the ✓23 � � plane to simulated DUNE data alone, and
in combination with T2HK data. Three cases are shown for DUNE: the standard case when no
NSI are allowed in the fit, a case where marginalization is performed over NSI parameters within
previous constraints, and a case where no previous constraints are assumed over NSI during the
fit. The combination with T2HK data is only shown in the case where prior NSI constraints are
imposed in the fit. Right: same results, projected in the ✓23 � "̃µµ plane. The dot indicates the
true input values considered.

Due to the simultaneous dependence of Pµµ on �✓23 and "̃µµ, a degeneracy appears

in this plane. In fact, while in the standard scenario the DUNE experiment is able to

successfully resolve the octant of ✓23 (see Fig. 8 in App. A), when NSI are marginalized

over in the fit this is no longer the case, and the fake solution in the higher octant reappears.

This is explicitly shown in Fig. 3. The left panel shows the results projected onto the ✓23��

plane for three di↵erent scenarios: when no NSI are considered in the analysis (solid yellow),

when NSI are marginalized over within current priors (dashed green) and when NSI are
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in combination with T2HK data. Three cases are shown for DUNE: the standard case when no
NSI are allowed in the fit, a case where marginalization is performed over NSI parameters within
previous constraints, and a case where no previous constraints are assumed over NSI during the
fit. The combination with T2HK data is only shown in the case where prior NSI constraints are
imposed in the fit. Right: same results, projected in the ✓23 � "̃µµ plane. The dot indicates the
true input values considered.
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fit. The combination with T2HK data is only shown in the case where prior NSI constraints are
imposed in the fit. Right: same results, projected in the ✓23 � "̃µµ plane. The dot indicates the
true input values considered.

Due to the simultaneous dependence of Pµµ on �✓23 and "̃µµ, a degeneracy appears

in this plane. In fact, while in the standard scenario the DUNE experiment is able to

successfully resolve the octant of ✓23 (see Fig. 8 in App. A), when NSI are marginalized

over in the fit this is no longer the case, and the fake solution in the higher octant reappears.

This is explicitly shown in Fig. 3. The left panel shows the results projected onto the ✓23��

plane for three di↵erent scenarios: when no NSI are considered in the analysis (solid yellow),
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FIG. 1: Bi-event plot for the DUNE setup. The ellipses represent the SM case, while the colored blobs correspond to SM+NSI
(see the legend). We take sin2 ✓23 = 0.42 (0.58) as benchmark value for the LO (HO). In the SM ellipses, the running parameter
is � varying in the range [�⇡,⇡]. In the SM+NSI blobs there are two running parameters, � and �eµ (or �e⌧ ), both varying in
their allowed ranges [�⇡,⇡].

(HO) octant. In the left (right) panel we have switched on the eµ (e⌧) coupling taking for its modulus |"eµ| = 0.05
(|"e⌧ | = 0.05) and varying the associated CP-phase �eµ (�e⌧ ) in its allowed interval [�⇡,⇡]. The graphs neatly show
that the ✓23 octant separation existing in the SM case is lost in the presence of NSI’s since the two separate ellipses
become overlapping blobs. We can understand how the blobs arise thinking them as a convolution of an infinite
ensemble of ellipses, each corresponding to a di↵erent value of the new phase (�eµ or �e⌧ ). The orientation of the
ellipses changes as a function of such new CP-phase covering a full area in the bi-event space. The shape of the colored
blobs is slightly di↵erent between the two cases of "eµ and "e⌧ as a result of the di↵erent functional dependency of the
transition probability. One can notice that in both panels there is also an overlap among the two hierarchies, which
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FIG. 2: Electron neutrino spectra of DUNE for |"eµ| = 0.05 plotted for four representative cases. The left panel illustrates the
comparison of two cases in which the total number of events is exactly the same for NH and IH (corresponding to the cyan star
in the left panel of Fig. 1). The right panel displays the comparison of two cases in which the total number of events is exactly
the same for LO and HO (corresponding to the black square in the left panel of Fig. 1). See the text for more details.
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Finally, we explore the effect of runtime on the precision measurement at DUNE.

II. NEUTRINO OSCILLATIONS WITH NON-STANDARD INTERACTIONS

The presence of flavour off-diagonal operators beyond the SM is manifest in the phe-

nomenon of neutrino oscillations. In the standard picture of neutrino oscillations, a neutrino

produced at a source in association with a charged lepton ℓα is simply

|νs
α⟩ = |να⟩ , (1)

i.e. the weak-interaction eigenstate with isospin T 3 = +1/2. Similarly, a neutrino that

produces a charged lepton ℓβ at a detector is

⟨νd
β| = ⟨νβ| , (2)

which is also the weak-interaction eigenstate. Between the source and the detector, the

propagation of neutrinos with energy E is governed by the time-evolution equation

i
d

dt
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. (3)

Here, U is the leptonic mixing matrix that is parametrized in terms of three mixing angles

θ12, θ13 and θ23 and one Dirac CP-violating phase δ. The evolution of neutrino states also

depends on the two independent mass-squared differences ∆m2
ij = m2

i −m2
j . When neutrinos

propagate through the earth, the coherent forward scattering of νe off electrons results in

the matter potential A = 2
√
2GFneE, where ne is the number density of electrons. Thus,

standard neutrino oscillation probabilities depend on six oscillation parameters, and are

modified by matter effects.

Beyond the SM, it is possible to have CC-like operators that affect the interactions of

neutrinos with charged leptons. If these operators are not diagonal in flavour basis, then

the production and the detection of neutrinos are affected. The neutrino state produced at

the source in association with the charged lepton ℓα then also has components of the other

flavours

|νs
α⟩ = |να⟩+

∑

γ=e,µ,τ

εsαγ|νγ⟩ , (4)

4

and similarly at the detector,

⟨νd
β| = ⟨νβ|+

∑

γ=e,µ,τ

εdγβ⟨νγ| . (5)

The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |
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Impact of Source and 
Detector NSI
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FIG. 1. Variation in the neutrino oscillation probability Pµe as a function of neutrino energy E with some

of the NSI parameters varied in their allowed range. The central dark curve corresponds to the case of no

NSIs. The values of the standard oscillation parameters used in generating these figures are θ12 = 33.5◦,

θ13 = 8.48◦, θ23 = 42◦, δ = −90◦, ∆m2
21 = 7.50× 10−5 eV2 and ∆m2

31 = 2.45× 10−3 eV2.
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Correlation between S/D 
and Matter NSI

Pµe up to linear order in sin θ13 arising from εdτe and εmτe are
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where we have assumed the NSI parameters to be real. Close to the oscillation maximum,

these terms can be combined into one term proportional to εmτe − εdτe. Similarly, the terms

involving εdτe and εmµe enter the formula as
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These can be combined to give a term proportional to εmµe+ εdτe close to the oscillation max-

imum. Thus, we expect to have a correlation between εdτe and εmτe and an anticorrelation

between εdτe and εmµe. The current bounds on the source/detector NSI parameters are more

stringent than those on the matter NSI parameters. Therefore, in scanning over the pa-

rameter space, these correlations get washed out. However, if we make the assumption that

these two types of NSI parameters have comparable bounds, then the correlations are visible.

This can be observed in the panels of Fig. 4. In generating these plots, we have made use

of the assumptions listed above, and used the (more stringent) priors of the source/detector

NSI parameters for the matter NSI parameters as well. The true values assigned to the

NSI parameters are half of the bounds used. The correlations appear very weak because

(a) the parameter space that has been scanned over is very large, (b) the conditions for the

correlation include a very small value of θ13 and (c) the signal events have a spread in energy
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stringent than those on the matter NSI parameters. Therefore, in scanning over the pa-

rameter space, these correlations get washed out. However, if we make the assumption that

these two types of NSI parameters have comparable bounds, then the correlations are visible.

This can be observed in the panels of Fig. 4. In generating these plots, we have made use

of the assumptions listed above, and used the (more stringent) priors of the source/detector

NSI parameters for the matter NSI parameters as well. The true values assigned to the

NSI parameters are half of the bounds used. The correlations appear very weak because

(a) the parameter space that has been scanned over is very large, (b) the conditions for the

correlation include a very small value of θ13 and (c) the signal events have a spread in energy

13
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Very strange to believe that matter NSI exist and S/D NSI do not
One should perform a combined analysis of  both S/D and matter NSIs
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Combined Analysis of all 
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FIG. 2. Sensitivity of DUNE in the θ23 − δ plane. The simulated true values of these parameters are

42◦ and −90◦, respectively. The contours enclose the allowed region at 90 % credible regions obtained by

marginalizing over only the standard parameters, standard parameters and source/detector NSI parameters,

standard parameters and matter NSI parameters, and standard parameters and all NSI parameters. In the

left (right) panel, the true values of the NSI parameters are taken to be zero (non-zero).

all NSI phases are zero, and they are free to vary in the entire [−180◦, 180◦) range.

A. Effect on precision measurements at DUNE

The current generation of long-baseline neutrino oscillation experiments T2K and NOνA

are already collecting data and have provided a hint of the value of δ [25, 26]. This also

gives hints about the neutrino mass ordering and octant of θ23 [25, 27]. If the data collected

over the next few years do not confirm these hints, then it may be possible for DUNE to

make these measurements. At any rate, we expect that data from DUNE will enable us to

measure these unknown parameters at a higher confidence level.

It becomes important to question whether the presence of NSIs will adversely affect the

precision measurement of these parameters or not. Many recent studies have explored this

question for DUNE [6–10] in the context of matter NSIs. In Fig. 2, we show the effect of NSIs

on the precision measurement of θ23 and δ when the true values of these parameters are 42◦

9

Blennow, S.C. Ohlsson, Pramanik, Raut, 1606.08851

Correlations between matter and S/D NSIs lead to a new degenerate  
solution in theta23
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Constraining NSI at DUNE
Parameter Only source/detector NSIs Only matter NSIs All NSIs Current bound

|εsµe| 0.017 0.022 0.026

|εsµµ| 0.070 0.065 0.078

|εsµτ | 0.009 0.014 0.013

|εdµe| 0.021 0.023 0.025

|εdτe| 0.028 0.035 0.041

εmee
′ (−0.7,+0.8) (−0.8,+0.9) (−4.2,+4.2)

|εmµe| 0.051 0.074 0.330

|εmτe| 0.17 0.19 3.00

|εmτµ| 0.031 0.038 0.040

εmττ
′ (−0.08,+0.08) (−0.08,+0.08) (−0.15,+0.15)

TABLE I. Expected 90 % credible regions on NSI parameters from DUNE.

shows that the main contribution to the sensitivity to these parameters comes from the

prior introduced for them. Data from DUNE itself contribute only to the extent of provid-

ing more statistics without any significant physics advantage. On the other hand, we find

that the bounds on matter NSI parameters are made substantially more stringent than the

existing bounds. In particular, the bounds on εmee
′, |εmµe| and |εmτe| are improved by a factor

of around five to 15, whereas the bounds on |εmτµ| and εmττ
′ are more or less the same. Our

results on the bounds on the matter NSI parameters are consistent with the ones obtained

in Ref. [8]. It is worth pointing out that the current bounds on the NSI parameters were

derived assuming the existence of only one NSI parameter at a time, whereas we have

obtained our bounds by allowing all relevant parameters to vary at the same time.

C. Correlations between source/detector and matter NSIs

Beyond the SM, CC-like and NC-like NSIs presumably arise from the same model of new

physics. Therefore, it is natural to assume that both source/detector and matter NSIs exist.

It is interesting to probe the presence of correlations between various kinds of NSI parameters

in neutrino oscillations. It is straightforward to pinpoint such correlations from the analytical

expressions for the oscillation probabilities given in Ref. [12]. The non-standard terms in

12
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LSND

GGI, Firenze                                                  Sandhya Choubey                                                     June 29, 2012

First there was LSND...
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3.8σ excess in 
antineutrinos at 
L/E ≈ 0.4-1.2 m/MeV

requires presence of 
sterile neutrino states 
with Δm2 = 1 eV2
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MiniBooNE

GGI, Firenze                                                  Sandhya Choubey                                                     June 29, 2012

MiniBooNE (2012)
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Neutrino and anti-neutrino data now consistent
Together they see a 3.8σ excess....LSND??
If neutrino and anti-neutrino data are consistent 
then do we need CP violation anymore? 
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What is then the role of 3+2?
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Sterile nu Oscillations

Observed excess of νe in a primarily νµ beam: 

€ 

P(ν µ →ν e ) = sin2 2ϑ µe sin
2(1.27Δm2L /E)

[Phys. Rev. Lett. 75, 2650 (1995);  
Phys. Rev. Lett. 81,1774 (1998); 
Phys. Rev. D64, 112007 (2001).]  

The LSND anomaly 

Points to large Δm2 
if interpreted as  

two-neutrino oscillations: 
 

An additional 4th
neutrino is needed

The neutrino mass 
spectrum allowed are 

S. Goswami (1995)

3+2 Karagiorgi et al (2006)

1+3+1 Choubey,Haries,Ross(2006)

Fig. from Karagiorgi

3+1
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Figure 1: P
µe

vs E
⌫

in earth matter for 1300 km. Averaging has been done for �m2
4i induced oscillations.

In the left panel, the e↵ect of varying ✓34 within its allowed range is shown with all the CP phases kept

equal to 0. In the right panel, we show the e↵ect of varying CP violating phase �34 when ✓34 = 30�, and

the other phases are 0. For both panels, we set ✓14 = 20� and ✓24 = 10�, and the parameters related to the

3+0 sector at the best-fit values specified in Sec. 4.
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Figure 2: P
µe

(both for vacuum and matter) for 3+0 (left panel) and 3+1 (right panel) vs. energy. The

red curves represent the CP conserving case, while the blue ones depict the case with phases set to non-zero

fixed values (see the plot label). For the blue curve in the left panel, the sole 3+0 phase �CP was taken

as 30o. Normal hierarchy is taken to be the true hierarchy here, and parameters related to the 3+0 sector

have been set at the best-fit values specified in Sec. 4.

3 A discussion of Neutrino-Antineutrino asymmetries in matter

The consideration of CP violation in terms of an asymmetry defined at the probability level

provides additional insight into the conclusions which can be reliably drawn from data if we

– 6 –
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Figure 4: Neutrino and anti-neutrino event rates in DUNE plotted as a function of the reconstructed

neutrino energy. The vertical spread for a given color for an energy bin shows the maximum and the

minimum events rates possible.

Fig. 4 shows the spread of binned events as a function of the reconstructed neutrino

energy for the 3+0 case and the 3+1 case. For the 3+0 case, we varied only �CP in the

range [�180�, 180�] to obtain the events band shown in red. For 3+1, we chose three sets

of ✓14, ✓24 values - (20�, 10�), (15�, 10�) and (5�, 5�). For all these three cases, we varied ✓34
in the range [0, 30�] and the phases �13, �24 and �34 in the range [�180�, 180�] each. The

resulting event-bands are shown in blue, green and magenta, respectively. The left (right)

panels show the neutrino (anti-neutrino) rates, while the top (bottom) panels are for the

NH (IH) scenario.

It can be seen that for all three sets of ✓14, ✓24, the 3+1 band can potentially encompass

the 3+0 band, leading to substantial degeneracy. When the number of events falls in the

overlapping region between these two bands (which is the red region in Fig. 4), there is

considerable ambiguity as to whether the events are produced by a certain value of �CP in

– 11 –
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Figure 4. Expected signal event spectrum of DUNE for the ⌫e (left panel) and ⌫̄e (right panel)
appearance channel as a function of the reconstructed neutrino energy. The red (blue) histogram
corresponds to the case of NH (IH). All the spectra are obtained for ✓34 = 300. For the values of
the three CP-phases (�13, �14, �34) indicated in the legend, which are di↵erent for NH and IH, the
number of neutrino and antineutrino events are identical for the two hierarchies. This behavior can
be visualized in the right panel of the convoluted bi-events plot shown in Fig. 3, where the two
choices of parameters correspond to the same point (indicated by a star). In this particular case,
the distinction between the two mass hierarchies relies solely upon the di↵erence in the shape of
the energy spectrum.

corresponds to ✓34 = 300. In both cases, we consider NH as the true hierarchy choice.

In each panel, we give the results for the 3-flavor case (thick black curve) and for the

3+1 scheme (colored curves) for four di↵erent values of the true �14 (that is �900, 900, 00

and 1800). In the left panel (corresponding to ✓34 = 0) we observe that the qualitative

behavior of the curve is similar to the 3-flavor case. In particular, there is a maximum

around �13 ⇠ �900 and a minimum around �13 ⇠ 900. The opposite is true for the IH (not

shown). We can observe that in general there is a deterioration of the discovery potential

for all values of the new CP-phase �14. However, even in the region of the minimum, the

sensitivity never drops below the 5� level. In the right panel (corresponding to ✓34 = 300)

the situation is qualitatively similar but the deterioration is quantitatively larger8. In

particular, in the range �13 2 [450, 1350], the sensitivity can drop down to the 4� level.

This range corresponds to the region of the space spanned by the thee CP-phases, where

there is basically a complete degeneracy at the level of the total number of events (in

both neutrino and antineutrino channels) and the distinction between NH and IH is totally

8We have checked that for the case ✓34 = 90, the results are intermediate between those found in the

two cases ✓34 = 0 and ✓34 = 300 shown in Fig. 5. In particular, the minimal sensitivity is approximately

5�.

– 15 –
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FIG. 2: CP-asymmetry at JD(left) and KD(right). The bands represent the variation of �24 and

�34.

di↵erent cases start to overlap more with each other. The overlap increases significantly as

we increase the sterile mixing angles, shown in the top-right panel, owing to the fact that

the e↵ect of the phases �24 and �34 increase. The corresponding bi-probability results for

the KD baseline and peak energy of 0.66 GeV is shown in the lower panels. As for JD, the

bi-probability curves for 3+0 overlap between the di↵erent hierarchies even for KD, but the

overlap is less. As we switch on the sterile mixing angle (bottom-left panel) the bi-probability

lines blur into a band, though the spread in the case of KD appears to be slightly less. As

the sterile mixing angles increase (bottom-right panel) the blurring increases showing the

increased e↵ect of the phases associated with the sterile mixing angles.

In order to directly see the impact of the sterile neutrino mixing on the CP sensitivity at

JD and KD, we show in Fig. 2 the CP asymmetry defined as

ACP =
Pµe � P̄µe

Pµe + P̄µe

. (7)

The left panel of Fig. 2 shows the CP-asymmetry as a function of �CP for the JD baseline

of 295 km and at a fixed energy 0.5 Gev which corresponds to the first oscillation maximum

at this baseline. The right panel shows the CP-asymmetry for the KD baseline of 1100 km

and at a fixed energy of 0.66 GeV which corresponds to the second oscillation maximum
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FIG. 3: MH-asymmetry as a function of �13 for JD(left) and KD(right). The bands represent the

variation of �24 and �34.

and earth matter e↵ects.

B. CP sensitivity

In this section, we present our CP violation sensitivity results in the presence of a light

sterile neutrino. That is, we are addressing the following question: If CP is violated in

Nature, then at what C.L., T2HK(JD⇥2) and T2HKK(JD+KD) can exclude the CP con-

serving scenarios in the presence of a sterile neutrino? In the 3+1 scenario, we have two

more phases ✓24 and ✓34 in addition to the standard CP phase �13. So while studying CP

violation sensitivity of these experiments in the presence of sterile neutrinos, we consider

the following two situations:

1. CP is violated and we do not know the source of its violation. That is, it can be due

to any of the three phases.

2. CP is violated and we know the source of its violation. For instance, say we assume

that it is due to the standard Dirac CP phase �13.

12

for this baseline. The solid blue curves depict the ACP for the 3+0 ⌫ case in both panels.

The bands represent the e↵ect of the sterile phases. For each �13, the bands show the range

of ACP for the full range of values of �24 and �34 between [�⇡, ⇡]. The cyan bands show

the e↵ect of the sterile phases for the lower set of sterile mixing angles and the grey bands

show the same for the higher set of mixing angles. We see that the presence of the sterile

neutrino mixing spreads the ACP in both directions. This implies that for a given true value

of �13, the CP violation sensitivity in the presence of sterile neutrinos could either increase

or decrease for both JD and KD baselines and energies, depending on the true values of a

�24 and �34. Looking from another angle, this also implies that presence of sterile neutrino

mixing brings in an uncertainty in the expected CP violation sensitivity at long baseline

experiments. Observation of a certain CP violation signal in the data could come from

degenerate solutions involving mixing angles and phases in the 3+0 sector and the sterile

sector. We can also see from the plots that with higher mixing, widths of the bands increase

and hence the uncertainties in the CP-sector introduced by the sterile phases increases. We

also note that the CP-asymemtry is significantly higher for KD than for JD. The reason

is that, the shape and magnitude of the curves largely depend on the baseline and energy

value chosen, or more precisely on the L/E factor.

The Fig. 3 shows the MH-asymmetry for JD(left) and KD(right) baselines and fixed

energies of 0.5 GeV and 0.66 GeV, respectively. The MH-asymmetry is defined as:

AMH =
PNH
µe � P IH

µe

PNH
µe + P IH

µe

(8)

In NH we have taken �m2
31 = 2.45 ⇥ 10�3 eV2 while in IH we have taken �m2

31 =

��m2
31+�m2

21. Just as in the previous figure, the blue solid curves show the MH-asymmetry

for the standard (3+0) case. As before the bands are obtained when the sterile mixing angles

�24 and �34 are varied in their full range [�⇡, ⇡]. The cyan bands are for the lower set of

sterile mixing angles and the grey bands are for higher set of sterile mixing angles. From

the Fig. 3, we can see the e↵ect of the new physics at the probability level. We can see

naively that at the probability level it appears that for the 3+1 scenario, the mass hierarchy

sensitivity has a chance of either increasing or decreasing compared to its 3+0 expected

reach, depending on the true values of �24 and �34. We can see that with the increase of

the sterile mixing angles the e↵ect increases. As in Fig. 2, we find that the MH-asymmetry

expected in KD is more than in JD and the reason for this is its higher chosen energy value
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FIG. 2: CP-asymmetry at JD(left) and KD(right). The bands represent the variation of �24 and

�34.

di↵erent cases start to overlap more with each other. The overlap increases significantly as

we increase the sterile mixing angles, shown in the top-right panel, owing to the fact that

the e↵ect of the phases �24 and �34 increase. The corresponding bi-probability results for

the KD baseline and peak energy of 0.66 GeV is shown in the lower panels. As for JD, the

bi-probability curves for 3+0 overlap between the di↵erent hierarchies even for KD, but the

overlap is less. As we switch on the sterile mixing angle (bottom-left panel) the bi-probability

lines blur into a band, though the spread in the case of KD appears to be slightly less. As

the sterile mixing angles increase (bottom-right panel) the blurring increases showing the

increased e↵ect of the phases associated with the sterile mixing angles.

In order to directly see the impact of the sterile neutrino mixing on the CP sensitivity at

JD and KD, we show in Fig. 2 the CP asymmetry defined as

ACP =
Pµe � P̄µe

Pµe + P̄µe

. (7)

The left panel of Fig. 2 shows the CP-asymmetry as a function of �CP for the JD baseline

of 295 km and at a fixed energy 0.5 Gev which corresponds to the first oscillation maximum

at this baseline. The right panel shows the CP-asymmetry for the KD baseline of 1100 km

and at a fixed energy of 0.66 GeV which corresponds to the second oscillation maximum
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Impact of Sterile Neutrinos 
on CPV at T2HK and DUNE

As explained above, we have presented our results for two sets of sterile mixing angles and

for each set we fix the standard oscillation parameters to their best fit values in ‘data’ and

vary all the three true phases in their full range [�⇡, ⇡]. While answering the question of

CP violation in the first scenario, we generate the data at a given true value of �13, �24 and

�34 and calculate the ��2
min by considering all the eight possible CP conserving scenarios in

the ‘fit’. We marginalise over a fine grid of ✓14, ✓24, ✓34 in their allowed range in the ‘fit’. In

addition, we have marginalised over the test ✓13 in its 3� allowed range.
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FIG. 4: The expected CP violation sensitivity of T2HK (JD⇥2), T2HKK (JD+KD) and

DUNE+JD+KD under the assumption that we do not know the source of its violation. The

bands correspond to variation of �24 and �34 in the true parameter space. The results are for true

normal hierarchy.

The results of CP violation sensitivity in the first scenario are presented in Fig. 4. The

mass hierarchy is kept fixed as NH in both the ‘data’ as well as the ‘fit’ for this figure and in

the next two figures in this subsection. The blue dashed line corresponds to the standard CP

sensitivity in the 3+0 case as a function of �13(true). The bands correspond to the 3+1 case

with all possible choices for the other two phases �24(true) and �34(true). The thinner cyan

band gives this band for �24(true) and �34(true) when the sterile mixing angles are taken to

be at their smaller benchmark value while the grey band is obtained for the corresponding

case when the sterile mixing angles are kept at their limiting benchmark value. In both

cases these are the value of the sterile mixing angles in the ‘data’, kept fixed in the entire

band, while in the ‘fit’ they are marginalised as discussed above. We observe that for all

�13(true) which give more than 5� CP sensitivity, the cyan band almost lies below the blue
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Figure 1: Sensitivity to CP violation as a function of the true CP violating phase �13 for the combined

data from T2K and NO⌫A. Di↵erent colors correspond to di↵erent choice of true ✓14, ✓24, ✓34 as shown in

the key. Variation of true �24 and �34 results in the colored bands which show the minimum and maximum

sensitivity that can be obtained for a particular �13. The black curve corresponds to sensitivity to CP

violation in 3+0. Left panel: Shows the e↵ect as all the three active-sterile mixings are increased. Right

panel: Shows the e↵ect of the 3-4 mixing when the true ✓14 and ✓24 have been fixed at 12� and 7� respectively

for all three bands.
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Figure 2: Similar to Fig. 1 but for DUNE. The hierarchy is assumed to be normal.

We show results for three sets of the active-sterile mixing angles ✓14, ✓24, ✓34. These are

chosen to be (4�, 3�, 5�), (8�, 5�, 15�) and (12�, 7�, 25�). The data are simulated assuming

the above three sets of mixing angles and various choices of the three CP phases lying

in [�180�, 180�]. In the fit, we consider the 8 possible CP conserving combinations of
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Impact of Sterile Neutrinos 
on MH at T2HK and DUNE
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FIG. 8: The expected mass-hierarchy sensitivity of T2HK (JD⇥2) and T2HKK (JD+KD). The

upper panel is for true NH while the lower panel is for true IH. The bands correspond to the

variation of the sterile phases in the true parameter space.

well as for a fixed energy. We will now show how the expected sensitivity to MH changes

due to sterile neutrinos from a full analysis of expected data, when one takes all relevant

marginalisation into account.

The results for T2HK and T2HKK for both NH (upper panel) and IH (lower panel) as

true are shown in Fig. 8. The presentation and description of the bands are same as that

in the previous subsection. We observe that the sensitivity to mass hierarchy in presence of

a sterile neutrino changes significantly in both the experiments. For smaller sterile mixing

angles, we observe that the width of the cyan band is small in both the hierarchies. In case of

T2HK, the cyan band swings around the 3+0 plot but in T2HKK, it lies below the 3+0 line

for most of the �13(true) values, in both the hierarchies. As the mixing increases, sensitivity
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Figure 6: Similar to Fig. 5 but for DUNE. Normal hierarchy was considered to be true.
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Figure 7: Similar to Fig. 6 but when the true hierarchy is considered to be inverted.

Note that, as in the previous section, we did not vary the test 3+0 parameters other than

the CP phase in the fit. We show the results in Figs. 5 and 6 as a function of the true

3+1 parameters. For the combined results from T2K and NO⌫A, it can be seen in Fig. 5

(left panel) that there emerges the possibility of significant improvement in the hierarchy

sensitivity compared to 3+0 (shown by black line) in the unfavourable regions of true �13.

The extent of this enhancement is, of course, dependent on the true values of the active-

sterile oscillation parameters. Fig. 5 (right panel) shows the dependence of sensitivity

on the ✓34 mixing angle - the e↵ects of which are noticeable, although not large, even for

baselines where matter e↵ects are not very substantial.
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Figure 7: Similar to Fig. 6 but when the true hierarchy is considered to be inverted.

Note that, as in the previous section, we did not vary the test 3+0 parameters other than

the CP phase in the fit. We show the results in Figs. 5 and 6 as a function of the true

3+1 parameters. For the combined results from T2K and NO⌫A, it can be seen in Fig. 5

(left panel) that there emerges the possibility of significant improvement in the hierarchy

sensitivity compared to 3+0 (shown by black line) in the unfavourable regions of true �13.

The extent of this enhancement is, of course, dependent on the true values of the active-

sterile oscillation parameters. Fig. 5 (right panel) shows the dependence of sensitivity

on the ✓34 mixing angle - the e↵ects of which are noticeable, although not large, even for

baselines where matter e↵ects are not very substantial.
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FIG. 9: The expected octant discovery potential of T2HK (JD⇥2) and T2HKK (JD+KD). In the LO (HO),

we consider ✓23 = 40.3o (49.7o) as the true value. The upper panel is for T2HK (JD⇥2) while the lower

panel is for T2HKK (JD+KD). The bands correspond to the variation of the sterile phases.

of the band increases and for some combinations of �24(true) and �34(true), the grey band

slightly crosses the 3+0 plot for some fraction of �13(true). On the other hand for true HO,

the standard 3+0 plot lies within the grey band while the cyan band lies below it except for

some small fraction of �13(true) around zero. Also, one can note that for large sterile mixing

angles, some combinations of the new phases give more than 5� HO discovery potential for

both the set up.

If we add DUNE with T2HKK (Fig. 10), the octant discovery potential changes signif-

icantly. For large (small) sterile mixing angles, if LO is the true octant, then it is pos-

sible to exclude the HO at 5� for all �13(true) (all �13(true) except some fraction around

�13(true)= ±⇡), irrespective of the true values of the other two phases. Even in the case of

true HO, we can rule out the LO at 5� C.L. except for some fraction of �13(true).
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FIG. 10: The octant discovery potential of DUNE+T2HKK(JD+KD).

VI. SUMMARY & CONCLUSION

The final word on existence or nonexistence of sterile neutrino oscillations is yet to be

a�rmatively answered. The LSND hint for ⌫̄µ ! ⌫̄e oscillations as well as the reactor and

gallium experiment anomalies demand that there be an extra light neutrino state which must

be sterile with �m2 ⇠ 1 eV2 and mixed the active neutrino, albeit weakly. The presence

of the mixed sterile state brings in additional mixing angles and phases that a↵ect the

oscillation probabilities at long baseline experiments. In particular, while the additional mass

squared di↵erence drops out due to averaging of the fast oscillations at the long baselines, all

the three active-sterile mixing angles ✓14, ✓24 and ✓34 and the two additional phases �24 and

�34 impact the neutrino oscillation probabilities. The active-sterile mixing angles ✓14, ✓24

and ✓34, even though constrained by data from Daya Bay, IceCube and MINOS, respectively,

bring in additional uncertainty in the oscillation probabilities, while the new phases �24 and

�34 are totally unconstrained. Hence the CP violation sensitivity is obviously a↵ected, with

the possibility of additional CP violation coming from the new phases �24 and �34. The mass

hierarchy sensitivity and the octant sensitivity also gets a↵ected.

In this work we studied the impact of this active-sterile mixing angles and new phases

on the physics reach of the T2HK and T2HKK proposals. We also studied the combined

sensitivity reach of T2HKK and DUNE. We showed the impact of the sterile mixing angles
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Measuring Sterile CP 
Phase at LBL Experiments

FIG. 1: The �2 vs. �24(test). The black curves are for T2HK, the red curvess are for T2HKK

and the blue curves are for DUNE. The top left panel is for �24(true)= 0�, the top right panel is

for �24(true)= 90�, the bottom left panel is for �24(true)= �90� and the bottom right panel is for

�24(true)= 180�.

The true values of the phases �24 will be taken at some benchmark values and will be men-

tioned whenever needed. The true values of standard oscillation parameters are taken at

their current best-fit values, mentioned in Section II. The �2 is marginalised over the relevant

oscillation parameters in the 3+1 scenario, as discussed in Section II, where the parameters

are allowed to vary within their current 3� ranges. Although there are three phases in the

3+1 scenario, the role of the phase �34 is weak. As was discussed in the previous section,
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Measuring Sterile CP 
Phase at LBL Experiments

FIG. 2: Top panels show the appearance event spectrum for DUNE (left) and T2HK (right) for

different values of �24 The green lines are for �24 = �90�, red lines are for �24 = 0�, the blue lines

are for �24 = 90� and the dark red lines are for �24 = 180�. The lower panels show the appearance

event rates at the oscillation maximum as a function of �24 for DUNE (left) and T2HK (right).

While the black curves give the expected number of events, the green and yellow bands show the

1� and 3� statistical uncertainties.

non-trivial way for �24 measurement at the long baseline experiments and T2HK with its

bigger detector emerges as a better option in this regard.

The lower panels of Fig. 2 show the event rate at the oscillation maximum for DUNE

(lower left panel) and T2HK (lower right panel) as a function of �24. The black solid curves
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Measuring Sterile CP 
Phase at LBL Experiments

FIG. 3: The expected 95 % C.L. contours in �13(test) vs �24(test), where 95 % C.L. is defined

as ��2 = 5.99 for 2 parameters. The stars show the value of �13(true) and �24(true) taken in the

data. The top left (right) panel is for �24 = 0� (�24 = 90�) and the bottom left (right) panel is

for �24 = �90� (�24 = 180�). The black dotted curve is for T2HK, the red dash-dotted curve is

for T2HKK, the blue dashed curve is for DUNE, the grey solid curve is for DUNE+T2HK and the

magenta solid curve is for DUNE + T2HKK.

(bottom left) and 180

� (bottom right). In all the four cases we have considered 3+1 scenario

both in the ‘data’ and in the ‘fit’ or ‘theory’. The �2 thus generated is then marginalised

over the sterile mixing angles ✓14, ✓24, ✓34 and �34, as discussed before. The black dotted,

red dash-dotted and blue dashed contours are for T2HK, T2HKK and DUNE, respectively,
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Impact of delta_24 on 
delta_13 measurement

FIG. 4: The expected precision on �13 for the 3+0 and 3+1 scenarios. The left panel is for T2HK,

the middle panel is for T2HKK and the right panel is for DUNE. The blue dash-dotted curves are

for the 3+0 case and the red dashed curves are for 3+1 case in both theory and data. The curves

are �24(true)= �90�.

while the grey and magenta solid contours are for DUNE+T2HK and DUNE+T2HKK. As

in Fig. 1 we note that T2HK can constrain the phase �24 much better than DUNE, while

T2HKK performs better than DUNE but worse than T2HK. We also see, as before, that

for DUNE the precision on �24 is expected to be better for �24(true)= ±90

� compared to

when �24(true)= 0

� or 180�. For T2HK this dependence of precision on �24 measurement on

�24(true) is less pronounced. The effect of ✓34 on the measurement of �24 is also minimal.

Finally, note that there is an anti-correlation between �13 and �24. This comes from the term

P4(�13 + �24) of Eq. (2).

The Fig. 3 also shows how the measurements of �24 and �13 improve as we combine

DUNE with either T2HK or T2HKK. We see that combining DUNE with T2HKK improves

the precision considerably, with the combined precision of DUNE and T2HKK becoming

slightly better than the precision expected from T2HK alone. Combining DUNE with T2HK

improves the precision even further, albeit only marginally, since T2HK alone can measure

the phases rather precisely.

The question on how the measurement of the standard CP phase �13 gets affected by

the sterile mixing angle phases in the 3+1 scenario is another pertinent question that one

can ask. The Fig. 4 shows how the expected precision on �13 changes in presence of sterile

neutrinos. The left panel is for T2HK, middle panel is for T2HKK and right panel is for

DUNE. The blue dashed curves are for the standard 3+0 case with no sterile neutrinos while
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Probing Sterile Neutrinos 
at LBL Far Detectors 
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FIG. 7: The expected 95 % C.L exclusion curves in the sin2 ✓14(test)-�m2
41(test) plane shown

in the left panel and in the sin2 ✓24(test)-�m2
41(test) plane shown in the right panel. The data in

these plots correspond to standard three-generation oscillation scenario with no sterile mixing while

the fit is done in the 3+1 framework to obtain the exclusion contours. The colour code is same as

Fig. 3.

B. Excluding the Sterile Hypothesis when 3+1 is Not True

If the sterile neutrino hypothesis was wrong and there was no mixing between the active

and sterile neutrinos the next-generation experiments would falsify it. There are a series

of new short-baseline experiments planned which will be testing this hypothesis [32, 33,

35]. Even the near detector of planned long-baseline experiments are well-suited to check

the sterile neutrino mixing as their baseline and energy match well to correspond to the

maximum of �m2
41-driven oscillations [35]. In the same vein it is pertinent to ask how

well the next-generation long-baseline experiments could constrain this hypothesis, since

the oscillation probabilities for long-baseline experiments also depend on the sterile neutrino

mixing and phases even though the �m2
41-driven oscillations themselves average out. While

some work in this direction has already been done in the literature [24, 36], we will present

here, for the first time, the sensitivity of T2HKK set-up to the sterile neutrino mixing angles

✓24 and ✓14. We will also present the expected sensitivity from the combined prospective

data-sets of T2HK (or T2HKK) and DUNE, which has not been studied before.
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FIG. 8: The expected 95 % C.L exclusion curves in the sin2 ✓14(test)-sin2 ✓24(test) plane for a fixed

�m2
41 = 1.0 eV2. The colour code is same as Fig. 3.

Here, the region outside the contour is excluded at 95% C.L. The figure represents the

slice at �m2
41 = 1.7 eV2 of the contour in the sin

2
14, sin2 ✓24, �m2

41 space. The colour code

is the same as in Fig. 7. Here also, we observe better capability of T2HK to constrain

sin

2 ✓14-sin2 ✓24 parameter space than DUNE and T2HKK in most regions of the parameter

space. The plot also shows that constraint on sin

2 ✓24 is complicated. We see that T2HK

is better than DUNE and T2HKK in constraining sin

2 ✓24 for sin

2 ✓14 ⇠> 10

�2. However,

for sin

2 ✓14 ⇠< 10

�2 DUNE and T2HKK perform better than T2HK in constraining sin

2 ✓24.

Combining the data-sets improves the expected sensitivity on both the sterile mixing angles.

V. CONCLUSIONS

There are a number of observational hints that support the existence of neutrino oscil-

lations at short baselines. Since the �m2 needed for these frequencies is inconsistent with

the �m2 needed to explain the solar and atmospheric neutrino anomalies - both of which

have been confirmed by earth-based experiments - it has been postulated that there are

additional light neutrino states which are mixed with the three standard neutrino states.

Since the Z-decay width restricts the number of light neutrino states coupled to the Z boson
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Probing Sterile Nus at LBL 
Near Detectors (DUNE)

FIG. 4: Left: Exclusion contours at 3 & 4 � confidence levels for near detector of mass 5t with

di↵erent baselines. Right: Exclusion contours at 3 & 4 � confidence levels for near detector at 595

m baseline with di↵erent detector mass. We consider an exposure of 5+5 for ⌫µ + ⌫̄µ.

statistics at the higher baselines are 1/L2 suppressed, leading to loss of sensitivity for lower

mixing angles for which the oscillation probability is proportionally suppressed. However,

longer baselines allow for oscillations of lower �m2
41 better, leading for better sensitivity for

these parameter regions. The shorter baseline on the other hand has higher statistics due

to lower L, allowing it to measure lower mixing angles better, however, the oscillations for

lower �m2
41 do not develop and the corresponding sensitivity drops.

The right panel of Fig. 4 gives the variation of the exclusion limits as we vary the fiducial

mass. We have kept the baseline fixed at 595 m for all cases in this panel. Results for the

three benchmark masses of 5 t, 400 t and 1kt are shown. The 5 t is chosen for it is given in

DUNE near detector proposal [64], 400 t is chosen because it is going to be the mass of the

ProtoDUNE detector [67] and 1 kt is just another benchmark point. We can see that 400

t and 1 kt configurations can comfortably rule out the LSND result. The 5 t detector can

also almost rule out the LSND allowed region with about 3� C.L.. The figure also shows

that fiducial mass has reached its plateau at 400 t, such that any further increase in detector

mass and/or exposure does not change the sensitivity by any significant amount. So 400 t

10
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Probing Sterile Nus at LBL 
Near Detectors(ESSnuSB)
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FIG. 1: Left: The 3 and 5� exclusion contours for totally correlated and totally uncorrelated bin-

to-bin systematics of 15%. The no-systematics limit is also shown. The shaded region corresponds

to the allowed region at 99% CL obtained from a global fit to ⌫e disappearance and ⌫µ ! ⌫e
appearance experiments, taken from Fig. 7 of Ref. [16]. Right: The expected confidence regions

for Case II at 3 � for totally correlated and totally uncorrelated bin-to-bin systematics of 15%, as

indicated in the legend.

for this is the large number of events in each bin, combined with the fact that the value
of L/E for the setup considered in this work would match very well the first oscillation
maximum for �m2

41 ⇠ 0.4 eV. Thus, small changes in �m2
41 result in large corrections to

the expected number of events in each bin, providing a good sensitivity to �m2
41. On the

other hand, the systematic on the overall strength of the signal is directly correlated to the
value of sin2(2✓µe) and therefore is more di�cult to constrain under the assumption of fully
correlated systematics.

IV. SUMMARY AND CONCLUSIONS

In this letter we have discussed the possibility of using a near detector at the recently
proposed ESS⌫SB neutrino oscillation experiment in order to look for active-sterile neutrino
oscillations in the range indicated by the LSND anomaly, �m2

41 ⇠ 1 eV2 and sin2 2✓µe ⇠
10�2. Our study is based on the performance of a 1 kt near water Cherenkov detector at
a distance of 1 km from the source. Under the assumption of no active-sterile neutrino
mixing, we find that the ESS⌫SB setup would be able to completely exclude the currently
allowed region from a global fit to ⌫e disappearance and ⌫µ ! ⌫e appearance data with
a confidence of 5�, assuming bin-to-bin correlated systematical errors at the 15 % level.
Even in the more conservative scenario of fully uncorrelated bin-to-bin systematics, most
of the preferred region would also be covered with 5� significance. On the other hand, if
active-sterile mixing takes place with oscillation parameters in the range currently favored
by global analyses, the ESS⌫SB experiment would be able to pinpoint their values with

5
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FIG. 1: Oscillation probability in the ⌫
µ

! ⌫
s

channel, in vacuum. The di↵erent panels correspond
to di↵erent values of the new CP-violating phase �24, while the di↵erent lines shown in each panel
correspond to di↵erent values of the active-sterile mass splitting �m2

41, as indicated in the legend.
The rest of the oscillation parameters have been fixed to: �m2

31 = 2.48 ⇥ 10�3 eV2 ; sin2 ✓23 =
0.5 ; sin2 2✓13 = 0.084 ; and sin2 ✓24 = sin2 ✓34 = 0.1.

(last term in Eq. 8) is negative and cancels almost exactly the two other contributions to the
oscillation probability. In fact, it is straightforward to show that, in the limit c13 = c24 =
c34 = 1, the amplitude of the oscillation is proportional to c223|s24c23 � s34s23e

i�24 |2, which
vanishes exactly if �24 = 0 and s24c23 = s34s23. This cancellation is only partial (or negligible)
for other values of the CP phase, as expected, and this can be seen from the middle and
right panels in the figure. For other values of the active-sterile mass splitting the oscillation
pattern is more complex, as shown by the dotted blue and dashed yellow lines in Fig. 1. In
the most general case, the dependence of the probability with the energy becomes non-trivial
due to the interference of di↵erent terms oscillating at di↵erent frequencies. Moreover, as
we will see in Sec. IV the cancellation in the probability can also be severe in the limit
�m2

41 ⌧ �m2
31.

Given the strong limits that have been set on the ✓24 angle by the oscillation experi-
ments looking for oscillations involving a sterile neutrino in the eV scale, it is worth to
address explicitly the case when ✓24 ! 0. Under this assumption, the probability simplifies
considerably with respect to the expression in Eq. (6):

P
µs

(✓24 ! 0) = c413 sin
2 2✓23s

2
34 sin

2 �31. (10)

In contrast with Eq. (6), in this case there is no sensitivity to �24 and, most importantly, there
is no dependence with the sterile mass-squared splitting. The oscillations in this case are
solely driven by the atmospheric mass-squared splitting, and the size of the e↵ect is directly
proportional to s234. Moreover, the dependence with the standard oscillation parameters
goes as c413 sin

2 2✓23 ⇠ O(1).
Finally, it is worth to mention that matter e↵ects will modify the oscillation probability

in Eq. (6). We have checked that the size of these modifications is relatively small and,
therefore, the vacuum probabilities are precise enough to understand the behaviour of the
numerical simulations in the following sections. However, in our numerical analysis, matter
e↵ects have been properly included using a constant matter density of 2.96 g · cm�3.

Coloma,Forero,Parke, 1707.05348

Gandhi,Kayser,Prakash,Roy,1708.01816

Best constraint on theta34 from NOvA NC
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Long Range Force
Suppose our model has $L_e-L_\mu/\tau$ gauge symmetry
For corresponding light $Z_{e\mu/\tau}$, we can have long 
range force

Neutrinos on earth can then be fine tuned to feel the pot
due to matter in the Sun

give rise to a potential V
eµ/e⌧

at the Earth surface which is given by [85, 88]

V
eµ/e⌧

(R
SE

) = ↵
eµ/e⌧

N
e

R
SE

⇡ 1.3⇥ 10�11eV
⇣↵

eµ/e⌧

10�50

⌘
, (2.1)

where ↵
eµ/e⌧

=
g

2

eµ/e⌧

4⇡ , and g
eµ/e⌧

is the gauge coupling of the L
e

� L
µ,⌧

symmetry. In

Eq. (2.1), N
e

(⇡ 1057) is the total number of electrons inside the Sun [112] and R
SE

is the

Sun-Earth distance ⇡ 1.5 ⇥ 1013 cm = 7.6 ⇥ 1026 GeV�1. Here ↵
eµ/e⌧

can be identified

as the ‘fine-structure constant’ of the U(1)
Le�Lµ,⌧ symmetry and its value is positive5.

The corresponding potential due to the electrons inside the Earth with a long-range force

having the Earth-radius range (R
E

⇠ 6400 km) is roughly one order of magnitude smaller

compared to the solar long-range potential and can be safely neglected6 [85, 88]. The

long-range potential V
eµ/e⌧

in Eq. (2.1) appears with a negative sign for anti-neutrinos and

can a↵ect the neutrino and anti-neutrino oscillation probabilities in di↵erent fashion. This

feature can invoke fake CP-asymmetry like the SM matter e↵ect and can influence the

CP-violation search in long-baseline experiments. This is one of the important findings of

our paper and we will discuss this issue in detail in the later section. Now, it would be quite

interesting to compare the strength of the potential given in Eq. (2.1) with the quantity

�m2/2E which governs the neutrino oscillation probability. For long-baseline neutrinos,

�m2/2E ⇠ 10�12 eV (assuming �m2 ⇠ 2⇥10�3 eV2 and E ⇠ 1 GeV) which is comparable

to V
eµ/e⌧

even for ↵
eµ/e⌧

⇠ 10�51 and can a↵ect the long-baseline experiments significantly

which we are going to explore in this paper in the context of upcoming facilities DUNE

and LBNO.

2.2 Existing Phenomenological Constraints on L
e

� L
µ,⌧

Parameters

There are phenomenological bounds on the e↵ective gauge coupling ↵
eµ/e⌧

of the L
e

�L
µ,⌧

abelian symmetry7 using data from various neutrino oscillation experiments. It was shown

in [85] that L
e

�L
µ,⌧

potential at the Earth due to the huge number of electrons inside the

Sun suppresses the atmospheric neutrino ⌫
µ

! ⌫
⌧

oscillations which enabled them to place

tight constraints on ↵
eµ/e⌧

using the oscillation of multi-GeV neutrinos observed at the

Super-Kamiokande (SK) experiment. They obtained an upper bound of ↵
eµ

< 5.5⇥ 10�52

and ↵
e⌧

< 6.4⇥ 10�52 at 90% C.L. [85]. In [88], the authors performed a global fit to the

solar neutrino and KamLAND data including the flavor-dependent LRF. They quoted an

upper bound of ↵
eµ

< 3.4 ⇥ 10�53 and ↵
e⌧

< 2.5 ⇥ 10�53 at 3� C.L. assuming ✓13 = 0�

[88]. A similar analysis was performed in [87] to place the constraints on LRF mediated by

vector and non-vector (scalar or tensor) neutral bosons where the authors assumed one mass

scale dominance. The proposed 50 kt magnetized iron calorimeter (ICAL) detector at the

5In our work, we consider the case of a light vector boson exchange which makes sure that ↵eµ/e⌧ is

positive. It means that for an example, the force between an isolated electron and ⌫e is repulsive.
6The possibility of the local screening of the leptonic force (generated due to the solar electrons) by the

cosmic anti-neutrinos is also negligible over the Sun-Earth distance [85].
7Flavor-dependent long-range leptonic forces can also be generated via the unavoidable mixing of light

Z0 boson of the Lµ �L⌧ symmetry with the Z boson of the SM. This issue was discussed in the context of

the MINOS long-baseline experiment in [113, 114].
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vector and non-vector (scalar or tensor) neutral bosons where the authors assumed one mass

scale dominance. The proposed 50 kt magnetized iron calorimeter (ICAL) detector at the

5In our work, we consider the case of a light vector boson exchange which makes sure that ↵eµ/e⌧ is

positive. It means that for an example, the force between an isolated electron and ⌫e is repulsive.
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Z0 boson of the Lµ �L⌧ symmetry with the Z boson of the SM. This issue was discussed in the context of

the MINOS long-baseline experiment in [113, 114].
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Long Range Force

and

�1 =

1

2

�
�3 +A+W + sin2 ✓13 + ↵ cos2 ✓13 sin

2 ✓12
�

�
�
�3 �A�W � sin2 ✓13 � ↵ cos2 ✓13 sin2 ✓12

�

cos 2✓m13

�
.

(3.21)

The eigenvalues m2
i,m

/2E (i = 1, 2, 3) are given by the expressions

m2
3,m/2E =

�31

2

�
�3 +A+W + sin2 ✓13 + ↵ cos2 ✓13 sin

2 ✓12
�

+

�
�3 �A�W � sin2 ✓13 � ↵ cos2 ✓13 sin2 ✓12

�

cos 2✓m13

�
,

(3.22)

m2
2,m/2E =

�31

2


�1 + �2 �

(�1 � �2)

cos 2✓m12

�
, (3.23)

and

m2
1,m/2E =

�31

2


�1 + �2 +

(�1 � �2)

cos 2✓m12

�
. (3.24)
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Figure 1. The variations in the e↵ective mixing angles with the neutrino energy E in the presence
of the Earth matter potential (VCC) and long-range potential (Veµ). The left, middle, and right
panels show the ‘running’ of ✓m

23

, ✓m
13

, and ✓m
12

respectively. Here, we take L = 1300 km which
corresponds to the Fermilab–Homestake baseline and assume NH. Plots are given for three di↵erent
choices of the e↵ective gauge coupling ↵eµ: 0 (the SM case), 10�52, and 10�51. The vacuum values
of the oscillation parameters are taken from the third column of Table 2 and we consider �

CP

= 0�.
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Figure 5. The transition probability Pµe as a function of neutrino energy. The band reflects the
e↵ect of unknown �

CP

. Inside each band, the probability for �
CP

= 0� case is shown by the black
dashed line. The left panels (right panels) are for 1300 km (2290 km) baseline. In each panel,
we compare the probabilities for NH and IH with and without long-range potential. In the upper
(lower) panels, we take ↵eµ = 10�52 (↵eµ = 10�51) for the cases with long-range potential.

increases and ✓m23 decreases and there is a trade-o↵ between the terms sin2 ✓m23 and sin2 2✓m13
in Eq. (3.32). Also, the value of �m2

32,m (�m2
31,m - �m2

21,m) decreases with energy as

�m2
21,m increases by substantial amount compared to �m2

31,m, which shifts the location of

the first oscillation maxima toward lower energies. For IH, the value of ✓m13 decreases fast

with non-zero ↵
eµ

compared to the SM case, causing a depletion in the probabilities over a

wide range of energies. In case of ↵
eµ

= 10�51 (lower panels), there is a huge suppression in

the probabilities at both the baselines over a wide range of energies above 1 GeV assuming

NH. The main reason behind this large damping in the probabilities is that ✓m13 approaches

very quickly to 90� around 1 GeV or so for ↵
eµ

= 10�51 (see middle panel of Fig. 1)
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Figure 6. The transition probability Pµµ as a function of neutrino energy. The band reflects the
e↵ect of unknown �

CP

. Inside each band, the probability for �
CP

= 0� case is shown by the black
dashed line. The left panels (right panels) are for 1300 km (2290 km) baseline. In each panel,
we compare the probabilities for NH and IH with and without long-range potential. In the upper
(lower) panels, we take ↵eµ = 10�52 (↵eµ = 10�51) for the cases with long-range potential.

and therefore, sin2 2✓m13 ! 0, vanishing the probability amplitude for ⌫
µ

! ⌫
e

oscillation

channel. Below 1 GeV, ✓m13 runs toward 45� and therefore, sin2 2✓m13 ! 1, causing the

enhancement in the probabilities. When we take IH, ✓m13 quickly advances to zero, causing

a huge damping in the probabilities at all the energies. These ‘running’ behaviors of ✓m23,

✓m13, and the mass-squared di↵erences in the presence of long-range potential as discussed

above also a↵ect ⌫
µ

! ⌫
µ

oscillation channel (see Fig. 6) which can be explained with

the help of Eq. (3.33). Next, we discuss how the long-range potential due to L
e

� L
µ

symmetry modifies the expected event spectra and total event rates of the DUNE and

LBNO experiments.
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Figure 12. CP-violation discovery reach as a function of true value of �
CP

assuming NH as true
hierarchy. In the left panel, we show the results for DUNE (35 kt) and the right panel is for LBNO
(70 kt). For the ‘SM’ case, ↵eµ = 0 in the data and also in the fit. For each �

CP

(true), we also
give the results generating the data with three di↵erent true values of ↵eµ which are mentioned in
the figure legends. In all these three cases, in the fit, we marginalize over test values of ↵eµ in its
allowed range. The rest of the simulation details are exactly similar to the ‘SM’ case (see text for
details).

True Hierarchy
DUNE (35 kt) LBNO (70 kt)

SM ↵
eµ

(true) = 10�52 SM ↵
eµ

(true) = 10�52

2� C.L.
NH (true) 0.67 0.62 0.71 0.56

IH (true) 0.68 0.59 0.73 0.44

3� C.L.
NH (true) 0.48 0.41 0.55 0.30

IH (true) 0.53 0.37 0.60 0.12

Table 7. Fraction of �
CP

(true) for which a discovery is possible for CP-violation from DUNE (35
kt) and LBNO (70 kt) set-ups at 2� and 3� confidence levels. We show the coverage in �

CP

(true)
for both the choices of true hierarchy: NH and IH. For the ‘SM’ cases, we consider ↵eµ = 0 in the
data and also in the fit. We also give the results generating the data with ↵eµ(true) = 10�52 and
in the fit, we marginalize over test values of ↵eµ in its allowed range. The rest of the simulation
details are exactly similar to the ‘SM’ case (see text for details).

6.3 How Robust are CP-violation Searches in Presence of LRF?

This section is devoted to study how the long-range potential due to L
e

� L
µ

symmetry

a↵ects the CP-violation search which is the prime goal of these future facilities. Can

we reject both the CP-conserving values of 0�, 180� at a given confidence level? The

performance indicator “discovery reach of leptonic CP-violation” addresses this question

and obviously, this measurement becomes extremely di�cult for the �CP values which are

close to 0� and 180�. In Fig. 12, we present the CP-violation discovery reach of DUNE

– 28 –

Agarwalla, Dagupta,Chatterjee, 1509.03517
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FIG. 1: Oscillation probabilities assuming a three-neutrino framework (dashed) and an LED hypothesis
with m0 = 5⇥ 10�2 eV and R�1

ED = 0.38 eV (RED = 5⇥ 10�5 cm), for the normal neutrino mass hierarchy,
�m2

13 > 0. The values of the other oscillation parameters are tabulated in Table I, see text for details. The
top row displays appearance probabilities P (⌫µ ! ⌫e) (left) and P (⌫̄µ ! ⌫̄e) (right), and has curves shown
for �13 = �⇡/2 (green), �13 = 0 (gray), and �13 = ⇡/2 (purple). The bottom row displays disappearance
probabilities P (⌫µ ! ⌫µ) (left) and P (⌫̄µ ! ⌫̄µ) (right).

III. EXCLUDING THE LED HYPOTHESIS

In this section we investigate the sensitivity of DUNE to the model described in Sec. II. We
assume, as laid out in [1, 2], that DUNE is comprised of a 34-kiloton liquid argon detector located
1300 km from the neutrino source at Fermilab. The neutrino or antineutrino beam is produced
by directing a 1.2 MW beam of protons onto a fixed target. We use the neutrino fluxes and
reconstruction e�ciencies reported in Ref. [32]‡ to calculate event yields, as well as the neutrino-
nucleon cross-sections reported in Ref. [33]. The neutrino energies range from 0.5 GeV to 20.0
GeV with maximum flux at around 3.0 GeV. Events are binned in 0.25 GeV bins from 0.5 GeV
to 8.0 GeV, resulting in 30 independent counting measurements for each of the four data samples

‡ These are similar but not identical to the ones discussed in Ref. [2]. Ref. [2] reports updated reconstruction
e�ciencies which lead to reduced neutral current backgrounds for the appearance channels. In this light, our
results can be viewed as somewhat conservative.

They also looked at how to distinguish LED and 3+1
Berryman,de Gouvea, Kelly,Peres,Tabrisi,1603.00018
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at the level of oscillation probabilities, and in [37] a solution was suggested through the

upgrade of T2HK to TNT2K. The e↵ect of non unitarity was also studied at the probability

level in vacuum for the T2K, NOVA and DUNE experiments in [38]. In [39], the unitarity of

the PMNS matrix was tested using direct and indirect methods. Recent constraints related

to source- detector NSI can be found in [40].

The e↵ect of non-unitarity on neutrino mass hierarchy measurements has not been ex-

tensively studied yet. In this work, we explore the e↵ect of non-unitarity on measurements

of the neutrino mass ordering. This study has been performed in the context of the three

long baseline (LBL) neutrino experiments T2K, NO⌫A and DUNE. We analyze the e↵ect

of non-unitary mixing on the oscillation probabilities for the given experiment baselines,

and describe the mass hierarchy sensitivity for the individual experiments. We show that

the hierarchy sensitivity decreases in the presence of non unitarity. The experiments are

simulated using the standard long baseline package GLoBES [41, 42], which includes earth

matter e↵ects and relevant systematics for each experiment. We have used MonteCUBES’s

[43] Non Unitarity Engine (NUE) with GLoBES while performing this analysis.

The paper is organized as follows: in Section II we discuss the oscillation probability

P (⌫µ ! ⌫e) relevant to the given experiments in the presence of non-unitary mixing. Sec-

tion III gives some information regarding the experiments NO⌫A, T2K and DUNE, and

outlines the simulation procedure followed by us to compute the mass hierarchy sensitivity

for the experiments. In Section IV, we give bi-probability and bi-event plots for the relevant

baselines. In section V, we present the results for the mass hierarchy sensitivity as well as

the mass hierarchy discovery potential of these experiments in the presence of non unitarity.

In Section VI the results are discussed and conclusions are drawn.

II. EFFECT OF A NEUTRAL HEAVY LEPTON IN NEUTRINO OSCILLATIONS

The model of non unitarity used in this work is based on [44]. The symmetrical

parametrization technique can be found in [45]. In the presence of a Neutral Heavy Lepton,

the 3⇥ 3 neutrino mixing matrix does not remain unitary and instead becomes

N = NNPU (1)

, where U is the 3⇥ 3 PMNS matrix. The left triangular matrix NNP can be written as [32]

3

NNP =

0

BBB@

↵11 0 0

↵21 ↵22 0

↵31 ↵32 ↵33

1

CCCA
(2)

In the presence of non unitarity matrix, the electron neutrino appearance probability

changes in vacuum, as explained in [32, 37]. The expression for Pµe with NU can be written

as

Pµe = (↵11↵22)
2P 3⇥3

µe + ↵2
11↵22|↵21|P I

µe + ↵2
11|↵21|2 (3)

, where P 3⇥3
µe is the standard three flavor neutrino oscillation probability and P I

µe is the

oscillation probability containing the extra phase due to non unitarity in the mixing matrix.

P 3⇥3
µe above can be written as :

P 3⇥3
µe = 4[cos2 ✓12 cos2 ✓23 sin2 ✓12 sin2(

4m2
21L

4E⌫
) + cos2 ✓13 sin2 ✓13 sin2 ✓23 sin2(

4m2
31L

4E⌫
)]

+ sin(2✓12) sin ✓13 sin(2✓23) sin(
4m2

21L

2E⌫
) sin(

4m2
31L

4E⌫
) cos(

4m2
31L

4E⌫
� I123)

(4)

And

P I
µe = �2[sin(2✓13) sin ✓23 sin(

4m2
31L

4E⌫
) sin(

4m2
31L

4E⌫
+ �21 � I123)]

� cos ✓13 cos ✓23 sin(2✓12) sin(
4m2

21L

2E⌫
) sin(�21) (5)

where I123 = ��cp and ↵21 = |↵21| exp(�21). Here we have observed that only four extra

parameters from NNP enter the vacuum probability expression for Pµe- the real parameters

↵11 and ↵22, one complex parameter |↵21| and the phase associated with |↵21|. In our

analysis, we have not considered the e↵ect of the third row elements of NNP matrix as their

contributions are negligible even in the presence of matter e↵ect.

III. SIMULATION PARAMETERS AND EXPERIMENT DETAILS

In this work, we have studied the neutrino mass hierarchy sensitivity of three long base-

line experiments- T2K (Tokai to Kamioka), NO⌫A (The NuMI1 O↵-axis ⌫e Appearance

experiment) and DUNE (Deep Underground Neutrino Experiment). The main goal of T2K

1 Neutrinos at the Main Injector

4

is to observe ⌫µ ! ⌫e oscillations and to measure ✓13 as well as leptonic CP violation (T2K

new data gives hint of leptonic CP violation [34]) while NO⌫A can measure the octant of

✓23, the neutrino mass hierarchy, ✓13 and leptonic CP violation. DUNE, with its 1300 km

baseline, can address all these issues with a higher degree of precision. In our recent work

[35], we have studied the CP violation sensitivity and discovery reach of these experiments in

the presence of non unitarity. We have specified all the experimental and simulation details

in that work, and will be using the same informations for this work also.

Here, we fix the three-flavor neutrino oscillation parameters to their best fit values taken

from [46]. Since the solar and reactor mixing angles are the most precisely measured, we take

✓12 = 33.480 and ✓13 = 8.50 [46] respectively. For true NH (IH), the value of the two mass

square di↵erences are �m2
21 = 7.5⇥ 10�5 eV 2 and �m2

31 = 2.457⇥ 10�3 eV 2 (�2.449⇥ 10�3

eV 2) respectively. No priors are added on any of the parameters. Again, the octant issue

is not yet resolved and di↵erent global analyses prefer di↵erent octant [46–48] as the true

octant. In this work, we consider the maximal value of ✓23 as the true value i.e. ✓23 = 450.

However, the physics conclusions drawn in this work are not going to change significantly

even if we consider non maximal ✓23 in ‘data’ and then marginalize it in ‘fit’ in the allowed

3� range. The e↵ect seen in the probability level at DUNE [See Appendix 1] can be realised

at more than 5� CL only. This point is discussed in the text.

In the literature, there are a few studies available regarding the constraints on non unitar-

ity parameters [32, 33, 49, 50]. Universality constraints give strong bounds on the diagonal

NU parameters which in turn give further restrictions on the o↵ diagonal parameters [49, 50].

Since these bounds are derived considering the charged current induced processes with the

assumption that there is no new physics other than the non-unitarity mixing coming from

type I see-saw, hence in the presence of other new physics e.g. right-handed interactions

or neutrino-scalar Yukawa interactions in type II see-saws, these bounds are not valid. On

the other-hand, the o↵ diagonal NU parameters are directly restricted by the neutrino ex-

periments like NOMAD [51] and CHORUS [52, 53], and these bounds are less stringent

and model-independent. In this work, we do not adopt the approach which would use

the stronger, but model-dependent bounds given in [49, 50], but instead, use the model-

independent bounds from neutrino experiments [32]. The bounds that we use in this work

are: ↵2
11 � 0.989, ↵2

22 � 0.999 and |↵21|2  0.0007 at 90% C.L. [32]. The allowed range of

�21 is [�⇡, ⇡]. We assume the limiting values of these NU parameters while generating the
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FIG. 4: Mass hierarchy sensitivity plots for DUNE (5+5), No⌫A (3+3) and T2K (3+3) for both the

hierarchies. The blue line represents the standard mass hierarchy sensitivity. The gray band corresponds to

the variation of true �CP and �21 (both �tr
21 (true) and �ts

21 (test)) from [�⇡,⇡] . The dark red line represent

the case when �tr
21 = 0 but �ts

21 is varied from [�⇡,⇡]. The green line show the e↵ect of the non zero absolute

parameters for �tr
21 = �ts

21 = 0. For all the cases with NU, we assume the central values of the NU parameters

as the true values.

12

FIG. 1: Bi-probability plots (P̄ versus P ): For DUNE, NO⌫A and T2k at their peak energy. The blue

ellipse corresponds to the standard 3⌫ case and is obtained by varying �CP 2 [�⇡,⇡]. The cyan and the

gray bands show the e↵ect of non unitarity for NH and IH when both the phase �CP and �21 is varied from

�⇡ to ⇡ and all other NU parameters are fixed at their limiting values i.e. ↵11 = 0.9945, ↵22 = 0.9995 and

|↵21| = 0.0257. The green and the red ellipses are two special cases in both the hierarchies.

as there is a small overlapping between the gray and the cyan bands. If we consider

the co-ordinate (1000, 340) in the total events plot for DUNE, it lies in the overlapping

region between the gray (IH) and the cyan (NH) band, and hence it is not possible

to pinpoint the hierarchy near this co-ordinate. But due to the available spectral
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in the presence of non-unitarity at its peak operating energy. It is worthwhile to analyze

other long baseline experiments to understand more thoroughly the e↵ect of non-unitarity

on their capability for determining the mass hierarchy.

VII. APPENDIX 1

FIG. 9: Pµe vs Energy plots for DUNE to show the e↵ect of ✓23 variation. In the left (right) panel, we

show the variation in standard ( with NU) case. We consider the boundary values of the NU parameters

here. The blue (green) line represent the Pµe vs E for ✓23 = 450 in NH (IH). The gray (cyan) band show

the variation of ✓23 in 3� allowed range in NH (IH) mode.

In this study we have assumed the maximal value of the atmospheric neutrino mixing

angle ✓23. However it can be shown at the probability level that there is a significant e↵ect of

varying ✓23 on the oscillation probability, which has the potential of a↵ecting the results for

the hierarchy sensitivity. To demonstrate this we present in figure 9 the probability Pµe as a

function of the neutrino energy for DUNE, incorporating a variation in ✓23 depicted by the

grey (cyan) band for true NH (IH) in the figure. Here we have compared the standard case

with the NU case for �CP = 0. In the left panel, we vary ✓23 over its current 3� range for both

20
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More New Physics

CPT Violation

Lorentz Invariance Violation

Quantum Decoherence

VEP
Has been discussed a lot here
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Problems for discussions

More new physics at LBL

How to break the SM vs New Physics at LBL

Using LBL experiments to study new physics

Combining experiments to look for synergies


