A

Argonne An AOD analysis example

NATIONAL
LABORATORY

... for a brighter future

Esteban Fullana Torregrosa

High Energy Physics Division
Argonne National Laboratory

UChicago »

Argonne

G O c=cf

Introduction

B What | am going to do

This is short of continuing with the starting with Athena talk

What I'll do now is to go into the details of the implementation,
I.e. have a look at the entrails of the code

| will propose several exercises (with the solutions) for you to get
familiar with Athena

| will be here to help you and answer any questions/problems
you may have

Outline

B General comments about AODs
— What we can do with them and what we cannot do with them
B The Plain_ Analysis package
— How it is organized and other important things
B The DragonflyAlg algorithm
— A brief explanation of what it does and how it does it
B Proposed exercises
— With some exira material to solve them

General comments about AODs

AODs in a nutshell

B An AOD is an object in evolution. The amount and organization of the
information is Athena-release-dependent,

B However, the AOD was designed to be a final analysis object:

— Useful to plot differential cross sections, applied cuts, trigger
efficiencies: i.e. physics analysis

— Limited to understand jet reconstruction/calibration.

M Obijects (jets, tracks, etc.) are stored in collections, each collection has a
different key that allow us to access the elements of the collection

B For example in a jet collection, each jet contains:

anpyapz: m: mzﬁp:pzﬁ ﬂ:y: (.flj-_. E E_:p_:p:11
cos(@), sin(¢), cos(#), sin(P), cot(#), tan(H)

and some information regarding its constituents (basically b-
tagging information and energy per layer).

Jets
see also JetAnalysis
Mote that there is a change from 14.0.1 and 14.1.0 merging these two classes. To read about it see ParticleJetMerger

In 15.3.0 and onward

Container Location Data Access Key
Class
JetCollection E3IsEA "ConedH1Topolets", "ConedH1Towerlets", "Coned TruthJets”, "Cone7H1Towerlets". "AntiKi4H1TopoJets”,
AOD "AntikKi4H1 TowerJets", "Antikid TruthJets", "AntikKi6H1 TowerJets"
s Jet

In 14.2.10 and onward

Container Class Location Data Access Key
N el E LA FSD & AOD "ConedH1TopoJdets”, "ConedH1 TowerJets", "Coned TruthJets”, "ConeTH1 Towerlets”
« Jet

In 14.1.0 and onward

Container Location Data Access Key
Class
JetCollection NISafA "ConedH1Topolets”, "Coned4H1 Towerlets”, "ConedTruthdets”, "Cone7H1Topodets”, "ConeTH1 Towerlets", "Cone7 TruthJets”,
AQD "Kt4H1TopoJets", "KtdH1 TowerJets", "Kid TruthJets”, "Ki6H1TopoJets", "Ki6H1 TowerJets"”, "Ki6 TruthJets"
« Jet
In 14.0.1
Container Class Location Data Access Key

ParticleJetContainer §.Xels] "ConedH1TopoParticleJets”, "ConedH1TowerParticlelJets”, "Coned TruthParticlelets”, "Cone7TH1 TopoParticleJets",
"Cone7H1TowerParticlelets”, "Cone7 TruthParticleJets”, "Ki4H1TopoParticlelets", "Ki4H1TowerParticlelets”,
"Kid TruthParticleJets", "Ki6H1 TopoParticlelets”, "KieH1 TowerParticleJets"”, "Ki6 TruthParticleJets"

But to be sure please check the twiki:

https://twiki.cern.ch/twiki/bin/view/Atlas/AODClassSummary

'\

Argonne *

NATIONAL LABORATORY

Basic things about ESDs, AODs, DPDs

AOD or ESD ?
Only use ESD if you really needed, ESD will only be stored at the Tier 1
(BNL) and the processing time is slower

Do | need ESDs?
Yes if you want to run recalibration, build your own jet collection from

reconstruction objects: in one sentence: if you need to understand your
detector.

No if you want to measure cross sections, plot invariant masses, trigger
efficiencies, etc; AOD is fine for that.

What is a DPD?

DPD is a reduced (and physics-group-customized) AOD. At first
approximation everything I'll say about AODs works for DPDs.

The Plain_Analysis package

The cmt package structure

B The Plain_ Analysis package is located here:
— /users/torregrosa/tutorial/Plain_Analysis.tgz
— Copy it into your ~/testarea/15.4.0/ directory and execute:
—tar -zxvf Plain Analysis.tgz

B Inside the main directory, these are the subdirectories you should worry about:

- Plain Analysis/cmt this is where the makefile and
requirements file is.

- Plain Analysis/src thisis where the .cxx files are
— Plain Analysis/Plain Analysis thisis where the .h files are
— Plain Analysis/run thisis where the .py files are

Plain Analysis/cmt

B Inside it you can find:
- requirements : here you tell what Athena packages you are going to use
* You don’t need to touch it, | only wanted to know where to do it if you
want to add extra functionality in the future

— Change_Version.sh this is a script that helps you to change the version
of the DragonflyAlg algorithm. There are six versions:

*V1.0 and v2.0 : forget about them, these are working versions
* v3.0 : Thisis the default (and the basic) version, you must start with
this one

*Vv4.0, v5.0 and v6.0 : These versions contain the solutions to
the exercises, have a look at them if you are lost while doing the
exercises

- Display_Version.sh this script displays the current version and gives
information about it. You can read this information in the file readme . txt

You don’t have to worry about anything else

Plain Analysis/src

B Inside it you can find:

— Six files like DragonflyAlg.cxx_vi.0 where i goes from 1 to 6,
each one contains the source for each version of the Dragon£fly algorithm

- DragonflyAlg.cxx is only a symbolic link to one of the files above
Plain Analysis/Plain Analysis

B [nside it you can find:

— Six files like DragonflyAlg.h_vi.0 where i goes from 1 to 6, each
one contains the header for each version of the Dragon£1ly algorithm

- DragonflyAlg.h is only a symbolic link to one of the files above

The script Change_Version.sh inthe cmt
directory changes the link to the version you
want to use

Plain_Analysis/run

B Here is where you have to run athena.

B The only thing you should worry about here are the job options file.
— These are Plain_Analysis_topOptions_vi.0.py where i goes
from11to 6

M Later on I'll explain the three things you must know about them

I’'ve explained the basic structure of an Athena package, but to summarize it:

-Plain_Analysis/cmt where you have to compile : gmake
-Plain_Analysis/src Wwhere the source files are
-Plain_Analysis/Plain Analysis Wwhere the header files are
-Plain_Analysis/run where you have to run athena

Now I'll move to explain the basic things of an Athena algorithm

The DragonflyAlg algorithm

General things about the DragonflyAlg algorithm

B The goal is simply: read reconstructed objects (jets, electrons, etc.) from an
AOD; analyze them and dump the result into an ntuple (root file) to make
plots, i.e. it is basically an implementation of the analysis skeleton.

B The output ntuple format is CBNT_AthenaAware
— | only mention it because it conditions the methods to define (see next
slides)
— Itis used by the e/gamma group for their customized ntuples

— It has limited functionality (e.g. you cannot store TLorentzVector)
only singled valued variables or arrays (as vectors).

M Atthe end of the road bragonflyalg algorithm is only a c++ class with a
header file to define the methods and variables and a source file to write
down the code for each method

— I'll show you the methods of v3. 0 that is our starting version

The bragonflyAlg algorithm: compulsory methods

B The constructor :

— DragonflyAlg: :DragonflyAlg(const std::string& name, ISvcLocator¥*
pSvcLocator) : CBNT_AthenaAwareBase (name, pSvcLocator),
m_trigDec ("TrigDec: :TrigDecisionTool")

— The important thing to remember is that here you define the properties
of the algorithm: i.e. a set of variables that you can set in the job
Options e.g.:
declareProperty ("JetCollection",m_JetContainerName="ConeTowerJets") ;

B CBNT_initializeBeforeEventLoop ()

— ltis executed only once
— This is where | initialize the TrigDecisionTool :

(m doTrigger) {
sc = m _trigDec.retrieve():

[2sc.isFailure())}{
ml.og << M5G::ERROR << "Can't get handle on TrigDleciszionTool™ << endredq;
I {
mLog << MS5G: :DEBUG << "Got handle on TrigDeciszionTool™ << endredq;

H
H

A

Argonne

TORY

The bragonflyAlg algorithm: compulsory methods

M CBNT initialize: Again executed only once

StatusCode DragonflyRlg::CENT initialize() {
M=sgStream mlog(messageServicel), name())7
mlog << MS5G::DEBUG <« "Initializing Dragonflyflg" << endreq;

f/**% get a handle of StorelGate for access to the Event Store */

StatusCode sc = service("StorsGatedve", m storeGate);
(sc.isFailure(}) {
mLog << MS5G::ERRCER
<< "Unable to retrieve pointer to StoreGateSvc”
I << endredq;
=c;
¥

, ; . ; . V- . . N
/*% get a handle on the NTuple and histogramming service *#/

}

The first line initializes the output text
stream. The second line makes use of it

\
These lines initializes the StoreGate (aka
Event Store) . The Storegate is where all
the things we want are stored

o’

These lines initializes the histogram
> service

sc = sgervice ("THistSvc", m thist3ve):
(sc.isFailure(}) {
mLog << MS5G::ERRCER
<< "Unable to retrieve pointer to THistSwvc"
<< endredq;
sc; o

| am telling you this for your information,

but you don’t need to touch these

lines. The important things come now

A

Argonne

TORY

The bragonflyAlg algorithm: compulsory methods

M CBNT initialize: Again executed only once

add.EiIanch("?EJe:s", m aan njets, "NJecs/i"); These IlneS define the branCheS Of the
g N oo gerpey s output root file. Line 1 defines a single
addBranch ("JetsPRi” ,m_aan_JetPhi) ; integer, lines 2,3,4 defines three vector
addBranch ("Mi=ssingET", m _aan ptMiss, "MissingET/d"):

{ ROT histograms - —-———————————"—"""""—"—""—"—"—"—"—"——\—\———(————————

jet=s -
m h jet_eta = TH1F("jet_eta","Leading jet_eta",50,-5.,5.): \
sc = m_thistSvc-rregHist ("/RRNT/Jet/jet_sta",m _h jet eta):
m h jet_phi = TH1F("jet_phi","Leading jet_phi",50,-3.2,3.2);
gc = m thiscSvc->regHisc ("/LANT/Jec/jec phi",m h jet phi});
m h jet pt = TH1F("jet_pt","Leading jet_pt",500,0.,600000.);
2c = m_thistSvc-»regHist ("/RARNT/Jet/jet_pt",m h jet pt):

A mi=ssing ET

m pxMi= = THI1F ("Mi=z=singPx", "MissingP=x",200,-500.0%GeV,500.%GeV) ;
2c = m_thistSvc-r»regHist ("/ARNT/HMissingET/MissingPx", m pxMis):
m pyMis = THIF ("Mis=singPv", "MissingPv", 200, -500.0%GeV, S00.*GeV) ;
=2zc = m_thistSve->regHisc ("/AANT/MissingET/MissingPy", m pyMis);
m prMis = THIF ("Mi=z=ingPc", "Miz=ingPc",100,0.0,500.*%GeWV) ;
gc = m thiscSvc->regHisc ("/AANT/Mi=z=singET/Mis=singPc"”, m ptMis=);

J \

(sc.isFailure()) {
mlog << MS3G: :ERRCR << "ROOT Hist registration failed" << endredq:;
sC;
¥ >

/S end ROOT Histograms - -——

A

Argonne

NATIONAL LABORATORY

branches. Line 5 defines a single double

These lines define the
histograms to be stored in
the output file. | hardly
use them but | wanted you
to know how do define
them.

These lines just check that
everything was fine

The bragonflyAlg algorithm: compulsory methods

B CBNT finalize and CBNT_clear : Again executed only once

f/¢ Finalize - delete any memory allocation from the heap

5";"“’3“2 PragonflyiigiiCENL_finaiizel) This method is executed at the end of the
zgStream mLog(messageService(), name()): .
loop over all the events. Useful to print

StatusCode: : SUCCESS; out counting information for instance

{4 Clear - clear CBNTI members
StatusCode DragonflyRlg::CENT clear() { \
/// For Athena-Aware NTuple

m aan njets=0; This method is important. If
m aan JetEta->clear():

B man TetBr-setear () you wa.nt your arrays to be
m aan JetPhi->clear(); stored in the OUtpUt root

file. You MUST clear them
in this method

m aan ptMiss = -1.;

StatusCode: : SUCCESS; j

A

Argonne

NATIONAL LABORATORY

The bragonflyAlg algorithm: compulsory methods

B CBNT_execute: Executed in every event

StatusCode Dragonflyhlg::CENT execute() {
MsgStream mLog(messageService(), name()) The first line initializes the output text
B mlog << MSG::DEBUG << "in execute()" << endreq; stream. The second line makes use of it

StatusCode =c;

J#% an minimal example using the TrigDecisionTool =/ :
Cm doTrigges) ¢ These lines called the
BC =_triggEISkeletnni]; triggerSkeleton
(sc.isFallure()) { } method that’s takes care
mLog << MS3G: :WARNING << "The method triggerSkeleton() failed" <« endredq; . .
return StatusCode: :FAILURE; ; of the trigger analysis.
} / See next slides

H

A

Argonne

NATIONAL LABORATORY

The bragonflyAlg algorithm: compulsory methods
B CBNT_execute: Executed in every event

* get missing Et information *

mms N
ac = getMissingET () . . .
(sc.isFailure()) I These lines calle the getMissingEt
mLog << M5G::WARNING < method that’s takes care of getting the
<< "Failed to retrieve Et object found in TDS" . . iy
<< endreq: Missing Et and dump it into the ntuple.
return StatusCode: :FAILURE; See next slides
¥ o
* get Jet information *
sc = getdetInfo(); h .
B (sc.isFailure()) { These lines calle the getJetInfo
mLog << M3G::WARNING - - method that’s takes care of getting the Jet
<< "Failed to retrieve Jet object found in TDS" >' . _—
<< endreq; collection and dump it into the ntuple. See
return StatusCode: FAILURE; next slides
¥ o

CeatusCode: :SuCCESSS } This is the end. That's it!!

Thus, the bulk of the analysis is inside these three methods:
getMissingEt, getJetInfo, triggerSkeleton

Now we’ll have a look at them

A

Argonne

TORY

The bragonflyAlg algorithm: non compulsory methods

B triggerSkeleton

f/f Trigger method - called by execute () on event by event
f/f to be removed if not needed

StatusCode Dragonflvyvhlg::triggerSkeleton() {
MagStream mLog(messageService (), name());
ml.og <« MSG::DEBUG << "in triggerSkeleton()" << endredq;

This line prints out
'/ for example, did event pass Event Filter ?

// needs to be changed to m_trigDec->isPhysicsPassed If the event passes
nLog << MS5G::INFO << "Pass state EF = " << m trigDec-»>izPassed(TrigDec::EF)} << endreq; the EF trigger

'/ for example, did event pass !L2 el:i chain?
'/ needs to be changed to m _triglec->igPhyszicsPassed

std::string mychain("L2 e2517)s The line one defines the trigger we want to
| HLT::Chain* chain = m trigDec->getHLTChain (mychain): have a look at. Line 2 gets the trigger object
(0 == chain){
mlog <« MSG::INFO <« "Chain " << mychain << " iz not defined":
} {
mlog << MS5G::INFO << "Chain " << mychain << ": " <« *chain << " passed: " << chain->chainPassed|() << endredq;
ml.og <« MSG::DEBUG << "triggerSkeleton() =succeeded" << endredq;

Statu=sCode: : SUCCESS;

StatusCedeJ:SUCCESS: This method uses the TrigDecisionTool, for
documentation about it, have a look at

https://twiki.cern.ch/twiki/bin/view/Atlas/TrigDecisionTool14

A

Argonne

NATIONAL LABORATORY

The bragonflyAlg algorithm: non compulsory methods

B getJetInfo

7 Jet info object
StatusCode DragonflvRlg::getdJetInfo() {

MzgStream mlLog (messageService (), name())’
ml.og << MS5G: :DEBUG <« "getJetInfo()" << endredq:;

StatusCode sc = StatusCode: :5SUCCESS: . . .
Jets are stored in collections. There is
// EFT retrieving the Jet collection from the storegate \ a collection for each event. Line 1 gets
JetCollection® PartJetCont = 0;
a pointer to a jet collection. Line 2

I sc = m_storeGate->retrieve(PartJetCont, m JetContainerName):

(sc.isFailure() || 'PartJetCont) { links the just defined pointer to the
e e O e e i e storegate container through its key
<< endreq: > (m_JetContainerName). The
return StatusCode: :FATLURE; following lines is to check that
.}-:.-"EFT Getting the size of the reco collection everything was ﬁne and the IaSt tWO
int .‘-I'_;Ir;:e:_:E_:e::_j ets = (int PartJetCont->size(): lines get the number of jets in the
& asn niets = Number of reco jecs: event (size of the collection) and puts
- - - / this information into the ntuple

(m_aan_nijets)

So we have the Jet collection, what can we do with it?

A

Argonne

NATIONAL LABORATORY

The bragonflyAlg algorithm: non compulsory methods

B getJetInfo

J/EFT Starting the loop over the jet collection

Let’'s make a loop over them!! By getting

JetCollection: :const_iterator JetlItr = PartJetCont-rbegin(): the collection iterators
JetCollection::const iterator JetlItrE = PartJetCont->end():
double lsad det pt = (*Jetltr)->pt(): | The collection is sorted by Pt. The first jet
double lead jet eta = (*Jetltr)->eta(); > is the hardest, these lines gets its Pt, eta
double lead jet phi = (*Jetltr)->phil(): .
- ~J and phi
{r JetItr != JetItrE; ++JetItr) N
{
double loczal pt = (®*Jetltr)->pt():
double local eta = (*Jetltr)->eta(); Here is where the loop takes place. For
icuble local phi = (*JetX -»phi H . .
- e T roEsiEm Eas U % each Jet in the collection we get the Pt,
I m aan JetEta->push back(local eta): phl and eta and we pUt into into the
m_aan_JetPhi->push_back{local phi); vector that is stored in the ntuple:
m aan JetPt-»push back(local pt):)
v - - J m_aan_JetXXX
JAF Eill missing jet histograms with the leading jet)])
m h jet eta->Fill(lead jet eta): These lines only fill the histograms of the

m h jet pt->Fill (lead jet pt):
m h jet phi->Fill{lead jet phi):
=2c:

You can get more information about what you can do with a
JetCollection and Jets here

http://reserve02.usatlas.bnl.gov/Ixr/source/atlas/Reconstruction/Jet/JetEvent/src/

But that’s it!!

leading jet magnitudes

A

Argonne

NATIONAL LABORATORY

ﬂ input directory

DIR='/afs/cern.ch/user/c/chekanov/public/data/mc08 _36579.E;-:_3E:ﬁiczcﬁ, AsymJetFilter.recon.AOD.e347 =462 r54l

niiiEEE4E48443 INPUT FILES $##443888833558448887

glob
filelList = glob.glob (DIR) . .

item FileList: > These lines define the
item . .

len(filelis=st) , " for analysis" InpUt flles

ServiceMgr.EventSelector.InputCollections =filelis=st;

li=t of the algorithms to be executed at run time

Plain Analysis.FPlain AnalysisConf
topSequence . CENT Athenalware += Dragonflyllg()
DragonflyAlg = Dragonflyilg()

DragonflyAlg

#5444 4F44# The properties of the DragonflyAlg Algorithm
DragonflyAlg.MissingETCbject = "MET RefFinal"
DragonflyvAlg.DeltaBMatchCut = 0.2

DragonflyvAlg.MaxDeltaR = 0.998%9

Eragnnflyﬁlg.HissingETCut = 20.0*GeV
DragonflyvAlg.CutputlLevel = IHNFO

ServiceMgr.THistSve.Cutput =

[
AANTupleStream.OutputName = 'DragonflvAlg.aan.root’

21« DL

HNumber of Events to process
thefpp .EvtMMax = -1
#thelpp.EvtMax = 10

Argonne

NATIONAL LABORATORY

/

These lines tell Athena that we want
to use the algorithm

These lines set the properties
(options) of our algorithm

T T TT LI

1. root' OFT='RECREATE

The output file

Number of events : 10 is 10; -1 is all

Proposed exercises

Exercise number cero

B Get the PlainAnalysis package coping it from:
/users/torregrosa/tutorial/Plain_Analysis.tgz to your
$Shome/testarea/15.4.0/ directory and execute:

— tar -zxvf Plain_Analysis.tgz

B Setup Athena (if not done yet):
- http://atlaswww.hep.anl.gov/asc/ASC_working/index.php?n=Main.SettingUpAccount

B Go to the cmt directory and compile it :
- cmt config

-~ source setup.sh (0Or source setup.csh)

— gmake
B Go to the run directory and run athena

— athena Plain_Analysis_topOptions_v3.0.py
B Check the output ntuple. Have a look at the code:

- src/DragonflyAlg.cxx and Plain_Analysis/DragonflyAlg.h
B Ask me any questions you may have about any part of it, get familiar with it

Exercise number one

B Add new information into the output ntuple. My proposal is
— A vector that stores the mass of each jet in the collection
— The invariant mass on the two leading jets
— The Cos(0) of the event

H | solve it making use of the CLHEP library. Have a loot at the Jet.cxx
class. You can get a HepLorentzVector out of each jet. Then is just
question to use the proper methods of the HepLorentzVector class

B Have a look in the code where everything related with the ntuple is

coded (both header and source file; the variables use to start with
m_aan) just do the same for the new variables

® If you are lost, go to the cmt directory and do:
— ./Change_Version.sh v5.0
— and have a look again at
 src/DragonflyAlg.cxx and Plain Analysis/DragonflyAlg.h
— Compile it (as before) and execute it:
* athena Plain Analysis topOptions v3.0.py

Exercise number two

B One step further : create a new method that gets the jet and the track
collection. Then for each jet loops over all the tracks and counts the
number of tracks that match each jet (AR lower than some threshold). The
store the number of tracks matched to each jet in a vector into the output
ntuple.

B The track collection class is: Rec: : TrackParticleContainer the key
thatl use is : TrackParticleCandidate

B You can find information about this c++ class here
— http://reserve02.usatlas.bnl.gov/Ixr/source/atlas/Reconstruction/Particle/?v=head

B There is a function that help you to do the matching:
— DeltaR(double etal, double phil, double eta2, double phiZ2)

B Again if you are lost, look at the solution doing exactly the same as in the
exercise one but now : ./Change_Version.sh v6.0

— Or ask me questions about it!!

Exercise number three

B Now it comes the trigger issue: triggerSkeleton makes use of the
TrigDecisionTool. | would like you to get familiar with it and to modify
the triggerSkeleton method to count:

— Events that passed L1_J70, L1_J120 trigger and L2_J150 triggers
independently

— Events that passed L1_J70 and L2_J150 triggers together
— Events that passed L1_J120 and L2_J150 triggers together
— Events that passed L1_J70 and L1_J120 triggers together
B It is not trivial, look carefully the TrigDecisionTool documentation:
— https://twiki.cern.ch/twiki/bin/view/Atlas/TrigDecisionTool14

B Again if you are lost, look at the solution doing exactly the same as in the
exercise one but now : ./Change_Version.sh v4.0

Summary

M | tried to explained you the basic things as simple as possible

B Take it easy and please don’t get discouraged. Athena requires
dedication but pays the effort back

B Try the exercises, let me know if there is any problem, ask me doubits,
now or by email. I'am here to help you

My strongest advise: take it as a game and enjoy it

