

QCD@LHC 2018

Determining the strong coupling constant α_s – Results from ATLAS & CMS

Klaus Rabbertz, KIT (on behalf of ATLAS & CMS)

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

Outline

2012: No LHC results yet PDG2012 **Motivation** 0.5 **Jet-like measurements** April 2012 $\alpha_{s}(\mathbf{Q})$ • τ decays (N³LO) **Cross sections** ■ Lattice QCD (NNLO) △ DIS jets (NLO) **Ratios** 0.4 -> □ Heavy Quarkonia (NLO) • e⁺e⁻ jets & shapes (res. NNLO) **Event shapes** • Z pole fit (N³LO) top-antitop production $\boxtimes p\overline{p} \rightarrow jets$ (NLO) 0.3 V + jets **Issues & perspectives** 0.2 Summary & Outlook 0.1 $\alpha_{\rm s}({\rm M_Z}) = 0.1184 \pm 0.0007$ $\equiv OCD$ For α_s (M₂) from global PDF fits 100 10 → Next talk by Robert Thorne Q [GeV] Klaus Rabbertz Dresden, Germany, 27.08.2018 QCD@LHC 2018 2

Jets at the LHC

Abundant production of jets:

 Jets at hadron colliders provide the highest reach ever to determine the strong coupling constant at high scales Q
Also learn about hard QCD, the proton structure, non-perturbative effects,

and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

- Extract α_s(M_z), the least precisely known fundamental constant!

W, Z, top at the LHC

High-precision lepton measurements:

-> W, Z, top measurements provide high-precision cross sections

Also learn about electroweak parameters, the top mass, and the proton structure

- Determination of α_s(M_z) in single-parameter fit
- Test consistency of running of α_s(Q)
- Multi-parameter fit of α_s(M_z) & PDFs

All inclusive

Large transverse momenta

Relevant ATLAS & CMS measurements:

ATLAS: EPJC 73 (2013) 2509; JHEP 02 (2015) 153; JHEP 09 (2017) 020; JHEP 05 (2018) 195. <u>CMS:</u> PRD 87 (2013) 112002; PRD 90 (2014) 072006; EPJC 75 (2015) 288; EPJC 76 (2016) 265; EPJC 76 (2016) 451; JHEP 03 (2017) 156.

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

7

Inclusive jets: cross section

Overall agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_T and for rapidities |y| up to 3 ~ 5 at \sqrt{s} = 2.76, 7, 8, and 13 TeV.

Here: anti-k, R=0.4, 13 TeV

Data vs. NLO pQCD x non-pert. x EW corrections

Inclusive jets: theory corrections

anti-kt, R=0.4, 13 TeV, |y| < 0.5

Nonperturbative correction factors:

- estimated from tuned MC event generators
- uncertainty of 5 15% at p_{τ} = 100 GeV
- strongly dependent on jet size R
- less important at high $\mathbf{p}_{_{\mathrm{T}}}$

Electroweak correction factors:

- calculated perturbatively
- uncertainty small
- strongly dependent on jet rapidity y
- very important at high p_{T}

→Talk by Marek Schönherr on Wednesday

Inclusive jets: NNLO & scale choice

anti-kt, R=0.4, 13 TeV

Inclusive jets: α_s

Jets @ NNLO not used yet in fits @ LHC; → Talk by Daniel Britzger tomorrow for results in ep scattering

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

Inclusive jets: a_s & PDFs

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

Reduced uncertainties of gluon PDF

Results for $\alpha_s(M_z)$ at NLO from 7 and 8 TeV CMS jet data

$\alpha_{s}(M_{z})$	ехр	PDF	NP	sum	scale
0.1185	19	28	4	35	+53 -24
0.1164	+14 -15	+25 -29	1	+29 -33	+53 -28
0.1192				+23 -19	+24 -39
0.1185				+19 -26	+22 -18

Darker/lighter shading: 7 TeV / 8 TeV jet data Reddish/bluish color: without / with PDF fit

Open question: Uncertainty of missing higher orders (aka scale uncertainty) in PDF fits

Dresden, Germany, 27.08.2018

Large masses

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Dresden, Germany, 27.08.2018

<u>ATLAS:</u> JHEP 05 (2014) 059; JHEP 05 (2018) 195. <u>CMS:</u> PRD 87 (2013) 112002; EPJC 77 (2017) 746.

QCD@LHC 2018

13

Triple-differential dijets

Most measurements done with respect to dijet mass and either max. rapidity $|y|_{max}$ (CMS) or rapidity separation y^{*} (ATLAS). One CMS result on $\alpha_s(M_z)$:

Illustration of dijet event topologies

Triple-differential dijets

Multi-jets and α_s

Higher multiplicity

Relevant ATLAS & CMS measurements:

Klaus Rabbertz

Dresden, Germany, 27.08.2018

ATLAS: EPJC 75 (2014) 288. CMS: EPJC 73 (2013) 2604; EPJC 75 (2015) 186; PAS-SMP-16-008 (2017).

QCD@LHC 2018

Cross sections ~ α_{2}^{3} S

- Same as before but:
 - Higher sensitivity
 - Smaller statistical precision
 - Smaller dynamical range
 - More scale choices

3-jet mass

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Sensitivity vs. systematic effects

3- to 2-jet ratios

Running of $a_s(Q)$

Running of $a_s(Q)$

Normalised distributions

Relevant ATLAS & CMS measurements:

ATLAS: PLB 750 (2015) 427; EPJC 77 (2017) 872; arXiv:1805.04691.

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

Pros & cons similar as for cross section ratios ...

- Determination of $\alpha_s(M_2)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Transverse energy-energy correlation

Klaus Rabbertz

Dresden, Germany, 27.08.2018

(A)TEEC in bins of Q = $(p_{T1} + p_{T2})/2$

Dijet azimuthal decorrelation

Determine $\alpha_s(\mathbf{Q})$ from additonal parton branchings separated in Φ around the two leading jets. Binning in sum of scalar transverse momentum H_{τ} and rapidity separation y^{*}.

$$R_{\Delta\phi}(H_T, y^*; \Delta\phi_{\max}) = \frac{\frac{d^2\sigma_{\text{dijet}}(\Delta\phi_{\text{dijet}} < \Delta\phi_{\max})}{dH_T dy^*}}{\frac{d^2\sigma_{\text{dijet}}(\text{inclusive})}{dH_T dy^*}}$$

 $R_{\Delta\phi} \propto \alpha_s$

2

 $\Delta \phi_{\text{dijet}} = \pi$

If $\Delta \phi_{max}$ in 3-jet region

 $0 \leq \Delta \phi_{dijet} \leq \pi$

Wobisch et al., JHEP 01 (2013) 172; KR, M. Wobisch, JHEP 12 (2015) 024.

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

$R_{\Delta\phi}$ in bins of $Q = H_T/2$

Heavy stuff

Heavy quarks

Relevant ATLAS & CMS measurements:

CMS: PLB 728, 496 (2013), JHEP 11, 067 (2012).

Klaus Rabbertz

Dresden, Germany, 27.08.2018

QCD@LHC 2018

30

- Theory at NNLO or NNLO+NNLL!
- Determination of $\alpha_s(M_z)$ correlated with M_{top} (and gluon like for jets)
- What top mass? Pole? MS_{bar}?
- Top measurements already in PDF?

Fits with top-quark pair production

Top-pair production is especially sensitive to: m_t^{pole} and α_s and $g(x,\mu_f^2)$ as the main production process at LHC is from gg Using only the ttbar cross section measurement (dilepton channel) combined fits are not possible. Fixing the gluon to one of 5 PDF sets, however, it is possible to extract m_t^{pole} while fixing α_s or vice versa.

Combining LHC & Tevatron data

- fitting procedure similar to CMS; more conservative scale dependence treatment
- combines results using NNLO or NNLO+NNLL for theory prediction
- updated and complemented set of ttbar cross section measurements from LHC
- includes Tevatron results
- consideration of correlations among measurements
- combine results only from PDF sets without ttbar data (CT14nnlo, NNPDF30_nolhc)

Datasets:

	$\sigma_{t\bar{t}}$ (pb)	Statistical unc. (%)	Systematic unc. (%)	Luminosity unc. (%)	Ebeam unc. (%)	Exp. m_t unc. (%)
ATLAS (7 TeV) [16]	182.5	1.7	2.3	2.0	0.3	-0.2 + 0.2
ATLAS (8 TeV) [16]	242.4	0.7	2.3	2.1	0.3	-0.2 +0.2
ATLAS (13 TeV) [17]	816.3	1.0	3.3	2.3	0.2	-0.3 +0.3
CMS (7 TeV) [13]	173.4	1.2	2.5	2.2	0.3	-0.2 + 0.2
CMS (8 TeV) [13]	244.1	0.6	2.4	2.6	0.3	-0.4 + 0.4
CMS (13 TeV) [14]	809.8	1.1	4.7	2.3	0.2	-0.8 + 0.8
Tevatron (1.96 TeV) [18]	7.52	2.7	3.9	2.8	0.0	-1.1 + 1.4

Bethke et al., NPPP 282-284 (2017) 139.

Combining LHC & Tevatron data

No LHC top data in NNPDF3_nolhc or & 14 Bias between NNLO & NNLO+NNLL ...

Klaus Rabbertz

Dresden, Germany, 27.08.2018

- Very precisely measurable, in particular in leptonic decay modes
- **NNLO** available for V and V+1jet
- NLO available for up to V+4/5jets
- Not used so far for $\alpha_{(M_{)}}$ or $\alpha_{(Q)}$ by LHC experiments

New study of published AT data on inclusive Z+2/3/4 je observables @ NLO for extraction of $\alpha_s(M_7)!$

(No ratios [n+1]/n though ...)

For more details on α_s (M₂) from Z produ

- \rightarrow Talks on Tuesday by
 - Daniel Maître (Z+jets)
 - Stefano Camarda (Z pT, CDF)

TABLE I. Observables and labels for the fits.

	Label	Observable(s)				
IAS	all	Combination of all histograms				
et	2j, incl	Combination of the transverse momentum and rapidity of the second jet for the two-jet inclusive sample				
	3j, incl	Combination of the transverse momentum and rapidity of the third jet for the three-jet inclusive sample				
	4j, incl	Combination of the transverse momentum and rapidity of the fourth jet for the four-jet inclusive sample				
iction:	all y	Combination of all the rapidity distributions				
	all p^{\perp}	Combination of all three transverse momentum distributions				
	y_i	Rapidity for the <i>i</i> -jet inclusive sample				
	p_i^{\perp}	Transverse momentum for the <i>i</i> -jet inclusive sample				
		M. Johnson, D. Maitre, PRD 97 (2018) 054013.				
esden, (Germany, 2	7.08.2018 QCD@LHC 2018 35				

Klaus Rabbertz

Dresden, Germany, 27.08.2018

Z+2/3/4jets production

ATLAS ATEEC 7TeV [38] ATLAS TEEC 7TeV [38] ATLAS ATEEC 8TeV [3] ATLAS TEEC 8 TeV [3] CMS 3 jets 7TeV [7] CMS 3j/2j ratio 7TeV [2] CMS inclusive jets 7TeV [4] CMS top pair 7TeV [39] This work: NNPDF3.0 MMHT

Klaus Rabbertz

CT14

Dresden, Germany, 27.08.2018

QCD@LHC 2018

- Correlations to LHC data already in PDF fits
- Correlations between $\alpha_s(M_z)$, M_{top} , g(x)
- Gu)estimation of nonperturbative effects:
 - Different event generators & tunes, different orders, different ...
 - Incoherent among ATLAS, CMS, Tevatron, ...
- Conventional scale variation by factors of $\frac{1}{2}$, 2 and 1 σ assumption
- Central scale choice ...!

Scale choices

 \hat{H}_{T} $\mu_0 = p_{T,1}$ $(p_{\mathrm{T,jet}},$ **Inclusive jets** $\mu_0 = p_{\mathrm{T},1}, \quad p_{\mathrm{T},1} \cdot \exp\left(0.3y^*\right)?$ $\mu_0 = \left(p_{\mathrm{T},1} + p_{\mathrm{T},2}\right)/2, \quad (m_{jj})/2?$ **Dijets** $\mu_{0} = p_{T,3}, \qquad (p_{T,1} + p_{T,2}) | 2, \qquad m_{jjj} | 2?$ **3-jets Ratios Shapes** $\mu_0 = \sqrt{M_Z^2 + p_{\rm TZ}^2 + H_{\rm T,jet}}?$ V+jets

Dresden, Germany, 27.08.2018

Dijets

Dijets: Currie et al., PRL 119 (2017) 152001; Incl. Jets: Currie et al., arXiv:1807.03692..

Inclusive jets, R = 0.7

Favored by authors

Dijets: Currie et al., PRL 119 (2017) 152001; Incl. Jets: Currie et al., arXiv:1807.03692..

Dresden, Germany, 27.08.2018

Inclusive jets, R = 0.4

Favored by authors

Klaus Rabbertz

Dresden, Germany, 27.08.2018

Dijets: Currie et al., PRL 119 (2017) 152001; Incl. Jets: Currie et al., arXiv:1807.03692..

QCD@LHC 2018

Two goals for $\alpha_{\underline{s}}$:

- 1. Measure the running of $\alpha_s(Q)$ up to the highest scales possible \rightarrow In CMS mostly looked into $\alpha_s(Q)$!
- 2. Measure $\alpha_s(M_z)$ as precisely as possible
- → For α_s(M_z) might want to stay at minimal JEC uncertainty: 200 – 800 GeV, central rapidity

Better in: JEC uncertainty PDF uncertainty Evolution to M_z Worse in: NP effects

Perspectives & educated guesses

- Experiment:
 - **Done:** Observables $\sigma \sim \alpha_s^2$, α_s^3 ; $R_{3/2} \sim \alpha_s$; 7 TeV; full phase space
 - Mostly done, 8 TeV data: Some reduction in experimental uncertainty
 - Partially done, 13 TeV: Final precision?
 - Best JEC phase space: Further reduction by some permille?
 - Other observables: Ratios (n+m) / n jets (incl. γ, W, Z), Normalized cross sections (A)TEEC, R_{ΔΦ}, R_{ΔR} (→ D0)
- Theory:
 - Scales: NNLO important → reduction by 2 3 percent!?
 - PDFs: Much improved after LHC I, also HERA 2 data available
 - Better known gluon (Attention circularity jets \rightarrow g(x) & jets $\rightarrow \alpha_s$)
 - Fits combining observables at various \sqrt{s} to disentangle g(x), M_t, α_s
 - NNLO ratios?
 - NP effects?

Klaus Rabbertz

Dresden, Germany, 27.08.2018

PDG Summary

100

▼ τ decays (N³LO)

 ∇ p(\vec{p}) -> jets (NLO)

▼ pp -> tt (NNLO)

10

Q [GeV]

Heavy Quarkonia (NLO)

• e⁺e⁻ jets & shapes (res. NNLO)

e.w. precision fits (NNNLO)

△ DIS jets (NLO)

April 2016

1000

- LHC at 7 TeV and 8 TeV enables measurements up to scales of 2 TeV
- I3 TeV data yet to be fully evaluated
- Theory at NNLO QCD + electroweak corrections are a must!
- Typical uncertainties on $\alpha_s(M_z)$:
 - ➡ Experimental: ~ 1 2 %
 - → PDF: ~ 1 2 %
 - Scale: 3-5% → 1-2% at NNLO(?) but still an issue. Central scale choice?
 - Nonpert. Effects: 1 % (really?)
- Beyond one experiment (see also → LHC EW Working Group):
 - Combined fits of ATLAS & CMS (LHC) measurements
 - Combined fits of HERA, Tevatron & LHC measurements
- CHALLENGE: α_s(M_z) at 1% or better from hadron colliders!

Dresden, Germany, 27.08.2018

I wish you a fruitful conference!

Thank you for your attention and the invitation to speak here!

Backup Slides

α_s Projections from Snowmass

Still at LHC:

Only jets probe running α_s at highest scales

< 1% uncertainty at M_z challenging ...

Need NNLO and improved PDFs (gluon) plus some experimental optimization

Method	Current relative precision	Future relative precision	
e^+e^- evt shapes	$expt \sim 1\% (LEP)$	< 1% possible (ILC/TLEP)	
	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]	$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	~ 10/
e^+e^- jet rates	$expt \sim 2\%$ (LEP)	< 1% possible (ILC/TLEP)	~170
	thry $\sim 1\%$ (NNLO, n.p. moderate) [28]	$\sim 0.5\%$ (NLL missing)	
provision FW	$expt \sim 3\% (R_Z, LEP)$	0.1% (TLEP [10]), $0.5%$ (ILC [11])	<10/
precision Ew	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29]	$\sim 0.3\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)	
	thry $\sim 2\%$ (N ³ LO, n.p. small) [8]	$\sim 1\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	
an collidora	$\sim 1-2\%$ (pdf fit dependent) [30, 31],	0.1% (LHeC + HERA [23])	<1%
ep coniders	(mostly theory, NNLO) [32, 33]	$\sim 0.5\%$ (at least N^3LO required)	
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)	< 1% challenging	~1%
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17,21,34]	(NNLO jets imminent [22])	1 /0
lattico	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$	~0 5 0/
TAUTUCE	(limited by accuracy of pert. th.) [35–37]	$(\sim 5 \text{ yrs } [38])$	~U. 5%

Snowmass QCD Report, arXiv:1310.5189.

Klaus Rabbertz