

Evolution of the Run Plan

T. LeCompte Argonne National Laboratory

- Studies we have done
 - Chamonix
 - Generator-level and fast simulation
 - Post CSC 10 TeV studies
 - Particularly relevant are some fully simulated Top & SUSY studies
 - Validates Chamonix at the 10-20% level
- What we don't know
 - The Luminosity profile for the different values of center-of-mass-energy
 - Non-trivial to guess: involves machine limitations, operational factors
 - Nevertheless, has a huge impact on the physics program

Everything that follows will be expressed in terms of a constant integrated luminosity. CERN management will have to factor into their decision-making process what a realistic luminosity is for each center-of-mass energy.

The schedule for runs beyond 2010

Argonne Argonne Understanding/calibration

- For W's, Z's and J/ψ's, we are talking tens to hundreds of thousands of events
 - Enough for physics and calibration studies, provided you don't chop the data up into too many bins.
- W and Z production scales ~linearly with energy
- The J/ ψ has a visible quadratic correction
 - Due to the interaction between the $\mu 6\mu 4$ trigger and the $p_T(J/\psi)$ spectrum
 - At some point, μ4μ4 becomes feasible: increases yield by 30-50%

- ATLAS will tell us about top quarks but top quarks will also tell us about ATLAS
 - These events contain all of the basic signatures: leptons, jets, missing E_T, and heavy flavor
- We would like thousands of events for this
 - We will probably have hundreds: enough to start, but statistics will be an issue, at any energy.
 - Below about 6 TeV, this shortfall will be particularly acute
- "Rediscovery" of top and early measurements will be possible.

Lepton plus jets is for a "medium" set of cuts – loose or tight cuts change yield by a factor of 2.

- This is a relatively favorable model
 - Decay signature is leptons + jets + MET
 - Present limit is 392 GeV
- ~100 pb⁻¹ at 7-10 TeV allows us to search [substantially] beyond this point
- At 6 TeV our sensitivity is close to the present limit.

Non-trivial kinematics are responsible for the proximity of the blue and green curves.

- Discovery sensitivity beyond the direct limit for the Z' (PDG value is 923 GeV), requires ~100 pb⁻¹ at 10 TeV.
 - Limits can be set to about 6 TeV
- Discovery sensitivity beyond the limit for the W' (PDG value is 1 TeV), requires ~10 pb⁻¹ at 10 TeV.
 - It also requires a very good understanding of the detector
 - 100 pb⁻¹ at 10 TeV lets us set a limit ~1.5 TeV
- Each TeV loss in center-of-mass energy reduces the sensitivity by about 100 GeV
- The Higgs was already marginal at 10 TeV and hundreds of pb⁻¹
 - Below 10 TeV, we're simply not sensitive

- With the 50s dump time, the calculated safe resistance at 7 TeV is 120 $\mu\Omega$ per splice under conservative assumptions.
 - The worst ones found in the warm sectors were ~60 $\mu\Omega$
 - Every one worse than 35 $\mu\Omega$ has been replaced
 - The cold sectors had noisy measurements, so the threshold of measurement was about ~80 $\mu\Omega$
 - No splice this bad was found
- At 10 TeV, they need to move to a 68s dump time, and the safe resistance is 67 $\mu\Omega$
 - Today's measurements indicate (some energy above) 8.5 TeV is safe
 - If the cold splices are the same as the warm splices, 10 TeV is safe.
- These are based on conservative calculations
 - They will be replaced by measurements
 - FRESCA test bench
 - QPS measurements during operations
- Lower energy is not necessarily safer
 - The risk of damage per quench goes down
 - The probability of a quench goes up (because the beam is larger and needs a larger aperture)

Plugging in the numbers – 3.5 TeV

Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrated	% nominal	events/X
1	Beam commissioning							
2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹		
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹		
4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5	
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4	
5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8	1.6
6	partial 50 ns – nominal crossing angle	144	7 x 10 ¹⁰	2-3	3.1 x 10 ³¹	~16 pb ⁻¹	3.1	0.8
7		288	7 x 10 ¹⁰	2-3	8.6 x 10 ³¹	~32 pb ⁻¹	6.2	
8		432	7 x 10 ¹⁰	2-3	9.2 x 10 ³¹	~48 pb ⁻¹	9.4	
9		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	
10		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	
11		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	

Mike Lamont, AI LAS Open EB 27 Aug

27-08-09

LHC - 2009/2010

Plugging in the numbers with a step in energy

Month	0P scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrated	% nominal	events/X	
1	Beam commissioning								
2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹			
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹			
4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5		
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4	0.8	
5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8	1.6	
6	Shift to higher energy: approx 4 weeks	Would aim for physics without crossing angle in the first instance with a gentle ramp back up in intensity							
7	4 – 5 TeV (5 TeV luminosity numbers quoted)	156	7 x 10 ¹⁰	2	4.9 x 10 ³¹	~26 pb ⁻¹	3.4		
8	50 ns – nominal crossing angle	144	7 x 10 ¹⁰	2	4.4 x 10 ³¹	~23 pb ⁻¹	3.1	1.1	
9	50 ns	288	7 x 10 ¹⁰	2	8.8 x 10 ³¹	~46 pb ⁻¹	6.2		
10	50 ns	432	7 x 10 ¹⁰	2	1.3 x 10 ³²	~69 pb ⁻¹	9.4		
11	50 ns	432	9 x 10 ¹⁰	2	2.1 x 10 ³²	~110 pb ⁻¹	12		

- These are run *models*, not run *plans*.
 - The run plan will evolve as we gain experience
- Taking these at face value, we can ask what we will expect
 - 400 pb⁻¹ for a 7 TeV only run, and 65 pb⁻¹ + 275 pb⁻¹ for a 7+10 TeV run

- It's difficult to compare different center-of-mass energies
 - Different physics processes have different scalings
 - I will use an average of top quarks, Z primes, and SUSY here, and try and equate this to 10 TeV equivalent luminosity
 - Reminder: 100-200 pb⁻¹ at 10 TeV is where we start to have sensitivity substantially beyond present limits
- A few models:
 - 7 TeV only: 115 pb⁻¹ equivalent
 - 7 TeV, then 10 TeV: 300 pb⁻¹ equivalent
 - Run 7 TeV until we get 100 pb⁻¹, and then run 10 TeV: 130 pb⁻¹ equivalent
 - 7 TeV, then 8.5 TeV: 160 pb^{-1} equivalent
 - Commission 15% slower: 115 pb⁻¹ equivalent
 - Commission 15% faster: 500 pb⁻¹ equivalent

Variations are substantial, but not orders of magnitude

- LHC becomes cold on Week 47 (mid-November if you're not on metric time)
 - They are still holding to this, although the schedule contingency isn't what it once was
- Single beams ~a week later
- 450 on 450 GeV Collisions ~a week after that
 - One or two days. We expect 10-15 million events.
- Christmas shutdown
- 3.5 on 3.5 TeV collisions starting in January
 - The present schedule has them for the last 3 days in December
- Decision point in late spring/early summer
 - Do we stay at 7 TeV?
 - If we go to higher energy, when do we do this?
 - If we go to higher energy, which energy?
- Switch over to lead ions at the very end of the run
- A shutdown of indeterminate length

We will have a lot more operational experience to answer these questions nine months from now.

- We have a sketch of a run plan now
 - This has evolved and will continue to evolve as we gain experience.
- Expect 900 GeV data this year.
- At the end of the 2009-2010 run, run models show ATLAS having sensitivity at or beyond the Tevatron for multiple processes.
 - If one is optimistic, substantially more
- I didn't talk about 14 TeV running
 - Depends on too many things we don't know

