

CONS and HL-LHC day 2017 Analysis of needs for LHC Collimation

Stefano Redaelli on behalf of the collimation project team

26/09/2017

Table of contents

- Introduction: LHC collimation system
- Recap of scope of HL and CONS for collimation
- Approved consolidation items
- "Draft-3" items
- Personnel

Collimation layout — LHC Run II

Total of 118 collimators (108 movable). Two jaws (4 motors) per collimator! S. Redaelli for WP5

3

HL-LHC upgrades in a nutshell

LS2 plans

- 2 DS collimators around IR7 with 11T dipoles
- 2 DS collimators around IR2 without 11T dipoles
- 8 low-impedance secondary collimators in IR7

LS3 plans

- Completion of IR7 low-impedance upgrade (14 TCSPM)
- IR collimation: new tertiary collimators
- IR collimation: physics debris

Not in the baseline yet

- Crystal collimation for ions (LS2?)
- Hollow electron lenses (LS3)

Collimation project devices

Code names

Scope of collimation consolidation

- Keep operational with high efficiency present collimators <u>that are not</u> upgraded/replaced in the context of the HL-LHC upgrade.
 - An important fraction of the present system is required to remain operational for the whole HL-LHC.
- Consolidate the performance of the whole collimation system until Run III
 - Ensure efficient operations. This is a MUST!
 - Guarantee/improve the performance within the scope of the pre-HL operations (β^* reach, alignment, ...).
 - Ensure that the collimation system does not limit machine configurations until Run III.

Collimators not upgraded as part of HL-LHC

- Primary collimators and shower absorbers of IR7
 Equipment codes: TCP/TCLA; 6+10 devices.
- Tertiary collimators IR2/8
 - Equipment code: TCTP; 8 devices.
- Whole momentum cleaning insertion IR3
 - Equipment codes: TCP/TCSG/TCLA; 18 devices.
- Secondary collimators with BPM in IR6 — Equipment code: TCSP; 2 devices.
- Controls upgrade for all system
 Present controls hardware dates from 2008.

Remark: collimators built in ~2008. Continued effort to monitor hardware performance, obsolescence, etc. <u>But</u>: we do not have now all answers now on detailed assessment of <u>collimator lifetime</u> in the harsh tunnel environment.

Additional requests to CONS

New passive absorbers in IR7 — Approved

- Improve shielding of MQWs are removal of 1 magnet unit.
- Timeline: LS2
- Consolidation of collimation controls for highefficient operation — Approved
- Robust tertiary collimator in IR1/5 for Run III's β* performance — draft 3
 - Equipment code: TCTP; 4 devices (H plane IR1/5).
 Timeline: 2020-2021.

Approved requests

ltem n.	Description	Approved Budget [kCHF]	Funding (CONS/HL- CONS) %	Budget to be allocated in the years
1	Primary collimators (TCP) — phase 1	1050	80/20	2017-2021
2	Controls upgrade — phase 1	300	100/0	2017-2019
3	Passive absorbers IR7	100	100/0	2017-2019

- TCP upgrade:
 - New TCPPM: BPM design, low-impedance material (MoGr)
 - Total cost estimated to ~1.75MCHF (4+1 "naked" collimator)
 - Co-funded by Collimation project ~700kCHF
 - HL contributing to low-impedance upgrade (material): <20%
 - Assume that we can re-use existing cables and infrastructure.
- Controls upgrade:
 - "Phase I": prototyping and testing of new controls hardware
- Passive absorbers for Q5 in IR7:
 - Shield MQW series after removal on one magnet.

"Draft 3" requests

tem n.	Description	Approved Budget [kCHF]	Funding (CONS/HL- CONS) %	Budget to be allocated in the years
1	Robust tertiary collimators for Run III	2000	100/0	2018-2022
2	Primary collimators (TCP) — phase 2	1750	100/0	2021-2025
3	Controls upgrade — phase 2	2500	100/0	2021-2025
4	Secondary collimators IR3 (IR7)	4600	100/0	2021-2025
5	Tertiary collimators IR2/8	2000	100/0	LS4

• Robust TCTs:

— Potentially very important for Run III optics performance (not for HL)

- Trying to plan for production lines as "option": final decision in 2018-19

Controls upgrade:

- "Phase 2": complete replacement of hardware

- Costs based on Run I system, to be re-assesses after "Phase I".
- Items 4-5 require system monitoring during Run II/III:
 - Depending of lifetime of collimators: LS3 or LS4 (or even never).
 - Similar new request to be put in for TCLA consolidation [new]
 - Detailed budgets to be revised

To be done: revise spare policy in light of collimators taken out of tunnel

11

Manpower

- Given "construction" budgets include manpower estimated for the production follow-up — FSU support + possible PJAS/fellow included
- <u>Additional</u> requests to CONS [NEW]
 - Two fellows/PJAS + student in ABP: 2020-2023
 - Fellow in the FLUKA team: one starting in ~2018
 - PJAS or PhD students on collimation controls, with University of Malta (~1 PJAS/year 2020-2023)

Remarks:

- Need to cover both proton + ion operations
- Often, shared resources with other projects/activities
 (join forces with HL, for activities that require < 1 person)

