

The University of Edinburgh School of Physics & Astronomy

SHERPA

where we are & what's next

Enrico Bothmann

27th August 2018

QCD@LHC 2018

WHAT WE PUT IN

SHERPA: multi-purpose MC event generator [Gleisberg et al., JHEP 0902 (2009) 007]

Non-perturbative QCD (≥1fm) **Perturbative QCD** (≤1fm) hard interaction \rightarrow (N)NLO cluster fragmentation radiative corrections: hadron decays dipole $PS \rightarrow (N)LL$ *multiple parton interactions* systematic combination *matching/merging* **Perturbative BSM** via UFO \rightarrow LO **Perturbative EW** hard interaction \rightarrow NLO radiative corrections: \rightarrow fully differential $YFS \rightarrow (N)LL$ particle-level events

WHAT WE GET OUT

► Sherpa pp→ $Z\gamma$ → $vv\gamma$, NLO ≤ 1j, LO ≤ 3j (multi-jet merging)

► compares well to data & NNLO

also see recent Sherpa pheno study on $Z\gamma \rightarrow vv\gamma$ production [Krause, Siegert, Eur.Phys.J. C78 (2018) no.2, 161]

OUTLINE

- no non-perturbative (soft) stuff today! currently undergoing a rewrite process to prepare for improvements ...
- ► perturbative EW
 - NLO (exact/approx) developments
- ► perturbative QCD
 - loop-induced processes
 - MC@NLO single-top production
 - ► NLO DGLAP in the parton shower
 - systematic variations
- ► (BSM)
- concluding remarks

full NLO & approximations

EW NLO

- ► motivation: previous talk $\alpha_s^2 \approx \alpha$
- Sherpa: tree-level ME, IR subtraction, process management, PS integration
- ► one-loop MEs from external libraries
- ► SHERPA+GOSAM:
 - ➤ үү+0,1,2 jets [Chiesa et al, JHEP 1710 (2017) 181]
 - γγγ/γγℓν/γγℓℓ
 [Greiner, Schönherr, JHEP 1801 (2018) 079]
- ► SHERPA+RECOLA
 - ► V/ℓv/ℓℓ+j, ℓℓ+2j, ℓℓℓℓ, ttH [Biedermann et al, Eur.Phys.J. C77 (2017) 492]
 - ► ℓℓℓVVV [Schönherr, JHEP 1807 (2018) 076]

- lists by S. Kuttimalai
- ► SHERPA+OPENLOOPS
 - ► W+1,2,3 jets [Kallweit et al, JHEP 04 (2015) 012]
 - Z/γ+j
 [Kallweit et al, Moriond QCD2015 proceeding]
 - *ℓℓ/ℓv/vv/γ+j* [Lindert et al, Eur.Phys.J. C77 (2017)]
 - ► ℓℓVV [Kallweit et al., JHEP 1711 (2017) 120]
 - > $\ell \ell / \ell v + 2j$, ttH [LH 2015 SM WG report]
 - tt+0,1 jets [Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

EW NLO

needed to regularise V and R ME pieces in MCEG based on universal behaviour in divergent limit

lists by S. Kuttimalai

- ► motivation: previous talk $\alpha_s^2 \approx \alpha$
- Sherpa: tree-level ME, IR subtraction, process management, PS integration
- ► one-loop MEs from external libraries
- ► SHERPA+GOSAM:
 - ➤ үү+0,1,2 jets [Chiesa et al, JHEP 1710 (2017) 181]
 - γγγ/γγℓν/γγℓℓ
 [Greiner, Schönherr, JHEP 1801 (2018) 079]
- ► SHERPA+RECOLA
 - ► V/ℓv/ℓℓ+j, ℓℓ+2j, ℓℓℓℓ, ttH [Biedermann et al, Eur.Phys.J. C77 (2017) 492]
 - ► ℓℓℓVVV [Schönherr, JHEP 1807 (2018) 076]

- ► SHERPA+OPENLOOPS
 - ► W+1,2,3 jets [Kallweit et al, JHEP 04 (2015) 012]
 - Z/γ+j
 [Kallweit et al, Moriond QCD2015 proceeding]
 - *ℓℓ/ℓv/vv/γ+j* [Lindert et al, Eur.Phys.J. C77 (2017)]
 - ► ℓℓVV [Kallweit et al., JHEP 1711 (2017) 120]
 - > $\ell \ell / \ell v + 2j$, ttH [LH 2015 SM WG report]
 - tt+0,1 jets [Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

EW NLO

- complete automation in SHERPA/AMEGIC: adapt CS subtraction for EW [Schönherr, Eur.Phys.J. C78 (2018) no.2, 119]
 - massive/massless emitters/spectators
 - simultaneous subtraction of EW and QCD singularities

$$\mathcal{O}(\alpha_s^n \alpha^{N-n}), \mathcal{O}(\alpha_s^{n-1} n \alpha^{N-n+1}) \stackrel{EW, QCD}{\rightarrow} \mathcal{O}(\alpha_s^n \alpha^{N-n+1})$$

- ► on-the-fly variations of μ_F and μ_R for all subtraction terms
- IR-safe dressed-particle/isolation/jet selectors
- ► interface to OPENLOOPS, GOSAM and RECOLA fully functional
- other public EW dipole subtraction impl [Gehrmann, Greiner, JHEP 12 (2010), 050]
- ► next steps: COMIX, adapt matching and merging

EW NLO: TOP PAIR PRODUCTION & APPROX MERGING

[Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

- first prediction for ttj incl Born and EW corrections
- ► large top $p_T \rightarrow$ new physics searches with tt as BG
- typical Sudakov suppression for large pT
- sub-leading Born small
- universal EW corrections for tt and ttj
- ► NLO EW ~ NLO EW_{virt}

$$d\sigma^{NLO \, EW_{virt}} = \left[B_{QCD} + V_{EW} + \int R^{approx} d\Phi_1 \right] d\Phi_B$$

- ► motivates use of MEPS@NLO QCD+EW_{virt}
- stand-in for proper QCD+EW merging

EW NLO: TOP PAIR PRODUCTION & APPROX MERGING

[Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

$$d\sigma^{NLO EW_{virt}} = \left[B_{QCD} + V_{EW} + \int R^{approx} d\Phi_1 + B_{sub} \right] d\Phi_B$$

- MEPS@NLO QCD+EW_{virt} 0,1 @ NLO, 2,3,4 @ LO
- recover real QED
 bremsstrahlung: YFS
- boosted top quark, ID by substructure technique from fat jet

EW NLO: SUDAKOV LOG APPROX

[EB, Davide Napoletano, WIP]

LO+EW, all Sudakov one-loop log corrections (DL, SL) [Denner, Pozzorini, Eur.Phys.J.C18:461-480,2001]

 $d\sigma^{NLO EW_{Sudakov}} = B_{QCD} \Delta_{EW} d\Phi_B$

- Expected to be faster than full NLO EW or MEPS@NLO QCD+EW_{virt}
- ➤ test-driven development towards exact reproduction of log coeffs in for example processes ee → tt/bb/µµ/VV
- implementation mostly finished
- ► finalise & test some FO calculations for relevant observables

EW NLO: SUDAKOV LOG APPROX

► quick look: ee \rightarrow jj

Scalar sum of jet transverse momenta (HT)

[EB, Davide Napoletano, WIP]

QCD

loop-induced, NLO DGLAP & more

LOOP-INDUCED PROCESSES AT MC@NLO

slide adapted from S. Kuttimalai

- ► Born & real-emission by automated one-loop tools
- SHERPA: IR subtraction, process management, PS integration, matching (MC@NLO), fully automated [Jones, Kuttimalai: JHEP 1802 (2018)]
- Available two-loop virtual amplitudes
 - ➤ gg → үү/HH/Hj e.g. ggHH difficult due to massive propagators & externals

►
$$gg \rightarrow VV \rightarrow \ell \ell \ell \ell$$

LOOP-INDUCED PROCESSES AT MC@NLO

- ► $gg \rightarrow \gamma\gamma/HH$ (full top-quark mass dependence) [Jones, Kuttimalai, JHEP 1802 (2018) 176]
- large K factor enhances matching uncertainties

uncertainties on NLO+NLL in left plot: 3% near $p_{\perp}^{HH} = 20$ GeV, 10% near 100 GeV

MC@NLO SINGLE-TOP PRODUCTION

[Bothmann, Krauss, Schönherr, Eur.Phys.J. C78 (2018) no.3, 220]

- earlier calculations for MC@NLO/POWHEG
 [Frixione et al, hep-ph/0512250, Laenen et al, 0805.3067, Alioli et al, 0907.4076, Re, 1009.2450, Campbell et al, 0903.0005, Frederix et al, 1207.5391]
- ► $\mu^2 = t$, *s* for *t*-/*s*-channel (clustering to 2→2)
- ► tW-channel: top $\mu^2 = m_T^2$, DR for tW definition (small gauge violation)
- comparison to ATLAS/CMS for all three channels

MC@NLO SINGLE-TOP PRODUCTION

[Bothmann, Krauss, Schönherr, Eur.Phys.J. C78 (2018) no.3, 220]

earlier calculations for MC@NLO/POWHEG
 [Frixione et al, hep-ph/0512250, Laenen et al, 0805.3067, Alioli et al, 0907.4076, Re, 1009.2450, Campbell et al, 0903.0005, Frederix et al, 1207.5391]

- ► $\mu^2 = t$, *s* for *t*-/*s*-channel (clustering to 2→2)
- ► tW-channel: top $\mu^2 = m_T^2$, DR for tW definition (small gauge violation)
- comparison to ATLAS/CMS for all three channels

MC@NLO SINGLE-TOP PRODUCTION

[Bothmann, Krauss, Schönherr, Eur.Phys.J. C78 (2018) no.3, 220]

- no strong b-PDF constraint with current precision
- ► differential comparison for *t*-channel to ATLAS [Eur. Phys. J. C77 (2017)]

NLO DGLAP IN THE PARTON SHOWER

► goal: fully differential PS evolution with NLO kernels

- last year: inclusion of NLO collinear splitting functions (NLO DGLAP) & flavour-changing 1-3 collinear splittings [Höche, Prestel, Phys.Rev. D96 (2017) no.7, 074017] [Höche, Krauss, Prestel, JHEP 1710 (2017) 093]
- this year: higher-order soft terms [Dulat, Höche, Prestel, 1805.03757]
- implemented in SHERPA and PYTHIA via two independent cross-checked DIRE shower implementations
- higher-order soft terms, fully differential in one-emission PS
 - check: sum of integrated terms = two-loop cusp anomalous dimension which is included in CMW method already for "LO" showers

NLO DGLAP IN THE PARTON SHOWER

[Dulat, Höche, Prestel, 1805.03757]

fair agreement between fully diff NLO and approximate treatment using CMW in "LO" shower

SYSTEMATIC VARIATIONS: ON-THE-FLY REWEIGHTING

[Bothmann, Schönherr, Schumann, Eur.Phys.J. C76 (2016) no.11, 590]

- > 110 variations of μ , α_s and PDFs in one go *include all pQCD dependences: ME, PS and matching/merging*
- ► encoded as alternate event weights → save CPU time

SYSTEMATIC VARIATIONS: ON-THE-FLY REWEIGHTING

- continuous improvements
 - ► EW NLO subtraction terms
 - ► subleading dependence in \bar{B}/B term for MENLOPS
 - more universal cut-off in shower (p_T instead of N_{em})
 - ► NTUPLE variations
 - merging-cut variations
- on-the-fly reweighting
 ubiquitous & default way to
 generate uncertainty bands!

SYSTEMATIC VARIATIONS: ON-THE-FLY REWEIGHTING

- continuous improvements
 - ► EW NLO subtraction terms
 - ► subleading dependence in \bar{B}/B term for MENLOPS
 - more universal cut-off in shower (p_T instead of N_{em})
 - ► NTUPLE variations
 - merging-cut variations
- on-the-fly reweighting
 ubiquitous & default way to
 generate uncertainty bands!

[EB, Del Debbio, 1808.07802]

- ► how to vary shower in PDF fits (complementing fixed-order interpolation grid technology)
- ► idea: train NN to predict parton shower dependence in observable bins

► first study for α_S variations (scale and $\alpha_S(m_Z)$) [EB, Del Debbio, 1808.07802]

[EB, Del Debbio, 1808.07802]

- ► how to vary shower in PDF fits (complementing fixed-order interpolation grid technology)
- ► idea: train NN to predict parton shower dependence in observable bins
- ► first study for α_S variations (scale and $\alpha_S(m_Z)$) [EB, Del Debbio, 1808.07802]

[EB, Del Debbio, 1808.07802]

- ► how to vary shower in PDF fits (complementing fixed-order interpolation grid technology)
- ► idea: train NN to predict parton shower dependence in observable bins
- ► first study for α_S variations (scale and $\alpha_S(m_Z)$) [EB, Del Debbio, 1808.07802]

[EB, Del Debbio, 1808.07802]

- ► how to vary shower in PDF fits (complementing fixed-order interpolation grid technology)
- ► idea: train NN to predict parton shower dependence in observable bins
- ► first study for α_S variations (scale and $\alpha_S(m_Z)$) [EB, Del Debbio, 1808.07802]

BSM

example: dimension-six effective gluon interactions

BSM slides adapted from S. Kuttimalai

- ➤ BSM input via universal UFO format: L → FEYNRULES → UFO → SHERPA [Alloul et al., CPC 185 (2014)], [Degrande et al., CPC 183 (2012)], [Krauss, Kuttimalai, Plehn, Phys.Rev. D95 (2017)]
- > support particles with spins 0, $\frac{1}{2}$ or 1
- ► arbitrary Lorentz- and colour structures → EFT
- spin-correlated decay chains [Höche et al., Eur.Phys.J. C75 (2015)]

. . .

many processes cross-validated against MADGRAPH5:

Model	number of	max. rel. deviation
	processes tested	$Comix \leftrightarrow MadGraph5$
Chandand Madal	60	$2.2 10^{-10}$
Standard Wodel	60	2.3 · 10 - 0
Higgs Effective Field Theory	13	$4.3 \cdot 10^{-13}$
MSSM	401	$1.0 \cdot 10^{-10}$
Minimal Universal Extra Dimensions	51	$2.8 \cdot 10^{-12}$
Anomalous Quartic Gauge Couplings	16	$5.9 \cdot 10^{-12}$

BSM: DIMENSION-SIX EFFECTIVE GLUON INTERACTIONS

[Krauss, Kuttimalai, Plehn, Phys.Rev. D95 (2017)]

$$\mathcal{O}_G = \frac{c_G}{\Lambda^2} f_{abc} G^{\mu}_{a,\nu} G^{\nu}_{b,\kappa} G^{\kappa}_{c,\mu}$$

- ► from tt production $\rightarrow \Lambda/\sqrt{c_G} > 850 \text{ GeV}$ [Buckley et al., JHEP 04 (2016)]
- ► idea: try multi-jets, $N_{jets} \ge 4$ not considered before

BSM: DIMENSION-SIX EFFECTIVE GLUON INTERACTIONS

[Krauss, Kuttimalai, Plehn, Phys.Rev. D95 (2017)]

$$\mathcal{O}_G = \frac{c_G}{\Lambda^2} f_{abc} G^{\mu}_{a,\nu} G^{\nu}_{b,\kappa} G^{\kappa}_{c,\mu}$$

- ► from tt production $\rightarrow \Lambda/\sqrt{c_G} > 850 \text{ GeV}$ [Buckley et al., JHEP 04 (2016)]
- ► idea: try multi-jets, $N_{jets} \ge 4$ not considered before

BSM: DIMENSION-SIX EFFECTIVE GLUON INTERACTIONS

[Krauss, Kuttimalai, Plehn, Phys.Rev. D95 (2017)]

$$\mathcal{O}_{G} = \frac{c_{G}}{\Lambda^{2}} f_{abc} G^{\mu}_{a,\nu} G^{\nu}_{b,\kappa} G^{\kappa}_{c,\mu}$$

$$\blacktriangleright \text{ from tt production} \rightarrow \Lambda / \sqrt{c_{G}} > 850 \text{ GeV} 5.2 \text{ TeV}$$
[Buckley et al., JHEP 04 (2016)]

► idea: try multi-jets, $N_{jets} \ge 4$ not considered before

CONCLUDING REMARKS ... end of the tour

HTTPS://GITLAB.COM/SHERPA-TEAM/SHERPA

₩ GitLab Projects ~ Groups ~ Activity	Milestones Snippets	Ð ~	Search or jump to	۹	() 12)	n•	[⊻]3	6
sherpa Sherpa Team >	sherpa > Details							
 Project Details 								
Activity		sherpa	90	master v sher	pa / ATOOLS /	Phys / Variati	ions.C	
Security Dashboard	Sherpa is a Monte Carlo event gen lepton, lepton-photon,	erator for the Simulation photon-photon, lepton	on of High-Energy n-hadron and hadr	Fix compilation with g Enrico Bothmann auth	gcc v.4.9 or earlie ored 6 months ag	9 r 10		
Cycle Analytics		Project ID: 5	781712	Variations.С 28.9 кв С 1 #include "ATOOLS/	Phys/Variations	s.H"		6
 Repository Unstar Issues Merge Requests 7 	3 Y Fork 11 SSH - Files (99.4 MB) Commits (9,274)	git@gitlab.com: Branches(49) Tag	sherpa-team/sh	2 3 #include <iterato 4 #include <numeric 5 #include <algorit 6 7 #include "ATOOLS/ 8 #include "ATOOLS/ 9 #include "ATOOLS/ 10 #include "ATOOLS/ 11 #include "ATOOLS/ 13 #include "ATOOLS/ 13 #include "BEAM/Ma 15 #include "BEAM/Ma 16 #if defined USING 17 #include "LHAPDF/ 18 #endif 19 20 using namespace A using namespace S</algorit </numeric </iterato 	<pre>r> >> hm> Org/Library_Loi Org/Run_Paramed Org/Default_Rei Org/Smart_Point Phys/Blob.H" ain/Running_Ali in/Beam_Spectra n/PDF_Base.H"LHAPDF && def LHAPDF.h" TOOLS; HERPA;</pre>	ader.H" ter.H" ader.K" ter.C" phaS.H" a_Handler.H" fined USING	LHAPDF6	
> open-source	🔊 🗸 Search or filter results			23 namespace ATOOLS 24 struct ScaleFac	{ tor_Pair: publi	ic std∷pair⊲	double, doub	ble> {
> open source	CHECK* options for OLPs in master #90 · opened 16 minutes ago by And	rii Verbytskyi			updated 1	ø 6 minutes a	₽ 0 ago	
reporting	Sherpa crashes with Error code (2) #89 · opened 1 day ago by Daniel Sto	larski			updated	s 22 hours a	₽ 2 ago	
contributing	DeltaRNLO not working properly #88 · opened 1 week ago by Heberth	Torres			update	ار ed 1 week a	₽ 0 ago	
0	Sherpa 2.2.2 - Cannot reproduce file #86 · opened 2 weeks ago by Ben Ro	tered parton-level quantities sser	using status 3 particles		update	ed 1 week a	Q 4 ago	

CONCLUSIONS

- ► automated exact EW NLO, approximation for merging runs
- support for loop-induced processes
- differential higher-order soft terms in shower
- ► MC@NLO single-top validated (2.2.5)
- ► on-the-fly variations improved (2.2.5)
- ► more SHERPA-related news in other talks!
 - S. Liebschner: resonance-aware subtraction (tomorrow afternoon) [Höche, Liebschner, Siegert 1807.04348]
 - J. Krause: matching/merging with massive b quarks in tt+jets/ttbb (Thu afternoon)
 - D. Reichelt: shower vs. resummation
 (Thu afternoon) [Höche, Reichelt, Siegert, JHEP 1801 (2018) 118]
 - ► plenaries M. Schönherr (EW, Wed), S. Kuttimalai (MCEG, Fri)

BACK-UP BACK-UP

NNLO+PS IN SHERPA

[Höche et al. Phys. Rev. D 91 (2015) 074015]

COMPUTATIONAL COST (GENERATORS)

COMPUTATIONAL COST (REWEIGHTING)

NNPS: HOW IT WORKS

NNPS: VALIDATION

► to-be-validated variation excluded from training

