Direct Detection of Dark Matter and IceCubed

Collaborators : R. Gandhi, A. Bhattacharya, S. Mukhopadhyay,

Aritra Gupta (TIFR, Mumbai).

1/30

The IceCube Neutrino Detector and what it detects

IceCube: The Largest neutrino detector in the world.

• Muons (produced from v_{μ} interactions), are highly penepenetrating \Rightarrow long tracks in the detector.

(Track length \sim 1 Km at TeV energies.)

Event Topologies

• e^- resulting from a v_e event loses energy much faster. Hence these events are more spherical, or cascade-like.

(A few meters in diameter.)

- τ (produced from v_{τ}) can also create track events but decays quickly before travelling far (50m at PeV energies) \Rightarrow usually indistinguishable from electron cascades.
- τ -event could be distinguished from an e $^-$ with a double bang event.

To summarize...

• In IceCube :

extstyle ext

extstyle ext

• IceCube measures the deposited energy i.e. $E_{\text{final}} - E_{\text{initial}}$.

Recently reported high energy events at IceCube and some of its features

 1347 days of data reveals 54 events (15 tracks and 39 cascades) with energies between 30 TeV and 3 PeV.

 The three highest energy events are closely clustered.

No events between 400 TeV and 1 PeV.

• No events beyond 2 PeV.

Excess around 100 TeV.

Latest Results (2078 days)

- 27 more events (energies around 200 TeV), 19 cascades and 8 tracks.
- Spectral index increased to 2.92 from the previous 2.58.

Are they *all* neutrinos?

- A purely atmospheric explanation of these events is strongly disfavoured (at 6.7σ level).
- Explanation in terms of neutrinos from AGN and GRB's.
- Others interpret these high energy events as neutrinos coming from Dark Matter decay or annihilation (Esmaili and Serpico, JCAP 1311 (2013) 054).
- But ...

• No events corresponding to Glashow Resonance till now ...

R. Gandhi, A. Bhattacharya et. al, arXiv:1108.3163

• Constraints from diffuse γ -ray flux ...

Murase et. al, Phys. Rev. Lett. 119, 021102 (2017)

• Closeness to Waxman-Bahcall bound ...

• Applicable to neutrinos produced from AGN and GRB's (p-p / p- γ interaction).

Waxman & Bahcall, Phys.Rev.D59:023002,1999

Neutrino Dark matter analog

• At lower energies we know that dark matter can *mimic* the neutrino signal.

PeV events: Direct detection of Dark Matter?

- PeV events are due to relativistic dark matter particles (χ) produced from late time decay of another heavier dark matter species ϕ ($\phi \to \chi \bar{\chi}$).
- ⇒ A minimal Dark Sector which consists of :
 - 1) A co-moving, non-relativistic real scalar dark matter species ϕ with mass m_ϕ which decays with a life-time τ_ϕ .
 - 2) A much lighter fermionic dark matter species χ with mass m_{χ} which is produced from the decay of the heavier species ϕ .

• The χ interacts with the ice nucleus via a BSM mediator.

- Highly energetic $\chi \Rightarrow$ Deep Inelastic Scattering.
- Define : $G_q \equiv g_\chi \times g_q$ = product of couplings.

 For definiteness let us take the Pseudoscalar mediator:

$$\frac{d^2\sigma}{dxdy} = \sum_{q} \frac{1}{32\pi} \frac{E_{\chi}}{x M_N (E_{\chi}^2 - m_{\chi}^2)} \frac{G_q^2 (Q^2)^2}{(Q^2 + m_a^2)^2} f_q(x, Q^2)$$

• Define inelasticity parameter y :

$$y \equiv \frac{E_{\chi}^{in} - E_{\chi}^{out}}{E_{\chi}^{in}} \equiv \frac{E^{dep}}{E_{\chi}^{in}}$$

- $Q^2 = 2xyM_NE_{\chi}$.
- An useful quantity to calculate is the mean inelasticity parameter:

$$\langle y(E) \rangle \equiv \frac{1}{\sigma(E)} \int_0^1 \int_0^1 y \frac{d^2 \sigma}{dx dy} dx dy$$

• Using the above, and CT10 PDFs we find $\sigma(E_{Lab})$ and $\langle y(E_{Lab}) \rangle$.

G is arbitrarily fixed at 0.5. Note however $\langle y(E_{Lab}) \rangle$ does not depend on G.

- We find that around the PeV energy scale $\langle y \rangle \simeq 0.7\,.$
- $E_{\rm dep} \sim 1.1$ PeV \Rightarrow an incident energy of 1.57 PeV and which in turn gives $m_{\phi} \simeq 3.14$ PeV.

Regarding PeV Event rates ...

- Cross-section \times flux \Rightarrow number of PeV events.
- ullet Flux $\sim f_\phi/ au_\phi$ and cross-section $\sim G_q^2$
- Hence, PeV event rate $\sim (G_q^2 imes f_\phi)/ au_\phi$.

Sub-PeV events

• Let us look at the following three body decay :

- Quarks hadronize further to give a neutrino spectrum

 source of the sub-PeV (neutrino) excess.
- Differential Flux of χ or v particles $\equiv d\Phi/dE$ has both galactic and extra-galactic contributions.

• Different Fluxes in action :

ullet Astrophysical u Flux $\sim ilde{N}_{ast} E^{-\gamma}$

Regarding sub-PeV events ...

- V-cross-section × flux ⇒ number of sub-PeV events.
- flux \sim 3-Body branching ratio $imes f_{\phi}/ au_{\phi} \sim (g_{\chi}^2 f_{\phi})/ au_{\phi}$
- ullet Hence, sub-PeV event rate $\sim (g_\chi^2 f_\phi)/ au_\phi$
 - \Rightarrow Fitting the sub-PeV events along with the PeV ones fixes g_q uniquely.
- Set of parameters we are interested in our analysis thus turns to be:

$$m_{\phi}, m_a, (G_q^2 f_{\phi})/\tau_{\phi}, (g_{\chi}^2 f_{\phi})/\tau_{\phi}, \tilde{N}_{ast}, \gamma.$$

 $\Rightarrow m_{\phi}$ is fixed around $\mathscr{O}(\text{PeV})$, all others are varied (randomly).

Results

• Best fit values :

Parameter	m_a [GeV]				$ ilde{N}_{ast}$ (all flavour)
$a \rightarrow b \bar{b}$	12.0	0.32	1.23×10^{-26}	2.57	1.21×10^{-9}
$a \rightarrow c\bar{c}$	5.3	0.50	5.02×10^{-27}	2.61	5.40×10^{-9}

Points to note ...

- Both the PeV and the sub-PeV events (along with their different features) can be explained under a single phenomenological scheme.
- g_q is known exactly but we only have information on $f_\phi \, (g_\chi)^2/ au_\phi \equiv R_1$ (say).
- However, with $au_\phi \geq t_{
 m universe}$ and $0 \leq f_\phi \leq 1$, $g_\chi^2 \geq t_{
 m universe} imes R_1$.
- For our benchmarks, this translates to $g_\chi \geq 10^{-5}$.
- This scenario is however tightly constrained by diffuse gamma ray bounds.

Gamma-ray constraints

- The 3-body decay that gave rise to the neutrino flux \Rightarrow gives rise to diffuse γ -ray flux as well.
- The controlling factor is already fixed $(R_1 = f_\phi \, (g_\chi)^2 / au_\phi)$.

Need for a new scenario ...

- ullet Let us not assume that $\phi o ar{\chi} \chi$ is restricted to explain only the PeV events.
- ullet Hence, m_ϕ is no more constrained to PeV range.

• Controlling parameter is only $f_{\phi} (g_q g_{\chi})^2 / \tau_{\phi} \equiv R_2 \text{(say)} \text{ [no } R_1 \text{!!]}.$

- No dependence on $R_1 \Rightarrow$ Unconstrained from diffuse gamma ray flux (however, we can put upper limit).
- We have :

$$R_1 \leqslant 5.2 \times 10^{-27} \, s^{-1}$$
 for the pseudo-scalar case

• The best fit values turn out to be :

Parameter	m_a [GeV]	m_ϕ [TeV]	$R_2\left[\mathtt{s}^{-1} ight]$	γ
Pseudoscalar	16.1	680	1.15×10^{-27}	2.31

Smoking Gun signatures

- According to IceCube collaboration, our scenario can be verified if it is possible to distinguish between the hadronic and electromagnetic showers
 we expect no electromagnetic showers.
- IC expects to do so by comparing the Cherenkov light emanating from the two types of shower.

THANK YOU