
The ATLAS Data Model

Peter van Gemmeren (ANL): ANL Analysis Jamboree

Data Flow at ATLAS

RAW:
n Original data at Tier-0
n Complete replica distributed among all Tier-1
ESD:
n ESDs produced by primary reconstruction reside at Tier-0 and are

exported to 2 Tier-1s
n Subsequent versions of ESDs, produced at Tier-1s (each one

processing its own RAW), are stored locally and replicated to
another Tier-1, to have globally 2 copies on disk

AOD:
n Completely replicated at each Tier-1
n Partially replicated to Tier-2s (depending on each Tier-2 size) so as

to have at least a complete set in the Tier-2s associated to each
Tier-1

n Every Tier-2 specifies which datasets are most interesting for their
reference community; the rest are distributed according to capacity

TAG:
n TAG files or databases are replicated to all Tier-1s (Root/Oracle)
n Partial replicas of the TAG will be distributed to Tier-2 as Root files
n Each Tier-2 will have at least all Root files of the TAGs that

correspond to the AODs stored there

Analyzing the Data

n Inside Athena (RAW, RDO, ESD, AOD, DPD, TAG)
– Interactive OR batch using C++, python code.
– Provides full access to all tools and services.
– Can submit to the grid.

n Outside Athena (DPD, and to some degree ESD, AOD)
– using ROOT (to at least read)
– CINT, or using python, or compiled C++ code.
– Does not need full Athena installation (expected 1GB)
– Not all classes are available (example, calo-Cells)

n Important: both methods use the same files as input.

Athena/Gaudi components

n All levels of processing of ATLAS data, from high-level trigger to event
simulation, reconstruction and analysis, can take place within the Athena
framework.

n The major components of Athena are:
– Services. A Service provides services needed by the Algorithms. In general

these are high-level, designed to support the needs of the physicist. Examples
are the message-reporting system, different persistency services, random-
number generators, etc.

– Algorithms. Algorithms share a common interface and provide the basic per-
event processing capability of the framework. Each Algorithm performs a
well-defined but configurable operation on some input data, in many cases
producing some output data.

– AlgTools. An AlgTool is similar to an Algorithm in that it operates on input
data and can generate output data, but differs in that it can be executed
multiple times per event. Each instance of a AlgTool is owned, either by an
Algorithm, a Service, or by default by the ToolSvc.

Common Services

n There are quite a few Services in Athena to help you:
– Job Option Service. The JobOptionSvc is a catalogue of user-modifiable

properties of Algorithms, AlgTools and Services. As an example, the value of
a property called “CutOff" in the JetMaker can be set either from a job-
option file or from the Athena interactive prompt by:

JetMaker.CutOff = 0.7

Default values are set in the Algorithms, AlgTools or Services itself.
– Logging. The MessageSvc controls the output of messages sent by the

developers using a MsgStream. The developer specifies the source of the
message (its name) and the message verbosity level. The MessageSvc can
be configured to filter out messages coming from certain sources or having a
high verbosity level.

– Performance Monitoring. The AuditorSvc and the ChronoStatSvc manage
and report the results of a number of Auditor objects, providing statistics on
the CPU and memory usage (including potential memory leaks) of Algorithms
and Services.

And of course, StoreGate

n StoreGate is the Athena implementation of the blackboard.
n StoreGate allows a module (such as an algorithm, service or tool) to use

a data object (like for example Jet, Track or Cell) created by an
upstream module or read from disk transparently.

– A proxy defines and hides the cache-fault mechanism: upon request, a
missing data object instance can be transparently created and added to the
transient data store, retrieving it from persistent storage on demand.

• On second thought I am sure you don’t want to know this.

n StoreGate allows object identification via data type and key string.
– In ATLAS data objects like Jet, Track or Cell are stored in container (think

STL vector, or fancy array) called JetCollection or TrackCollection .

n StoreGate supports base-class and derived-class retrieval, key
aliases, and inter-object references.

• Just say “Wow!”

StoreGate storing DataObjects: record()

n Object (example):
MissingET* met = new MissingET();
met->setEtSum(arg);
…
StatusCode status = m_storeGate->record(met, key

/*, bool allowMods = true */);
// check status…

n Container (example):
MyJet* jet1 = new Jet(); // create new Jet objects
MyJet* jet2 = new Jet();
jet1->set4Mom(arg); // setting the attributes of the Jets
jet2->set4Mom(arg);
…
JetCollection* jetColl = new JetCollection();
jetColl->push_back(jet1); // pushing Jets into a container
jetColl->push_back(jet2);
…
StatusCode status = m_storeGate->record(jetColl, key, false); // locked
// check status…

StoreGate storing DataObjects: retrieve()

n Object (example):
// Most objects are recorded as const
/*const*/ MissingET* met;
StatusCode status = m_storeGate->retrieve(met, key);
// check status…
met->setEtSum(arg); // works only if not const
val = met->getEx(); // should always be OK
…

n Container (example):
const TrackCollection* trackColl;
StatusCode status = m_storeGate->retrieve(trackColl, key);
// check status…
for (it = trackColl->begin(), itEnd = trackColl->end();

it != itEnd; it++) {
// do something with (*it), which is a Track
…

}

StoreGate: SymLinks and Aliases

n StoreGate supports base-class and derived-class retrieval via symLinks.
– e.g.: CaloCell is base class to TileCell:
status = m_storeGate->symLink(tCell, cCell);
status = m_storeGate->symLink(ClassID_traits<TileCell>::ID(), key,

ClassID_traits<CaloCell>::ID());

– Creates symlink from TileCell to its base class and allows:
const CaloCell* bCell = new CaloCell(); // works for LAr and Tile
StatusCode status = m_storeGate->retrieve(bCell, key);
// check status…
cellE = bCell->energy();

n StoreGate supports key aliases:
status = m_storeGate->setAlias(tCell, "PetersFavorite");

Skip

Persistency: From StoreGate to Eternity… (and back)

n The only thing more exciting than finding the Higgs is writing
it to disk!

– Ok maybe not. Anyway, it still needs to be done.

n Items in StoreGate can be written to POOL/ROOT file using the
Athena/Pool I/O infrastructure (my day job).

n Existing types (like for example Jet, Track or Cell) can be written to
disk by adding
OutputStream.ItemList += ["JetCollection#PetersFavorite"].

to the jobOptions file.

n New types need converter and persistent state representation
(somewhat harder, did I mention my email?).

n Check: Database/AthenaPOOL/AthenaPoolExample

Athena Algorithms (1): Interface

n If you want to do a more complex analysis, you will want to use Athena
and need to provide an algorithm.

n Algorithms perform a well-defined but configurable operation on some
input data and may produce output data.

n Common interface provided by Gaudi: IAlgorithm
n Implemented in Gaudi/Athena as Algorithm, the common base class

for Algorithms.
n Can use Services (e.g., StoreGateSvc) and AlgTools via ‘Handles’.

n Next slide example: JetMaker ->

Athena Algorithms (2): Implementation header (in src)

#include "GaudiKernel/Algorithm.h"
#include "GaudiKernel/ServiceHandle.h"

class StoreGateSvc; // Forward declaration

class JetMaker : public Algorithm {

public: /// Gaudi boilerplate
/// Constructor with parameters:
JetMaker(const std::string& name, ISvcLocator* pSvcLocator);
/// Destructor:
virtual ~JetMaker();
virtual StatusCode initialize();
virtual StatusCode finalize();
virtual StatusCode execute();

…
private: /// Handle to use services e.g., StoreGate

ServiceHandle<StoreGateSvc> m_storeGate;
/// cutOff (e.g.) property, configurable by jobOptions
DoubleProperty m_cutOff;

};

Athena Algorithms (3): Implementation source

#include "JetMaker.h"

JetMaker::JetMaker(const std::string& name, ISvcLocator* pSvcLocator) :
Algorithm(name, pSvcLocator), m_storeGate("StoreGateSvc", name) {
// Property declaration (label, variable, description)
declareProperty("CutOff", m_cutOff, "KT Jet cut off parameter");}

JetMaker::~JetMaker() {}
StatusCode JetMaker::initialize() {

// Get handle for StoreGateSvc and cache it:
StatusCode status = m_storeGate.retrieve();
// check status
if (!status.isSuccess()) {

// get message service
MsgStream log(msgSvc(), name());
// log error message
log << MSG::ERROR << "Unable to retrieve StoreGateSvc" << endreq;
return(StatusCode::FAILURE);

}
…

return(status);
}

Athena Algorithms (4): Implementation source

StatusCode JetMaker::finalize() {
StatusCode status = m_storeGate.release();
// check status…

…
return(status);

}

StatusCode JetMaker::execute() {
// Do the real work once for each event
const TrackCollection* trackColl;
StatusCode status = m_storeGate->retrieve(trackColl, key);
// Let’s use those tracks to make our very own jets
…
JetCollection* jetColl = new JetCollection();
// pushing Jets into a container
StatusCode status = m_storeGate->record(jetColl, "PetersFavorite");
// check status…

…
return(status);

}

Athena AlgTools (1): Interface

n AlgTools operate on input data and can generate output data, it can be
executed multiple times per event.

n Can be called by an Algorithm using an interface I<AlgToolName>

n There can be multiple implementations of the same interface.
– E.g.: an IJetMakerTool could have two concrete implementation as

KTJetMakerTool and ConeJetMakerTool.
– Using the interface will allow the Algorithm to be configured to use either KT or

Cone.

16Peter van Gemmeren Introduction to Athena and StoreGate
ANL ASC Analysis Workshop, 14th July 2008

Athena AlgTools (2): Implementation header (in src)

#include "GaudiKernel/AlgTool.h"

#include "<dir>/IJetHelper.h"

class StoreGateSvc;

class MyJetHelper : virtual public IJetHelper, public AlgTool {

public: /// Gaudi boilerplate
/// Constructor with parameters:
MyJetHelper(const std::string& type, const std::string& name,

const IInterface* parent);

virtual ~MyJetHelper();
StatusCode initialize(); // called once, at start of job
StatusCode finalize(); // called once, at end of job

public: // AlgTool functionality to be implemented by all IJetHelper
virtual double helpWork(double arg) const;

…
private: /// Handle to use services e.g., StoreGate

ServiceHandle<StoreGateSvc> m_storeGate;
…

};

17Peter van Gemmeren Introduction to Athena and StoreGate
ANL ASC Analysis Workshop, 14th July 2008

Athena AlgTools (3): Implementation source

#include "MyJetHelper.h"

#include "GaudiKernel/IToolSvc.h"

MyJetHelper::MyJetHelper(const std::string& type, const std::string& name,
const IInterface* parent) : AlgTool(type, name, parent),
m_storeGate("StoreGateSvc", name) {
// Property declaration
// Declare IJetHelper interface
declareInterface<IJetHelper>(this);

}

MyJetHelper::~MyJetHelper() {}

StatusCode MyJetHelper::initialize() {
StatusCode status = ::AlgTool::initialize();

// check status…
// Get handle for StoreGateSvc and cache it:
status = m_storeGate.retrieve();

// check status…
…

return(status);

}

18Peter van Gemmeren Introduction to Athena and StoreGate
ANL ASC Analysis Workshop, 14th July 2008

Athena Algorithms (4): Implementation source

StatusCode MyJetHelper::finalize() {

StatusCode status = m_storeGate.release();

// check status…
…

return(::AlgTool::finalize());

}
double MyJetHelper::helpWork(double arg) {

// Do the real work each time called
// Use m_storeGate to retrieve/record data objects to EventStore

…

return(status);
}

n Using AlgTools in Algorithms is similar to using Services:

.h: ToolHandle<IJetHelper> m_helper; // Hold ToolHandle

.cxx, c’tor: m_helper("MyJetHelper"), // Init to default AlgTool
// Allow jobOption to configure any IJetHelper
declareProperty("HelperTool", m_helper);

DPD Making

OK, shifting gears
Skimming, Thinning,

Slimming… :
Skimming is writing a sub-

set of events
n e.g., all events containing

1 or 2 electrons within a
certain eta and with a
minimum pT.

n Done using TAGs.

AOD

DPD=thinAOD+UD

User-Data

ARA Athena ‘Interactive’
(ROOT)

Perform actual
analysis

Final Results

Skimming: event selection
Thinning: remove objects
Slimming: remove properties

DPD is the AOD + User-Variables

AOD

DPD=thinAOD+UD

User-Data

ARA Athena ‘Interactive’
(ROOT)

Perform actual
analysis

Final Results

Skimming: event selection
Thinning: remove objects
Slimming: remove properties

DPD is the AOD + User-Variables

Thinning1 (aka “poor mans’ Thinning”) is removing collections
n e.g., keep only electron container but not muons.
n Here one would modify the ItemList (in the jobOptions).
Thinning is removing objects from a container
n e.g., keep only good electron objects.
Slimming is removing quantities or sub-objects from an object
n e.g., keep only eta and pT.

All kinds of DNPD…

n Primary D1PD: POOL-based DPD produced by the GRID production
system. There are expected to be O(10) primary DPDs, so the contents
will not be very specific to an analysis. It is expected to be skimmed,
slimmed, and thinned compared to the AOD.

– An Example Job Options file AODtoDPD.py (see CVS)
– TauDPDMaker
– BPhysicsDPDMaker

n Secondary D2PD: POOL-based DPD with more analysis-specific
information. Typically, this is produced from Primary DPD and may be
created using an Athena tool like EventView.

– SimpleThinningExample
– HighPtViewDPDThinningTutorial

n Tertiary D3PD: Does not need to be POOL-based, it includes flat
ntuples.

AthenaROOTAccess

n Allows to read an AOD in ROOT like you would read a normal ntuple
(without using Athena).

– However it uses the transient classes and converters of the ATLAS
software so a portion of the offline is needed.

– A ~1GB distribution including Athena libraries .
– Not all Athena classes can be called from ROOT: jobOptions, configurables,

databases, geometry etc. are not reachable from ROOT - so athena code
access has to be limited to all those classes not requiring configuration,
Detector Description etc.

– The user can also write Athena tools, applications that read the AOD which
appears now as a ROOT tree.

n One can use identical code/tools to run on ESDs, AODs, DPDs.
n One can use any Analysis Framework to access the DPDs (ROOT,

Athena batch, Athena interactive)
n The names of the variables in the AOD ROOT tree are the same as in

the AOD.

AthenaROOTAccess Examples

n CINT macros
– Easy development (change code and run),
– Run time is slow ~x10 C++ compiled code

n C++ compiled code
– Slower development (change code, recompile, cannot reload libs)
– Fastest runtime
– Integrates easily back into Athena

n Python scripts
– Easy development (change code, reload and run)

• But no help from the compiler to find bugs either!
– Simple example shows runtime ~x3 C++ compiled code

• May be able to compile Python
– Integration of developed code into Athena?

n Examples on TWiKi and in Release:
– https://twiki.cern.ch/twiki/bin/view/AtlasProtected/AthenaROOTAccess
– PhysicsAnalysis/AthenaROOTAccessExamples

PhysicsAnalysis/AthenaROOTAccessExamples

n Need python script to open file and setup transient tree:
lxplus:~> get_files AthenaROOTAccess/test.py

n Compiled C++ Example:
lxplus:~> root
root [0] TPython::Exec("execfile('test.py')");
root [1] CollectionTree_trans = (TTree*)gROOT->Get

("CollectionTree_trans");
root [2] ClusterExample ce; // Example class in AthenaROOTAccessExamples
root [3] ce.plot(CollectionTree_trans);
root [4] TruthInfo ti;
root [5] ti.truth_info(CollectionTree_trans);

– The test.py script takes about ~20 seconds to load necessary dictionaries

– One can recompile and then restart from the beginning

PhysicsAnalysis/AthenaROOTAccessExamples

n CINT Example:
lxplus:~> root
root [0] TPython::Exec("execfile('test.py')");
root [1] CollectionTree_trans = (TTree*)gROOT->Get

("CollectionTree_trans");
root [2] gROOT->LoadMacro

("AthenaROOTAccessExamples/macros/cluster_example.C");
root [3] plot(CollectionTree_trans);

– One can now edit cluster_example.C and re-run LoadMacro

n Python Example:
lxplus:~> python -i test.py
>>> import AthenaROOTAccessExamples.cluster_example
>>> AthenaROOTAccessExamples.cluster_example.plot(tt)

– One can now edit cluster_example.py and re-run:
>>> reload(AthenaROOTAccessExamples.cluster_example)
>>> AthenaROOTAccessExamples.cluster_example.plot(tt)

Conclusion

n Choose the right tool for the job (Can’t fix TileCal power supplies with a
chain saw or install an endcap using a microscope).

n Athena is very well suited complex analyses:
– Provides common Services and Tools:

• StoreGate helps you exchanging data.
• Persistency allows you to easily store complex data objects (and read

them back even after a possible change of the class).
• MessageSvc, Auditors, ChronoStatSvc, etc. help you to design efficient,

robust and well performing Algorithm to do your analysis task.
– Establishes Event Data Model:

• Many classes for physics objects are defined for you.
– Including Dictionary, Converter and persistent state representation.

– Lots of functionality to help physicists develop their analysis
• Can be overwhelming, so start out with the basics only.

n AthenaROOTAccess implements parts of athena’s analysis support
– More light weight framework
– Fast turn around

