

ELENA LLRF status update

LLRF: M. E. Angoletta, M. Jaussi, J. Molendijk, J. Sanchez Quesada

Studies: S. Hancock

HLRF: A. Jones, S. Energico, M. Paoluzzi

Ring + extraction lines LPUs part of RF workpackage but not included here

- 1. Improvements wrt last status report (16/03/'17)
- 2. Operation with source
- 3. Operation with phars
- 4. Next tasks
- 5. Conclusions

1. Improvements wrt last status report (16/03/2017)

- Deployed compensation table firmware to cover whole cycle
- Improved firmware for in-cycle Oasis data retrieval
- Installed cables, fanout modules etc for injection/ extraction sychro
- Installed CTRV/timings for Highland module operation with ELENA
- Improved DSP software to select TPU Sigma / LPU as phase loop input.

2. Operation with the source

- Operational requirement: no synchro source—ELENA. No bunch-tobucket transfer, but capture of debunched beam
- ❖ Very poor beam lifetime (~ 6 to ~12 turns on 22/08), shorter than beam debunching time → cannot work with the RF!

Picture with RF OFF from 31/03, identical to what we had on 22/08.

2. Operation with the source (cont'd)

 Tests done with unsynchronised bunch-to-bucket transfer (source to LLRF)

Higher priority problems to be solved before needing extraction synchro loop

3. Operation with pbars

- Operational requirement: AD-ELENA bunch-to-bucket transfer.
- ❖ AD-ELENA synchronisation loop not available yet → need to capture the debunched pbar beam. Good beam lifetime so this is feasible.
- Estimated intensity (on 23/08): ~ 2E7 (vs. 2.6E7 extracted from AD)

3. Operation with pbars: frequency offset

Aims of frequency offset function:

- a) to vary the RF frequency to compensate for repeatable variations of Bfield or beam energy.
- b) to steer radially the beam when required (you could do it also with the radial loop).

3. Operation with pbars: frequency offset

How to find the good frequency offset: do not bunch the beam, look at the tomoscope and vary the frequency offset. The desired frequency offset is achieved when the beam debunches in a straight line as seen on the Tomoscope. Ideally the frequency offset should be of 0 Hz.

Correct frequency offset

Wrong frequency offset

3. Operation with pbars: Btrain (cont'd)

- Problem with Btrain calibration and shot-to-shot stability.
- Calibration: done on 18/08, see
 http://elogbook.cern.ch/eLogbook/event_viewer.jsp?eventId=2426448
- Stability: two sets of values spaced by ~ 2kHz. WRONG!!!!
- ❖ Frequency offset of −1.4 kHz is adapted to higher Btrain dataset only.

3. Operation with phars: Btrain (cont'd)

Beam captured with higher Btrain dataset & frequency offset of -1.4 kHz

Beam captured with lower
Btrain dataset and frequency
offset of -1.4 kHz

3. Operation with pbars: Btrain (cont'd)

LLRF "snaphost" diagnostics helps to acquire single-point values. See http://elogbook.cern.ch/eLogbook/event_viewer.jsp?eventId=2430808

Data acquired from LLRF Oasis signals to see longer timespan.

3. Operation with pbars: results (cont'd)

- Beam captured (ctime 2750) and decelerated, see
 http://elogbook.cern.ch/eLogbook/event_viewer.jsp?eventId=2430949
- No loops, constant frequency offset, beam kept for at least 1.8 s.

- Solve problem with Btrain oscillation (pbar, also ions?)
- Improve ions lifetime
- Re-calibrate servoloop (changes in LLRF/HLRF since last calibration).
 Action: Mic, John, Anthony.
- Understand problem with phase loop inputs. Action: Mic, John
- Once source beam is stable, problems solved and radial/phase loops commissioned with source beam, implement and commission extraction synchronisation loop. Action: Mic, MEA
- Integrate LLRF Fesa classes with RF Cycle editor . Action: Mic, MEA, Lajos. Discussions already re-started.

- Lots of progress and problem understanding recently, even with scarce manpower spread over several projects.
- Beam captured with pbars and decelerated.
- Identified several points that have to be addressed.
 - In the Btrain: remove dual set of values
 - In the machine: guarantee a longer beam lifetime
 - In the LLRF: do cavity servolop calibration, look at I/Q data acquisition problem.

Important: do not skip steps! Extraction loop is needed only when machine is more reliable and beam has (much) longer lifetime!!!!