Overview of reactor neutrinos

Sushant Raut

b Institute for Basic Science

IBS - Center for Theoretical Physics of the Universe, Daejeon, South Korea

WHEPP 2017, IISER Bhopal December 2017

Outline

- Reactor neutrinos source and detection
- Oscillation probability
- Past measurements
- Future measurements
- Beyond standard oscillations
- Physics beyond oscillations
- Problems/discussions

Source

Flux of (anti)neutrinos from the beta decays of fissile nuclei and their unstable decay products

$$S_{\text{tot}}\left(E_{\nu}\right) = \sum_{k} f_{k} S_{k}\left(E_{\nu}\right)$$

Individual decay spectra of the various nuclei measured experimentally at ILL, France (1980s) : taken to be the 'standard' for the last ~35 years

$$10^{20} \ \overline{\nu}_e \ \mathrm{GW}^{-1} \mathrm{s}^{-1}$$

The neutrino spectrum

- ILL measured the beta spectrum from the decay chain, and used this to reconstruct the neutrino spectrum
- This was done by introducing 30 'virtual branches' with free parameters to be fitted to the data
- The sum of contributions from all the virtual branches matches the experimental data with a 3-4% error

The reactor anomaly

- Mueller et al. performed an ab initio calculation of the neutrino flux and found an excess compared to experimental data
- Vogel et al. computed the flux using a hybrid method involving ab initio calculations + virtual branches and found a 3% excess over ILL (almost) independent of neutrino energy... can be explained using nuclear effects
- Huber revisited the ILL reconstruction using only virtual branches and updated nuclear corrections

Detection

Oscillation probability

Oscillation probability

Oscillation probability

Effective parameters

$$P_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$
$$= 1 - \sin^2 2\theta_{ee} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$$

$$\Delta m_{ee}^2 = \Delta m_{31}^2 - \sin^2 \theta_{12} \Delta m_{21}^2$$

Effective mass-squared difference relevant for electron neutrino disappearance experiments

Parke et al. 0503283

Past measurements

- KamLAND
 - 55 reactors in Japan
 - Flux-averaged
 baseline of 160 km

	Power (GW _{th})	Baseline (m)	Mass (ton)
CHOOZ ⁵³	8.5	1,050	5
PALO VERDE ⁵⁴	11.6	750-890	12
Double Chooz ²³	8.5	400	8
		1,050	8
RENO ²²	16.8	290	16
		1,380	16
Daya Bay ²⁰	17.4	360	2 × 20
	50	500	2 × 20
vogei et al. 1505.010:	77	1,580	4 × 20

Table 1 | Key parameters of the reactor θ_{13} experiments.

Sushant Raut WHEPP 2017, IISER Bhopal

Future measurements

$$\Delta m_{ee}^2 = \Delta m_{31}^2 - \sin^2 \theta_{12} \Delta m_{21}^2$$

Effective mass-squared difference relevant for electron neutrino disappearance experiments

$$\left(\Delta m_{31}^2\right)^{IH} = -\left(\Delta m_{31}^2\right)^{NH} + 2\sin^2\theta_{12}\Delta m_{21}^2$$

Good energy resolution crucial in order to resolve the wiggles

Sensitivity study at JUNO shows that a 20 kton detector with energy resolution of $3\%/\sqrt{E_{vis}(\text{MeV})}$ is mandatory to achieve a significance of better than 3σ after 6 years

Synergies with other experiments

• CP Violation discovery

Synergies with other experiments

Octant sensitivity

Chatterjee et al. 1302.1370

$ heta_{23}^{tr}$	$\chi^2 (NO\nu A)$	$\chi^2 (NO\nu A$	$\chi^2 (NO\nu A$
	+T2K)	+T2K+prior)	$+T2K+prior_n)$
36	1.7(5.8)	9.6 (14.8)	17.5(26.7)
39	0.3 (0.6)	3.9(7.3)	6.3(12.0)
41	0.1 (0.1)	1.9(3.6)	2.4(5.4)
43	0.1 (0.1)	1.0(0.8)	1.3(1.1)
47	0.1 (0.1)	0.8(1.0)	1.0(1.3)
49	0.3 (0.5)	3.8(2.3)	5.4(3.1)
51	2.9(1.5)	8.5(6.0)	13.0 (8.2)
54	14.7 (9.4)	21.5(16.1)	32.4(22.6)

$$\sin^2 2\theta_{\mu\mu} = 4|U_{\mu3}|^2 \left(1 - |U_{\mu3}|^2\right)$$
$$= 4\cos^2 \theta_{13} \sin^2 \theta_{23} (1 - \cos^2 \theta_{13} \sin^2 \theta_{23})$$

Synergies with other experiments

Blennow et al. 1306.3988

Figure 6: $\Delta \chi^2$ as a function of Δm_{31}^2 with the wrong sign for PINGU, Daya Bay II, and the combination. For PINGU we assume 1 year of data with $\sigma_E = 2$ GeV and $\sigma_{\theta_{\nu}} = \sqrt{1 \text{ GeV}/E_{\nu}}$, statistical errors only, and we minimize with respect to δ but keep all other oscillation parameters fixed. For Daya Bay II we take an exposure of 1000 kt GW yr and assume an energy resolution of $\sigma_E = 3.5\%\sqrt{1 \text{ MeV}/E}$. The dashed curves corresponds to 5 years of neutrino data at 0.77 MW from T2K (not included in the "combined" curve). We take the true values $|\Delta m_{31}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.092$, $\sin^2 \theta_{23} = 0.5$, $\delta = 0$, $\Delta m_{21}^2 = 7.59 \cdot 10^{-5} \text{ eV}^2$. For the left (right) panel the true mass ordering is normal (inverted).

The 5 MeV excess

Excess correlated with beam power New physics?

Other anomalies

Distance to reactor (m)

	GALLEX		SAGE		
k	G1	G2	S 1	S2	
source	⁵¹ Cr	⁵¹ Cr	⁵¹ Cr	³⁷ Ar	
$R_{\rm B}^k$	0.953 ± 0.11	$0.812_{-0.11}^{+0.10}$	0.95 ± 0.12	$0.791 \pm {}^{+0.084}_{-0.078}$	
$R_{\mathrm{H}}^{\overline{k}}$	$0.84_{-0.12}^{+0.13}$	$0.71_{-0.11}^{+0.12}$	$0.84_{-0.13}^{+0.14}$	$0.70 \pm {}^{+0.10}_{-0.09}$	
radius [m]	1.9		0.7		
height [m]	5.0)		1.47	
source height [m]	2.7	2.38		0.72	
				Gallium an	

NEOS (Korea): L = 24 m

Oh, ICHEP 2016

NEOS + DayaBay combined analysis → Pu-239 and Pu-241 are disfavoured as single sources of the 5 MeV excess

Huber 1609.03910

Ko et al. 1610.05134

 DANSS (Russia)
 Mobile detector (L around 10 m)

Dentler et al. 1709.04294

NSI searches

Daya Bay data	$\sin^2 \theta_{13}$	$ \varepsilon $			
electron-type NSI parameters $[\phi_e \text{ free}]$					
Current (621 days)	$0.020 \le \sin^2 \theta_{13} \le 0.024$	$ \varepsilon_e $ unbound			
Previous (217 days)	$0.019 \le \sin^2 \theta_{13} \le 0.027$	$ \varepsilon_e $ unbound			
muon or tau-type NSI parameters $[(\delta - \phi_{\mu,\tau})$ free]					
Current (621 days)	$0.013 \le \sin^2 \theta_{13} \le 0.036$	$ \varepsilon_{\mu,\tau} \le 0.052$			
Previous (217 days)	$0.011 \le \sin^2 \theta_{13} \le 0.045$	$ \varepsilon_{\mu,\tau} \le 0.070$			
universal NSI parameters [δ free, $\phi = 0$]					
Current (621 days)	$0.020 \le \sin^2 \theta_{13} \le 0.025$	$ \varepsilon \le 0.0013$			
Previous (217 days)	$0.019 \le \sin^2 \theta_{13} \le 0.028$	$ \varepsilon \le 0.0024$			
universal NSI parameters [$\delta = 0, \phi$ free]					
Current (621 days)	$\sin^2 \theta_{13} \le 0.024$	$ \varepsilon \le 0.110$			
Previous (217 days)	$\sin^2\theta_{13} \le 0.026$	$ \varepsilon \le 0.116$			

Agarwalla et al. 1412.1064

Neutrino scattering

Coherent elastic v-nucleus scattering (CEvNS):

Predicted in SM; has only recently been measured at a DAR expt

Akimov et al. 1708.01294

Probe new physics at low energy, eg. NSIs and sterile neutrinos. High flux at reactors can offset the small cross-section Billard et al. 1612.09035

Neutrino magnetic moment, etc

Table 1: Summary of the sensitivities obtained for $\sin^2 \theta_W (1\sigma)$ and for the EM neutrino parameters (90% C.L.) at the TEXONO experiment. The results refer to various sensitivities and quenching factors. Comparing with Ref. [24] one sees that a substantial improvement in the sensitivity for the weak mixing angle $\sin^2 \theta_W$, the magnetic moment $\mu_{\bar{\nu}_e}$ parameter and the neutrino charge-radius $\langle r_{\bar{\nu}_e}^2 \rangle$ w.r.t. the COHERENT proposal.

	COHERENT 24			TEXONO	(this work)		
(Target, Threshold)	$(100 \text{ kg} ^{76}\text{Ge}, 10 \text{ keV}_{ee})$		$(1 \text{ kg} {}^{76}\text{Ge}, 100 \text{ eV}_{ee})$				
Efficiency	67%		100%			50%	
Quenching	$Q_f = 1$	$Q_f = 1$	$Q_{f} = 0.20$	$Q_{f} = 0.25$	$Q_f = 1$	$Q_{f} = 0.20$	$Q_{f} = 0.25$
$\delta s_W^2(\bar{\nu}_e)$	0.0055	0.0010	0.0033	0.0025	0.0014	0.0046	0.0035
Uncer. (100%)	2.36	0.43	1.41	1.08	0.61	1.97	1.51
$\mu_{\bar{\nu}_e} \times 10^{-10} \mu_B$	9.46	0.40	0.98	0.83	0.47	1.17	0.99
$\langle r_{\bar{\nu}_e}^2 \rangle \times 10^{-32} \mathrm{cm}^2$	-0.38 - 0.37	-0.07 - 0.07	-0.22 - 0.22	-0.17 - 0.17	-0.10 - 0.10	-0.32 - 0.31	-0.24 - 0.24

Kosmas et al. 1506.08377

Chen et al. 1411.0574

Dark photon limits

Park 1705.02470

Some questions

- Synergy of neutrino oscillation experiments with NEOS/DANSS in measuring sterile parameters/measuring standard parameters in spite of steriles
- Particle physics origin of the 5 MeV bump?
- CC-NSI searches at extremely short-baseline reactor experiments like DANSS (zero-distance effect)
- Constraining particular new physics models with CEvNS data