Supernova neutrino oscillations: new physics!

Manibrata Sen

Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai, India.

December 18, 2017

Workshop in High Energy Physics Phenomenology XV

Manibrata Sen (TIFR)

WHEPPXV

Supernova explosion

Collapse of degenerate core. Bounce and Shock.

Explosion of a massive $6-8 M_{\odot}$ star

Stalled shock and accretion. 99% energy emitted as ν s.

Manibrata Sen (TIFR)

Explosion!

A quick recap: major fronts!

- Pre-2006 : Flavor conversions mainly in MSW regions $r \sim O(10^3)$ km. MSW conversions $\propto \omega = \frac{\Delta m^2}{2E}$
- Post-2006 : Collective effects. Significant flavor conversions at $r \sim O(10^2)$ km from neutrinosphere. Rates $\propto \sqrt{\omega\mu}$, where $\mu = \sqrt{2} G_F n_{\nu} \gg \omega$.
- More recently: Faster conversions: $\propto \mathcal{O}(\mu) \gg \omega$, very near the core of the SN $r \sim O(10 \text{ m})!$ Can occur for massless neutrinos.

Illustrative of different length scales involved.

	< L		≣ *)⊄(*
Manibrata Sen (TIFR)	WHEPPXV	December 18, 2017	3 / 28

Fast flavor oscillations near SN core!

Close to ν-sphere, ν angular emissions are different due to different radii of decoupling: R_{νx} < R_{νe} < R_{νe}.

- Leads to new instability, absent for isotropic angular distributions.
- Fast oscillations: $\propto \mu$.
- Outcome would be a *possible* complete flavor mixing of the outgoing stream just above the ν-sphere.

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 4 / 28

Fast Oscillations: 4-beam model

- Simplest system which shows fast conversions. ν − ν̄ asymmetry ≡ a.
- Use LSA $\rightarrow \rho_{ex} \equiv S \sim e^{-i\gamma t + \kappa t}$. Growth rate

$$\frac{\kappa}{\mu} = \frac{1}{2}\sqrt{(1+c)^2 a^2 - 8c(1-c)} \,.$$

- Conversions obtained for $c \equiv \cos \theta > 0$.
- No dependence on ω .

G. Raffelt et. al. (2016)

• Why such a dependence on c?

WHEPPXV

4-beam: Quartic oscillator

Define

$$\mathbf{Q} \equiv \mathbf{P}_L + \mathbf{P}_R + \overline{\mathbf{P}}_L + \overline{\mathbf{P}}_R - \frac{2\omega}{\mu(3-c)} \mathbf{B} \,,$$

• Classical analogy: particle in a quartic potential!

$$V(Q_z) \approx \mu^2 c (1-c) \left[|\mathbf{Q}_0|^2 - \frac{Q_z^2}{2} \right] \frac{Q_z^2}{2}$$

• Compute time period using adiabatic invariance.

$$T_{\text{onset}} \propto \frac{1}{\mu \sqrt{2c(1-c)}} \ln \left[\frac{(3-c)}{\cos 2\vartheta_0} \frac{\mu_0}{\omega} \right],$$
(1)

- Predict motion for a varying μ .
 - B. Dasgupta and MS (2017)

Manibrata Sen (TIFR)

WHEPPXV

6 / 28

Modelling a realistic SN

- Different flavors of neutrinos have different rates of interactions. Decouple at different times.
- Discard the "bulb model", and because of the near field effect, model the source as an infinitely long plane.

- Use flavor dependent angular spectrum. Realistic approximation.
- Consider different cones of emission for ν and $\bar{\nu}$. Can consider inward going rays also.

Halo effect \rightarrow Amol's talk!

Manibrata Sen (TIFR)	
-----------------	-------	--

WHEPPXV

December 18, 2017 7 / 28

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fast growths ubiquitous

$$\begin{array}{lll} g_{\omega,v} & \propto & F_{\nu_e}(\omega,v) - F_{\nu_\alpha}(\omega,v) \, \text{for} \, \, \nu, \\ \\ & \propto & F_{\overline{\nu}_\alpha}(\omega,v) - F_{\overline{\nu}_e}(\omega,v) \, \text{for} \, \, \overline{\nu} \, . \end{array}$$

Crossing in Angular spectrum!

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 9 / 28

Dispersion Gaps as instabilities

- Instability ≡ blowing up of flavor waves. Gaps in dispersion relation.
- $\rho_{ex} \sim e^{i(k \, z \omega t)}$.

•
$$i(\partial_t + v\partial_z)\rho_{ex} = (\omega - vk)\rho_{ex} = \mathcal{H}(\rho'_{ex}).$$

- Dispersion relation : $D(\omega, k) = 0$.
- Task: Derive soln as
 - $\omega = \Omega(k) \, \epsilon \, \mathbb{C} \to \text{temporal instability}$
 - $k = K(\omega) \epsilon \mathbb{C} \rightarrow \text{spatial instability}$
- Different types of instability: absolute, convective, and damped.

Landau-Lifshitz "Physical Kinetics",

B. Dasgupta et. al. (2017)

December 18, 2017

-

10 / 28

イロト 不同ト 不同ト 不同ト

Why should we worry about these effects?

- If flavor changes occur in the deepest SN regions, they would modify the neutrino heating behind the stalled shock wave, possibly helping a SN to explode.
- This would modify the n/p ratio deep inside the star, thereby affecting the formation of heavy elements through r-process nucleosynthesis.
- If flavor equilibrium would occur close to the ν-sphere, all further flavor information could be washed-out. Crucial to predict observable SN ν signal.

-

- Fast flavor conversions: relatively new topic. Hardly 10 papers till now.
- Many unanswered questions.
- Collisions?

We are currently working on it!

- Complete flavor averaging? Spectra formation?
- What is the effect of "new" physics? \Rightarrow Last few minutes of this talk!

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 12 / 28

3

- Effective operator of the form $\varepsilon_{\alpha\beta} 2\sqrt{2}(\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta})(\bar{f}\gamma_{\mu}f)$. Bounds on $\varepsilon_{\alpha\beta}$.
- Can lead to new resonances: "I" resonances, deeper inside the star. Can convert less energetic ν_e spectra to more energetic ν_τ. Useful for shock revival.
- Can have clear signatures in neutronization burst.

Esteban-Pretel et. al. (2007)

• Flavor changing couplings $\varepsilon_{e\mu, \tau} > 10^{-4}$ causes a reduction in electron fraction. Affects stellar collapse.

Fuller et. al. (2007)

• Many other references in cosmology, solar and SN neutrinos.

Friedland, Lunardini and Pena-Garay, Bergmann et. al., Farzan et. al.

Manibrata Sen (TIFR)

WHEPPXV

ν non-standard self-interactions (NSSI)

• Effective operator of the form $G_F \left(G^{\alpha\beta} \bar{\nu}_{L\alpha} \gamma^{\mu} \nu_{L\beta} \right) \left(G^{\zeta\eta} \bar{\nu}_{L\zeta} \gamma_{\mu} \nu_{L\eta} \right).$

Cosmology: Dasgupta and Kopp; Hannestad, Hansen, and Tram; Mirizzi, Mangano, Pianti, and Saviano; Archidiacono, Hannestad, Hansen, and Tram; Chu, Dasgupta, Kopp; Cherry, Friedland, Shoemaker;

SN: Mirizzi, Blennow and Serpico;

- $\alpha = \beta \rightarrow G^{\alpha\beta}$ is flavor-preserving \rightarrow flavor-preserving NSSI (FP-NSSI).
- $\alpha \neq \beta \rightarrow G^{\alpha\beta}$ is flavor-violating \rightarrow flavor-violating NSSI (FV-NSSI).
- Modulo some rescaling and rephasing, one can write

$$G = \begin{bmatrix} 1 + \gamma_{ee} & \gamma_{ex} \\ \gamma_{ex}^* & 1 + \gamma_{xx} \end{bmatrix} = g_0 + i\sigma \cdot \boldsymbol{g} = \begin{bmatrix} 1 + g_3 & g_1 \\ g_1 & 1 - g_3 \end{bmatrix}$$

• $g_3 \equiv$ FP-NSSI and $g_1 \equiv$ FV-NSSI.

• Bounds give $|\gamma_{ee}|$, $|\gamma_{xx}|$ and $|\gamma_{ex}| \sim \mathcal{O}(1)$.

A. Das, A. Dighe, and MS (2017)

Manibrata Sen (TIFR)

- Essentially new neutrino self-interactions. Much of the results in previous talk a special case of zero NSSI !
- Interesting new effects:
 - (i) FP-NSSI acts like a matter term, suppressing collective oscillations.
 - $\begin{array}{l} & \mbox{(ii)} \mbox{ FV-NSSI can cause flavor conversion even without any initial mixing angle, i.e.,} \\ & \vartheta = 0 \ . \ Not \ possible \ in \ SM. \ Need \ a \ non-zero \ \vartheta \ as \ a \ seed. \end{array}$
 - (iii) FV-NSSI does not conserve flavor lepton number $\nu_e \bar{\nu}_e \not\rightarrow \nu_\alpha \bar{\nu}_\alpha$.
- This will have direct observable consequences on "bipolar" as well as "fast" oscillations.

Bipolar Oscillations in the SM: Spectral splits

- Collective effects \rightarrow exchange of $\nu_e(\bar{\nu}_e)$ spectrum with $\nu_\alpha(\bar{\nu}_\alpha)$ spectrum in certain energy intervals.
- "Swap"≡flavor exchange. " Splits" ≡ sharp boundary features at the swap edges.
- Swaps occur around every " + " crossing for IH and " - " crossing for NH.

B. Dasgupta et. al (2009, 2010)

WHEPPXV

16 / 28

Simple case: what to expect in the SM?

• Define a spectral function :

$$g_{\omega} \propto F_{\nu_e}(\omega) - F_{\nu_{\alpha}}(\omega) \text{ for } \nu;,$$

$$\propto F_{\bar{\nu}_{\alpha}}(\omega) - F_{\bar{\nu}_e}(\omega) \text{ for } \bar{\nu}.$$

- Define a swap factor $S_{\omega} = \frac{g_{\omega}^{\text{fin}}}{g_{\omega}^{\text{in}}}$.
- Hence a crossing in the spectra is necessary for swaps.

Dasgupta, Dighe, Raffelt and Smirnov (2009)

Manibrata Sen (TIFR)

WHEPPXV

FP-NSSI scenario: pinching of spectral swaps

• Pinching of swaps.

• Flavor lepton number conserved. So swaps develop around the crossing.

A. Das, A. Dighe, and MS (2017)

Mani	brata	Sen ((TIFR)	
------	-------	-------	--------	--

WHEPPXV

ъ

FV-NSSI : development of swaps away from crossing !

• Flavor lepton number not conserved. No need to develop around a spectral crossing.

- Standard scenario \rightarrow NH and "+" crossing is stable. Becomes unstable in presence of FV-NSSI.
- Can have observable consequences in neutronization burst.
- A. Das, A. Dighe, and MS (2017)

Manibrata Sen (TIFR)	
-----------------	-------	--

Neutronization burst

- Prompt emission of ν_e during the first
 25 ms after bounce.
- ν_αs are absent during neutronisation. Hence no crossing in spectra, therefore no collective effects. Only MSW effects are considered.
- ν_e flux received at Earth

$$F_{\nu_e} = pF_{\nu_e}^0 + (1-p)F_{\nu_\alpha}$$
.

where p is the ν_e survival probability.

• Hierarchy determination.

Garching simulations

Manibrata	Sen	(TIFR)
-----------	-----	--------

WHEPPXV

December 18, 2017

20 / 28

Neutronization burst: signals

• Signals in a liquid Argon detector using $(\nu_e + {}^{40} Ar \rightarrow {}^{40} K^* + e^-)$ channel.

- Can make hierarchy determination ambiguous.
- Put flux dependent constraints on NSSI.
- A. Das, A. Dighe, and MS (2017)

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 21 / 28

Finally, NSSI and Fast Oscillations: interplay!

A. Dighe, and MS (2017)

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 22 / 28

What should we do now?

- Self-induced collective flavor conversions in SN are undergoing a paradigm shift.
- Self-interacting neutrinos can spontaneously break space-time symmetries. This could lead to instabilities at all length scales.
- Fast conversions could be possible near the SN core, leading to a quick flavor equilibration. Much more conclusive work is needed, both from theory and numerics.
- Effect of new physics presents a plethora of new phenomenology.
- Finally,

THANK YOU

A D N A B N A B N

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 23 / 28

BACKUP

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 24

24 / 28

E 990

Non-linearity from neutrino-neutrino interactions

• Effective Hamiltonian $H = H_{vac} + H_{MSW} + H_{\nu\nu}$ where

$$\begin{split} H_{\text{vac}} &= \omega = \frac{M^2}{2E_p} \\ H_{\text{MSW}} &= \lambda = \sqrt{2}G_F N_e \text{ diag}\{1,0,0\} \\ H_{\nu\nu} &= \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \vec{v_p}.\vec{v_q})(\rho_q - \bar{\rho_q}) \end{split}$$

Define $\mu = \sqrt{2}G_F N_{\nu}$.

Manibrata Sen (TIFR)

WHEPPXV

H. Duan et al.(2006)

Collective effects : new phenomena

• Synchronized oscillations: ν and $\bar{\nu}$ of all energies oscillate with the same frequency.

- Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations. Intermediate μ .
- Realistic declining μ can cause complete conversion.
- ν_e and ν_x spectra swap completely, but only within certain energy ranges. Occurs in both hierarchies.

G. Raffelt et al.(2007), B. Dasgupta et al.(2009)

Bipolar Oscillations : Linear stability analysis

- Deep inside \rightarrow high density \rightarrow flavor and mass states almost equal. ρ is almost identity.
- Expand the matrices

Manibrata Sen

$$\rho = \frac{\mathrm{Tr}\rho}{2} + \frac{g_{\omega v\phi}}{2} \begin{bmatrix} s & S \\ S^* & -s \end{bmatrix}$$

Drop trace since net flavor conserved.

• Linearize in off-diagonal element to get eigenvalue equation.

$$\begin{split} i(\partial_t + \vec{v} \cdot \vec{\nabla}_r) S_{\omega vz} &= \left(\omega + \lambda + \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}' \right) g_{\omega' v' \phi'} \right) S_{\omega vz} \\ &- \mu \int \frac{d\Gamma'}{(2\pi)} \left(1 - v_z v'_z - \vec{v_T} \cdot \vec{v_T}' \right) g_{\omega' v' \phi'} S_{\omega' v' z'} \end{split}$$

A. Dighe et al.(2011)

• Check for exponentially growing $S \rightarrow$ instability.

	< [★週 → ★ 国 → ★ 国 →	E nac
(TIFR)	WHEPPXV	December 18, 2017	27 / 28

Bounds on NSSI

- $\nu \nu$ interactions not observed yet, loose bounds.
- Primary bounds come from invisible width of Z boson. Four neutrino decays $\rightarrow G \lesssim 100$.

- $\nu \nu$ interactions contribute to $Z \rightarrow \nu \nu$ at one loop. Stronger constraints $G \lesssim 5$.
- Roughly translates to $\gamma_{\alpha\beta} \sim \mathcal{O}(1)$.

Bilenky and Santamaria(1999)

イロト イポト イヨト イヨト

Manibrata Sen (TIFR)

WHEPPXV

December 18, 2017 28 / 28